COMMENTARII MATHEMATICI ed. RIKKYO UNIV/MATH
UNIVERSITATIS SANCTI PAULI IKEBUKURO TOKYO
Vol. 47, No. 1 1998 171 JAPAN

On Some Elementary Character Sums

by
Tomoyoshi IBUKIYAMA

(Received July 22, 1997)

For any prime p, the action of the symplectic group Sp(2, F,) on the Siegel
modular forms of degree 2 belonging to the principal congruence subgroup I'(p) was
investigated by Tsushima, Lee and Weintraub, and Hashimoto independently.
Tsushima [3], [4], and Lee and Weintraub [2] used the Lefschetz fixed point theorem
and Hashimoto [1] used the trace formula. Now, let p be an odd prime and denote

by <i> the Legendre symbol. By comparing some part of apparently different results
p

by Tsushima [4] and Hashimoto [1], one gets easily a formula expressing the following

character sum
nm=1 p 14

by the class number of the quadratic field Q(/ —p) (cf. Hashimoto [1] Remark 3).
The aim of this paper is to give an elementary alternative proof and a generalization
of this formula.

1. Theorems

We fix an odd prime p. For short, we denote by ¥ the Legendre symbol:
1//(a)=<i>. We also put { =exp(2ni/p).
P

THEOREM 1. Notation and assumptions being the same as above, let | be any
positive integer which is prime to p. Put
"il Y(a)p(b)
ab=tazs (1=0270)(1 (")

I, p)=

Then, we get

mn=

1, p)=% pfl W(mom — iy + 7 ;”2

p—1 Up?-1 1 2
SR R L= —— Y (7 E
4 24 2p c;o 1Y)
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where we put

p—1
S ()= ;0 Y(n+on.

We shall describe the values S, () more explicitly in the next theorem. Since
we would like to treat some more general case, we prepare more notation. For any
Dirichlet character J, we denote by f; the conductor of 6 and by B, ; the first
generalized Bernoulli number belonging to d: B, ;=f; i ° , 0(m)m. Incidentally,
for non trivial 4, we have B, ;#0, if and only if §(—1)=—1. We fix a Dirichlet
character y with conductor f,. For any natural number / prime to f, and an integer
¢, define a character sum S, (x) by

Sr—1
Si.0)= ZO xin+cn.
This value depends not only on ¢mod/, but also on a choice ¢ of the representative
of cmod /.

It seems more or less known in principle how to execute a calculation to get a
formula expressing S, (x) by generalized Bernoulli numbers (e.g. Yamamoto [5]).
But, since we could not find any reference containing a general closed explicit formula
of this type, we shall give it here. For any natural number m, we denote by X(m) the
set of primitive Dirichlet characters ¢ such that m is divisible by f;, and by Y(m) the
set of primitive Dirichlet characters with conductor m.

THEOREM 2. Let I be a natural number prime to f, and c be a natural number
prime to | with 1 <c<I—1. For any integer u with u|l, denote by I, the u-primary part
of I, that is, the maximum integer which divides | and is prime to u. We get

S 0= X <5(c‘ hB,, 1101 —x(q)é(q))> ,
u|l 5eY(u) q|lu
where q runs over prime numbers dividing 1, and ¢ is the Euler function.
As an easy corollary to the above two theorems, we get

CoroLLARY 2.1 (Tsushima [4] and Hashimoto [1]). Notation and assumptions
being as in Theorem 1, denote by h(— p) the class number of the quadratic number field

Q(/—=p). Then, we get

rcl Y(ap(b)
a,b=;a¢b (1=¢*7b(1—(*)

_1 "f Wim—any(mymn + 2 —1°
D nm=1 4
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7/6 if p=3,
_(p=1@p=1) _| p-h(=p)*/4  if p=1mod4,
12 Tp-h(—p)?*/2  if p=3mod8, p#3,

ph(—p)*/2 if p=7mod$.

2. Proofs

We shall prove the results in section 1.

Proof of Theorem 1. We show the first equality. For any c with (¢, p)=1, we
easily get

So, we have

p—1 p—1
pALP= Y X Y@y®) " " nm

nm=1ab=1,a#b

p—1 p—1 p—1 p—1
=5 (T vt ) e S
- r(w)2< 5 wmpin— m)mn> ; ”—‘—”4‘—” ,

where () is the Gaussian sum t(¥)=) 7 Z 1 ()" Since ©(y)> =y(—1)p, we get the
first equality. Next we shall show the second equality. Replacing b by —b in the
definition of I(I, p), and noting 1/(1—{")=1—1/(1—p™), we get

= b = b
W-vitp= Y YO Wab)

ab=1,a+b#p I—C(a+b) ab=1l,a+b#p (l_clb)(l_c(a-f-b)) '

Exchanging a and b in the above expression, and taking the average of both
expressions, we see that the second term is equal to

1 Y(ab) < 1 1 )
+ .
2 a,b=1§+b¢p 1ot 8 1-¢ 1%

2L L= (1= L)1 =)+ (1= L)

Since

we get

rcl Y(ab) Ylab)(1 -1+
2¢(_1)I(l5 p)= z <l_gu+b_(I_Cla)(l_clb)(l_ca+b)>'

a,b=1,a+b#p
The first term can be calculated easily. Indeed, expanding 1/(1—{**?) as before, we
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get

pil LIM — pil pil W(ab)L@+ory

+b
ap=tla+bzp 1—C¢ n=1lab=1la+b#p

=Y @bk =T y(—an=

a,b,n=1 an=1

Y(—1)(p—1Dp
5 :

Next, we shall evaluate the second term. Since

1 _Cl(a+b) -1

_— c(a+b)
1_€a+b _c;oc ’
we get
et W(ab)(1— (1D 7:(1//)2’ ( - )2
a,b=1§+b¢p (I—Cla)(l_clb)(l_ca-!-b) I’E Z n; Y(ln+c)
- l
—y(—1 )azlm.
Hence, we get
-1 Ip?-1 1 =t
e ‘p7+%—5 S S

g.e.d.
To prove Theorem 2, we prepare several lemmas.

Lemma 1. For a natural number I prime to f, and any é € X(l), we get
-1
Z 3(0)S1.(x) =f;<B1.a,C .

Proof. For the sake of simplicity, put Ty(y, §)= Zi éé(c)S, ). Since d(c)=
d(n+c) and f x 1)((ln+c) 0, we get
1-1f%x-1

Ty, O)=1"1> Y s(In+o)y(n+c)in+c)
¢c=0 n=0
Sxl—1

-1 go S(m)y(m)m .

Since (I, f,)=1, the Dirichlet character dy is primitive and f;,=f;f,. Hence, we get

lfgl—lféx_l
Ty, 0)=1"" ZO bZO (Ox(fs,a+b)(f5,a+Db)
Sofx—1

RURIPREXOE
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=fxBl,6x .
g.e.d.

From this formula, we shall extract a kind of inversion formula. Since J is
primitive, we need a careful treatment for ¢ with (¢, [)>1. We fix a natural number
[ which is prime to f, and put L=[] 419> Where g runs over primes. For any m|L,
denote by /,, the m-primary part of /.

LEMMA 2. For any fixed number de(Z/IZ)*, we get

Z ¢(lm)x(m)Slm,e(X) =f)( 5 EX:(I) 5(d N I)Bl,éx s

m|L
where e is the unique integer such that me=dmod |/, with 0<e<[, —1.

Proof. We shall show this lemma by taking the sum over é € X(/) of the both
sides of the formula in Lemma 1. For an integer ¢ with 0 <c¢<I—1, there exists the
unique m|L such that m|c and (¢, L/m)=1. For such ¢, we have } ;.xq)d(c)=
Y sexa, 0(c), since d(c)#0 only if (f;, m)=1. Besides,

Z 5(d‘1c)={(p(l"') when d=cmod/, ,

6€X(Im) 0 otherwise .

Now we denote by C(m) the following set of integers.
Cim)={ceZ;0<c<l—1,m|c,(c,L/m)=1, and c=dmod/,} .
If we take the unique integer e such that me=dmod/, with 0<e<l/, —1, then
(e, 1,,)=1, since (d,[)=1. Hence we get
Cm)={(e+l,am;aecZ,0<a<(l,m)~'1—1}.
Obviously, we get
-1
fi X 8d MBys= Y Y 8dIS (0= @) X S0,
deX(l) deX(l)c=0 m|L ceC(m)

and

Ylym—1

Z Sl,c(X)= ZO Sl,m(e+lma)(X)

ceC(m)
Ylpm—1Sx~1

= Z Z x(In+(e+1,amn

a=0 n=0

Ylyym—1Fx—1 In
=xm Y x<—+e+lma>n
n=0 m

a=0

Ylym—1Fx~1 In In
=xmlml~t Y, Y X(lm<d—+a>+e><*+a>
a=0 n=0 I,m l,m
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S bflmm—1

=ymlml~t Y yl.b+eb
(lm:n —?1 1/x~1

= y(m)l,ml~* Z 2 b1 S, +bo)+e)( b1 +bo)

b1=0  bo=0
=x(m)S,,,. () -
Hence, the lemma is proved.

LemMmA 3. We fix natural numbers I prime to f, and c prime to [ with 1 <c<I—1.
We define L and 1,, for m|l in the same way as in Lemma 2. Then, we get

o) f, 'S0 = ZlLu(m)x(m) Y, 8(mc "By,

5 X(m)
where u is the Mobius function.
Proof. For u|v|L and any de(Z/IZ)", we put
| 90 0, 4) = QUL DSy, ()

where w is defined as the unique integer such that (¢~ 'v)w=dmod(l/l,) with
1<w<l/l,—1. We also put

Jo,d)=f, Y 8d HB,,.

deX(l/ly)
Now, we apply Lemma 2 for (v, I/1,) instead of (L, /). Noting that (//1,),,=1,/l, for
any m|v, we get

2 PUn/L)x(m)Sy,p, L0=f, Y. 8d By,

m|v deX(/1,)

where e is determined by me=d mod (/,/I,) with 1 <e</,/l,—1. Now for each m|v,
define u by mu=v, then we get /,,/I,=1/I, and

Zl:g(u’ U, d)=f(l7, d) .

Next, for any u|L, we put G(u)=g(u, L, ¢c) and Fu)=y(u"'L)f(v, L™ 'uc). For
any v|L, we get g(u, L, c)=y(v™'L)g(u, v, L™ 'vc), where L™ 'vc is regarded as an
element of (Z/[,Z)*. Hence we see

Y Gu)=y(v"'L) Y. gu, v, L™ 've)=x(v " 'L)f(v, L™ 'vc)=Fv) .
ulv ulv

By Mobius inversion formula, we get

GIL)="Y, u(m)F( )

m|L

which is the assertion of our Lemma. q.e.d.
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Proof of Theorem 2. We fix 6 € X(I) and denote the conductor of é shortly by
u. By definition, we get d e X(l,,) if and only if u|/,. This is also equivalent to the
condition m|l,. So the coefficient of B, ;_in the right hand side of Lemma 3 is given
by

2 umyy(m)dme™1)=0(c™") I”] (1 —x(9)d(q)) ,

m|ly,
where ¢ runs over all primes which divide /,. Hence, we get Theorem 2.

Proof of Corollary. Weseeeasily that S, o(¥)=pB, , and S, ,(¥) =¥(2)S, 1(¥)=
(y(2)—1)pB, ,. Also, by Theorem 2, we get S, ;(Y)=2" A=y Q)pB, ,+PB; )
and S, 3(¥)=2"'((1 —y(2))pB, , —PB; 5,), wWhere J is the unique primitive Dirichlet
character modulo 4. Hence,

3
Zo S4,c(‘/’)2 =@4-3y2)p 2312,n1/ +27 1P zBf,a.p .

If p=1mod4, then B, ,=0and B, ;,=h(—p). If p=3mod4 and p#3, then B, ;,=0
and B, ,=h(—p). Hence Corollary is proved.
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