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Abstract. We give two kinds of conjecture on liftings from vector
valued Siegel modular forms of degree two to Siegel modular forms
of higher degrees with respect to the full Siegel modular groups.
The degree four case of our conjectures answers to the lifting puz-
zle posed by Ryan, Poor, and Yuen on the liftings to degree 4,
and our conjectures are based on the numerical examples which fit
their concrete examples of Euler 2 factors, as well as a coincidence
of the gamma factors and existence of consistent homomorphisms
between L groups. The other reasons for the conjectures are that
the first one contains the Ikeda lift as a special case, and the second
one contains so called Ikeda-Miyawaki lift as a special case.

1. Introduction

Ryan, Poor and Yuen calculated in their paper [16] all Euler 2 factors
of the standard L functions of Siegel cusp eigenforms of degree 4 of
weight 16 of level 1. There are 7 eigenforms denoted by h1 to h7 and
they claimed all seem to be a kind of liftings judging from the Euler
2 factors. Among them, they explained four forms by known liftings
and left the remaining three forms as a problem. These three forms are
divided into two groups {h3, h4} and {h7} from their shapes of Euler
factors, and they suggested that both groups seem to be unknown
different types of liftings from somewhere. They call this problem a
lifting puzzle. In Luminy conference in May 2011, Anton Mellit told
the author an idea to explain the second group by taking a vector
valued Siegel modular form of degree two of some weight. After the
conference, the author checked the idea of Mellit by giving an explicit
numerical example, and made a further guess and gave an example to
explain not only the second but also the first group, then based on these
examples, state two different conjectures on liftings from vector valued
Siegel modular forms of degree two to general degree. By exchanging
this information by emails with some attendants of Luminy conference,
the author learned that Jonas Bergström together with Martin Raum
had already guessed equality (2.6) in the case where F equals h3 or h4
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by considering the corresponding conjectural motives and their Hodge
structures, and they had checked this equality numerically for p = 2.
The numerical calculation was based on work by Faber and van der
Geer on the cohomology of local system of the moduli space of abelian
surfaces, and this calculation is not the same as the one given here by
explicit constructions of vector valued Siegel modular forms.

In this paper, we propose two kinds of general conjecture, one is from
vector valued Siegel modular forms of weight detn+2 Sym(2m−3n−2)
of degree 2 to Siegel modular forms of weight m of degree 2n for even
natural numbers n andm, and the other is from a pair of weight 2m−2n
of degree one and weight detm−2n+2 Sym(2n − 2) of degree two, to
weight m of degree 2n for even m. In both cases, conjectural relations
of L functions are explicitly given. Each of which explains each group of
the lifting puzzles of Ryan, Poor and Yuen as a special case. Evidence
of these conjectures are
(1) Each conjecture fits each numerical example in [16] for degree 4.
(2) The gamma factors coincide.
(3) The former conjecture includes the Ikeda lift of degree 2n with even
n and the other includes a part of the Ikeda-Miyawaki lift.
(4) There exist consistent homomorphisms between L groups.
It seems that the above conjectures can be regarded as a part of Arthur
conjectures in [3]. Panchishkin also gave some conjectures on general
lifting in his paper [15], but he treated only scalar valued cases and also
the shapes of the L functions seem different from ours. After reviewing
notation and definitions in section 2.1, we state our conjectures for
degree 4 in section 2.2, give numerical examples in section 2.3, state
our conjectures for general degree in section 3.1 with explanation of
the above evidence (2) and (3) in section 3.2, 3.3. In section 3.4, we
explain L-group morphisms in the Langlands conjecture compatible to
our conjectural liftings. In the Appendix, we shortly explain explicit
relations between the standard L functions and the spinor L functions
for small degree.

2. Conjectures for degree four and numerical examples

2.1. Notation and definitions. We denote by Sp(n,R) the real sym-
plectic group of size 2n and by Γn the full Siegel modular group of de-
gree n defined by Γn = Sp(n,R)∩M2n(Z). We denote by Hn the Siegel
upper half space of degree n. For any natural number k, we denote
by Ak(Γn) or Sk(Γn) the space of Siegel modular forms, or Siegel cusp
forms of Γn of weight k, respectively. We denote by Ak,j(Γ2) or Sk,j(Γ2)
the space of vector valued Siegel modular forms, or Siegel cusp forms,
of weight detk Sym(j) of Γ2. More concretely, an element of Ak,j(Γ2)

is a homogeneous polynomial F (Z, u) =
∑j

i=0 fi(Z)u
j−i
1 uj

2 in variables
u1, u2 with coefficients fi(Z) in holomorphic functions of Z ∈ H2 such
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that

F (γZ, u) = det(cZ + d)kF (Z, u(cZ + d))

for any γ = ( a b
c d ) ∈ Γ2. We note that Ak,j(Γ2) = {0} if j is odd

and Ak,j(Γ2) = Sk,j(Γ2) if k is odd. For a Hecke eigenform f =∑∞
n=0 a(n)q

n ∈ Ak(Γ1) with a(1) = 1, we denote by L(s, f) the classical
Hecke L function defined by

∑∞
n=1 a(n)n

−s. For a Siegel modular form
F of degree n, we denote by L(s, F, Sp) for n ≥ 2 or L(s, F, St) for n ≥ 1
the spinor, or the standard L function of F . For the sake of simplicity,
we assume that these L functions are normalized so that the functional
equations (conjectural in the spinor case) is for s → 1− s. This is dif-
ferent from the classical or geometrically natural setting of Andrianov,
but since we will use several different L functions in this paper, this
unified normalization seems suitable to avoid confusion. If we write Sa-
take parameters at a prime p of a Siegel modular form F of any weight
of degree n by α0,p, α1,p, . . . , αn,p, then both L functions are defined by
L(s, F, St) =

∏
pHp(F, St)

−1 and L(s, F, Sp) =
∏

p Hp(F, Sp)
−1 where

the Euler p-factors Hp(s, St) and Hp(s, Sp) are defined by

Hp(F, St) = (1− p−s)
n∏

i=1

(1− αi,pp
−s)(1− α−1

i,p p
−s),

Hp(F, Sp) = (1− α0,pp
−s)

n∏
r=1

∏
1≤i1<i2<...<ir≤n

(1− α0,pαi1,p · · ·αir,pp
−s).

In our setting, we have α2
0,pα1,p · · ·αn,p = 1 (cf. Asgari and Schmid [4].)

If F is an eigenform of the Hecke operators in GSp(n,Q) ∩ M2n(Z),
then it is also a Hecke eigenform of Sp(n,Q) ∩ M2n(Z) and both L
functions L(s, F, Sp) and L(s, F, St) are defined. But L(s, F, Sp) is not
determined by L(s, F, St) in general and there remains sign ambiguity.
We will explain this relation in the Appendix (section 4).

We review the classical style definition of the Spinor L function
when the degree is two. For any natural number l, we define the
Hecke operator T (l) as a formal sum of the Γ2 double cosets in the
set {g ∈ M4(Z) : tgJ2g = lJ2}, where J2 =

(
0 −12
12 0

)
. For any Siegel

modular form F (Z, u) ∈ Ak,j(Γ2), the action of the Hecke operator T (l)
is defined by

F |k,jT (l) = l2k+j−3

d∑
i=1

det(ciZ + di)
−kF (giZ, u(ciZ + di)

−1),

where T (l) = ∪d
i=1Γ2gi and gi =

(
ai bi
ci di

)
. For a Hecke eigenform

F ∈ Ak,j(Γ2), we denote by λ(l) = λ(l, F ) the eigenvalue of the Hecke
operator T (l). We define

Lcls(s, F, Sp) =
∏
p

Hcls
p (F, Sp)−1,
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where

(2.1) Hcls
p (F, Sp) =

1−λ(p)p−s+(λ(p)2−λ(p2)−p2k+j−4)p−2s−λ(p)p2k+j−3−3s+p4k+2j−6−4s.

Then we have

Lcls(s, F, Sp) = L

(
s− 2k + j − 3

2
, F, Sp

)
.

More generally, for any F ∈ Am(Γn), the classical L function is given
by Lcls(s, F, Sp) = L(s− nm/2 + n(n+ 1)/4, F, Sp) (cf. [4]).
We give one more definition, a convolution product of L functions. For
any eigenform f ∈ Al(Γ1) and any prime p, define Satake parameters
βp by

L(s, f) =
∏
p

(1− βpp
l−1/2p−s)−1(1− β−1

p pl−1/2p−s)−1.

For example βp + β−1
p is p−(l−1)/2 times the eigenvalue of f at p. For

g ∈ Ak,j(Γ2), denoting by αi,p (i = 0, 1, 2) the Satake parameters of g
as before, we define the convolution product L function of f and g by

(2.2) L(s, f ⊗ g) =
∏
p

∏
i=1,−1

(1− βi
pα0,pp

−s)−1(1− βi
pα0.pα1,pp

−s)−1

× (1− βi
pα0,pα2,pp

−s)−1(1− βi
pα0,pα1,pα2,pp

−s)−1

2.2. Conjectures. We give two conjectures for degree 4 case.

Conjecture 2.1. For any even natural number m ≥ 4, let f be a
vector valued Siegel eigenform in A4,2m−8(Γ2). Then there should exist
a Siegel eigenform F ∈ Am(Γ4) such that the following relations hold.

L(s, F, St) = ζ(s)L(s− 1

2
, f, Sp)L(s+

1

2
, f, Sp),

(2.3)

L(s, F, Sp) = ζ(s− 1)ζ(s)ζ(s+ 1)L(s, f, St)L(s+
1

2
, f, Sp)L(s− 1

2
, f, Sp).

(2.4)

Here we can deduce (2.3) from (2.4) (cf. Appendix). This conjecture
is based on the following three reasons.
(1) A numerical example given in the next section. When m = 16 and
f ∈ S4,24(Γ2), then F ∈ S16(Γ4) should be h7 in [16].
(2) The comparison of the gamma factors and functional equations.
(3) The case when f is a non-cusp form is explained by the Ikeda lift.
The reasons (2) and (3) will be explained in a more general setting in
section 3.2 and 3.3.
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Conjecture 2.2. For any even natural number m > 2, let g be a vector
valued Siegel eigenform in Am−2,2(Γ2) and f an elliptic eigenform in
A2m−4(Γ1). Then there should exist a Siegel eigenform F ∈ Am(Γ4)
such that

L(s, F, St) = L(s+m− 2, f)L(s+m− 3, f)L(s, g, St),(2.5)

L(s, F, Sp) = L(s− 1

2
, g, Sp)L(s+

1

2
, g, Sp)L(s, f ⊗ g).(2.6)

Here we have similar reasons as in Conjecture 2.1. For example,
when m = 16, g ∈ A14,2(Γ2) and f ∈ A28(Γ1), we should have F = h3

or h4, according to the choice of f since dimA28(Γ1) = 2. This will be
explained in the next section. The coincidence of the gamma factors
in the general case and the relation in the case of non-cuspidal g to the
Ikeda-Miyawaki lift will be explained in 3.2 and 3.3.

2.3. Numerical examples. Here we calculate the Euler two factors
of our conjectures for the cases which should correspond with the ex-
amples in [16]. These Euler 2 factors have been also calculated by J.
Bergström based on work by Faber and van der Geer, but the method
here is independent and to give modular forms in A4,24(Γ2) or A14,2(Γ2)
more directly by theta functions.

We define the inner product (u, v) of u = (ui), v = (vi) ∈ C8 by
(u, v) =

∑8
i=1 uivi and put n(u) = (u, u). We denote by E8 the even

unimodular lattice of rank 8 in Q8 which is unique up to isometry. We

write the variable Z ∈ H2 as Z =

(
τ z
z ω

)
. For any v ∈ C8 with

(v, v) = 0 and any integer µ, we put

ϑv, µ(Z) =
∑

x,y∈E8

(x, v)24−µ(y, v)µexp(πi(n(x)τ + 2(x, y)z + n(y)ω))

and

ϑv(Z) =
24∑
µ=0

ϑv, µ(Z)

(
24

µ

)
u24−µ
1 uµ

2 .

Then this is a vector valued Siegel modular form in A4,24(Γ2). The
image of A4,24(Γ2) under the Siegel Φ-operator is two dimensional,
spanned by f u24

1 with f ∈ S28(Γ1) (cf. [2]). We have

Φ(ϑv) =

(∑
x∈E8

(x, v)24exp(πin(x)τ)

)
u24
1 .

Since we would like to have a cusp form, we take a linear combination
of theta functions to erase this image. We prepare three vectors a, b,
c ∈ C8 defined by

a = (1, i, 0, 0, 0, 0, 0, 0),
b = (2, i, i, i, i, 0, 0, 0),
c = (3, 2i, i, i, i, i, i, 0),
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where we write i =
√
−1. We put

f4,24(Z) = (41877027737787432960000)−1

×(−1112395251995136ϑa(Z) + 549963945ϑb(Z)− 54784ϑc(Z))

Then we see that this is a non-zero cusp form in S4,24(Γ2).
Now when j > 0, the dimension formula for Sk,j(Γ2) is known by

Tsushima [18] only for k > 4, so the formula for dimS4,24(Γ2) is not
in his paper. But there is a very strong evidence that, for dimSk,j(Γ2)
with k ≥ 3, the same formula as for k > 4 gives the true dimen-
sions (cf. [9], [10]). In fact, very recently, the dimension formula for
S4,j(Γ2) is announced in [5], and the result is as expected. So we have
dimS4,24(Γ2) = 1 and this means that f4,24 is a Hecke eigenform. By
using the Fourier coefficients of f4,24, we can show

λ(2, f4,24) = 5280, λ(4, f4,24) = 439542784,

Hcls
2 (f4,24, Sp) = 1− 5280X − 680099840X2 − 5280 · 229X3 + 258X4,

H2(f4,24, St) = 1 + 53523 · 2−14X + 2404121 · 2−19X2 + 53523 · 2−14X3 +X4,

where X = 2−s. Indeed, if we denote by C(a, c, b) the Fourier coef-

ficients of f4,24 at T =
(

a b/2
b/2 c

)
, then by a computer calculation we

have

C(1, 1, 1) = −2652

(
24

18

)
u18
1 u6

2 − 9282

(
24

17

)
u17
1 u7

2 − 15652

(
24

16

)
u16
1 u8

2

− 14742

(
24

15

)
u15
1 u9

2 − 4368

(
24

14

)
u14
1 u10

2 + 9009

(
24

13

)
u13
1 u11

2

+ 15114

(
24

12

)
u12
1 u12

2 + 9009

(
24

11

)
u11
1 u13

2 − 4368

(
24

10

)
u10
1 u14

2

− 14742

(
24

9

)
u9
1u

15
2 − 15652

(
24

8

)
u8
1u

16
2 − 9282

(
24

7

)
u7
1u

17
2

− 2652

(
24

6

)
u6
1u

18
2 ,

C(2, 2, 2) = −14002560

(
24

18

)
u18
1 u6

2 − 49008960

(
24

17

)
u17
1 u7

2 − 82642560

(
24

16

)
u16
1 u8

2

− 77837760

(
24

15

)
u15
1 u9

2 − 23063040

(
24

14

)
u14
1 u10

2 + 47567520

(
24

13

)
u13
1 u11

2

+ 79801920

(
24

12

)
u12
1 u12

2 + 47567520

(
24

11

)
u11
1 u13

2 − 23063040

(
24

10

)
u10
1 u14

2

− 77837760

(
24

9

)
u9
1u

15
2 − 82642560

(
24

8

)
u8
1u

16
2 − 49008960

(
24

7

)
u7
1u

17
2

− 14002560

(
24

6

)
u6
1u

18
2 ,
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C(4, 4, 4) = −1165667463168

(
24

18

)
u18
1 u6

2 − 4079836121088

(
24

17

)
u17
1 u7

2

− 6879723655168

(
24

16

)
u16
1 u8

2 − 6479739721728

(
24

15

)
u15
1 u9

2

− 1919922880512

(
24

14

)
u14
1 u10

2 + 3959840941056

(
24

13

)
u13
1 u11

2

+ 6643249637376

(
24

12

)
u12
1 u12

2 + 3959840941056

(
24

11

)
u11
1 u13

2

− 1919922880512

(
24

10

)
u10
1 u14

2 − 6479739721728

(
24

9

)
u9
1u

15
2

− 6879723655168

(
24

8

)
u8
1u

16
2 − 4079836121088

(
24

7

)
u7
1u

17
2

− 1165667463168

(
24

6

)
u6
1u

18
2 .

Denote by C(p; (a, c, b)) the Fourier coefficient of T (p)(f4,24) at T .
Then as written in [9] p. 126, we have

C(2; (1, 1, 1)) = C(2, 2, 2),

C(4; (1, 1, 1)) = C(4, 4, 4).

Hence by calculating C(2, 2, 2)/C(1, 1, 1) and C(4, 4, 4)/C(1, 1, 1),
we have our result for λ(2) and λ(4). Then the Euler 2 factors of
the classical spinor L function of f4,24 is calculated by definition (2.1)
and the standard L function is also calculeted by using formulas in
the Appendix from this. Besides, by L(s, h7, St) and the numerical
value T (2) = 230400000 of h7 in [16], we can determine L(s, h7, Sp) as
explained in the Appendix, since T (2)/227 is the coefficient of 2−s of
the Euler 2 factor of L(s, h7, Sp). So we see that the Euler two factors
of

ζ(s)L(s+
1

2
, f4,24, Sp)L(s−

1

2
, f4,24, Sp)

and

ζ(s− 1)ζ(s)ζ(s+ 1)L(s, f4,24, St)L(s+
1

2
, f4,24, Sp)L(s−

1

2
, f4,24, Sp)

coincide with those of L(s, h7, St) and L(s, h7, Sp) respectively by virtue
of numerical data in [16]. Hence we may expect that f4,24 is lifted to
h7 in the sense of Conjecture 2.1.

By the way, we have dimS4,2m−8(Γ2) = 0 for all m < 16, so it is
natural that m = 16 is the first example of a lifted cusp form, and
this is compatible with our conjecture. By [18] and [5], the generating
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functions of dimA4,s(Γ2) and dimS4,s(Γ2) are given by
∞∑
j=0

dimA4,j(Γ2)s
j =

s8 + s12 − s18 − s20 − s22 + s28 + s30 + s32

(1− s6)(1− s8)(1− s10)(1− s12)
,

∞∑
j=0

dimS4,j(Γ2)s
j =

s24(1 + s4 + s8 − s10)

(1− s6)(1− s8)(1− s10)(1− s12)
.

We give a table of dimensions for small s for reference.

j 8 10 12 14 16 18 20 22 24 26 28 30 32
dimA4,j(Γ2) 1 0 1 1 1 1 2 1 3 2 3 3 5
dimS4,j(Γ2) 0 0 0 0 0 0 0 0 1 0 1 1 2

Since we are assuming that m is even, we have j = 2m− 8 ≡ 0 mod 4
in our conjecture.

Next we consider a numerical example of Conjecture 2.2. By Tsushima
[18], we have dimS14,2(Γ2) = 1. By virtue of [17], we can give Sk,2(Γ2)
explicitly for any k. Indeed, let φ4 be the Eisenstein series of degree
two normalized so that the constant term is one and χ10 the unique
cusp form of weight 10 of degree two such that the Fourier coefficients
at (1, 1, 1) is 1. We put

g14,2 = {φ4, χ10}Sym(2) = (2πi)−1

((
4φ4

∂χ10

∂τ
− 10χ10

∂φ4

∂τ

)
u2
1

+

(
4φ4

∂χ10

∂z
− 10χ10

∂φ4

∂z

)
u1u2 +

(
4φ4

∂χ10

∂ω
− 10χ10

∂φ4

∂ω

)
u2
2

)
.

Then we have g14,2 ∈ S14,2(Γ2). The Fourier coefficients of g14,2 is given
by

C(1, 1, 1) = 4(u2
1 + u1u2 + u2

2),

C(2, 2, 2) = −76800(u2
1 + u1u2 + u2

2),

C(4, 4, 4) = 141819904(u2
1 + u1u2 + u2

2).

Hence we have λ(2) = −19200 and λ(4) = 35454976 for g14,2 and

Hcls
2 (g14,2, Sp) = 1 + 19200X + 266076160X2 + 227 · 19200X3 + 254X4

= 1 + 28 · 3 · 52X + 218 · 5 · 7 · 29X2 + 235 · 3 · 52X3 + 254X4,

where X = 2−s. By this result and the formula in the Appendix we
also have

H2(g14,2, St) = 1 + 9 · 2−9X + 1601 · 2−11X2 + 9 · 2−9X3 +X4.

If we denote by f ∈ S28(Γ1) any eigenform, then we see that the
Euler 2 factors of L(s + 13, f)L(s + 14, f)L(s, g14,2, St) and L(s −
1
2
, g14,2, Sp)L(s+

1
2
, g14,2, Sp)L(s, g14,2⊗f) are equal to those of L(s, hi, St)

and L(s, hi, Sp) respectively, where i = 3 or 4 according to a choice of
two eigenforms f ∈ S28(Γ1). (Note that there is a typo in the formula
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of Q2(h3, st) in p. 68 of [16]. The number 2−15 should read 2−13 there.)
Here the Euler 2 factor of the spinor L function of hi for i = 3 or 4 can
be calculated by the numerical value T (2) = −230400(1703±9

√
18209)

in [16] and the Euler 2 factors of the standard L function of hi. So we
see that h3 or h4 should be a lift from a pair {g14,2, f} in the sense
of Conjecture 2.2. Although we do not need explicit numerical values
of the convolution product L function defined by (2.2) in order to see
the equality to the spinor L functions of h3 or h4, we give the Euler 2
factor for the sake of completeness. For a primitive form f ∈ S28(Γ1)
such that the eigenvalue at 2 is −4140 + 108β where β =

√
18209 or

β = −
√
18209, the Euler 2 factor of L(s, f ⊗ g14,2) is given by

1− 675(115− 3β) · 2−17x+ 25(186567511− 1134567β) · 2−31x2

−675(930299515−5963979β)·2−38x3+3(5940783667003−42329083275β)2−43x4

−675(930299515−5963979β)·2−38x5+25(186567511−1134567β)·2−31x6

− 675(115− 3β)2−17x7 + x8,

where x = 2−s. For Conjecture 2.2, we also have dimSk,2(Γ2) = 0 for
k < 14 and weight 16 of degree 4 should be the first example of the
lift. This fits the conjecture. In our conjecture we are assuming that
k = m− 2 is even. For reference we reproduce generating functions of
dimensions in [17].

∞∑
k:even

dimAk,2(Γ2)t
k =

t10 + t14 + 2t16 + t18 − t20 − t26 − t28 + t32

(1− t4)(1− t6)(1− t10)(1− t12)

∞∑
k:even

dimSk,2(Γ2)t
k =

t14 + 2t16 + t18 + t22 − t26 − t28

(1− t4)(1− t6)(1− t10)(1− t12)

3. Conjectures for general degree

3.1. Conjectures. We generalize the conjectures in the previous sec-
tion to a lift to higher degrees. We describe only the standard L func-
tions since the spinor L functions should be much more complicated.

Conjecture 3.1. Let n and m be any even natural numbers with
2m ≥ 3n + 2 and n ≥ 2. For any vector valued Hecke eigenform
f ∈ An+2,2m−3n−2(Γ2), there should exist a scalar valued Siegel eigen-
form F ∈ Am(Γ2n) such that

L(s, F, St) = ζ(s)
n∏

i=1

L(s+
n+ 1

2
− i, f, Sp).

In the classical normalization, the right hand side is given by

ζ(s)
n∏

i=1

Lcls(s+m− i, f, Sp).
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This is a generalization of Conjecture 2.1. Note that when n is odd,
we have An+2,2m−3n−2(Γ2) = 0 and the conjecture tells nothing.

Conjecture 3.2. Let n and m be natural numbers and assume that m
is even with m > 2n − 2. For any elliptic eigenform f ∈ S2m−2n(Γ1)
and any vector valued Siegel eigenform g ∈ Am−2n+2,2n−2(Γ2), there
should exist a Siegel eigenform F ∈ Am(Γ2n) such that

L(s, F, St) = L(s, g, St)
2n−2∏
i=1

L(s+m− 1− i, f).

This is a generalization of Conjecture 2.2. When n = 1, we can take
F = g and f is irrelevant.

Beyond the numerical evidence that we have already given in the
previous section, we give two grounds for these conjectures below.

3.2. Coincidence of gamma factors. The gamma factor part of
L(s, F, St) for Siegel modular form F ∈ Am(Γ2n) is given by

ΓR(s)
2n∏
i=1

ΓC(s+m− i)

and for f ∈ Ak,j(Γ2) it is given by

ΓR(s)ΓC(s+ k + j − 1)ΓC(s+ k − 2),

where ΓR(s) = π−s/2Γ(s/2) and ΓC(s) = 2(2π)−sΓ(s) (cf. [6] for the
scalar valued case and [13] for the vector valued case). The gamma
factor of Lcls(s, f, Sp) for f ∈ Ak,j(Γ2) is given by ΓC(s)ΓC(s − k + 2)
(cf. Andrianov [1] and Arakawa [2]), so the gamma factor for L(s, f, Sp)
is ΓC(s + (2k + j − 3)/2)ΓC(s + (j + 1)/2). Now we see the gamma
factors of both sides of our conjectures. For Conjecture 3.1, the gamma
factor of the right hand side is as follows. We have ΓR(s) for ζ(s),
and since k = n + 2 and j = 2m − 3n − 2 for f ∈ Ak,j(Γ2) in this
conjecture, we have 2k+ j− 3 = 2m−n− 1 and the gamma factor for
L(s, f, Sp) is ΓC(s+m− (n+ 1)/2)ΓC(s+m− (3n+ 1)/2). Hence for∏n

i=1 L(s− i+ (n+ 1)/2, f, Sp), the gamma factor is
∏n

i=1 ΓC(s+m−
i)ΓC(s+m−n− i) =

∏2n
i=1 ΓC(s+m− i). Hence the gamma factors for

both sides of the conjecture coincide. Next we see the gamma factors
of Conjecture 3.2. Here the gamma factor of L(s, g, St) is given by
ΓR(s)ΓC(s+m− 1)ΓC(s+m− 2n) and that of L(s, f) is ΓC(s), so the
gamma factor of

∏2n−2
i=1 L(s+m− 1− i, f) is

∏2n−2
i=1 ΓC(s+m− 1− i).

So the gamma factor of the right hand side is ΓR(s)
∏2n

i=1 ΓC(s+m− i)
which coincides the gamma factor of the left hand side.

3.3. Relations with the Ikeda lift and the Ikeda-Miyawaki lift.
Ikeda proved a certain generalization of Saito-Kurokawa lift to Siegel
modular forms of even degrees in [11]. This was first conjectured by
Duke and Imamoglu (and also by the present author independently
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in terms of Koecher-Maass series). Ikeda also applied this to con-
struct another type of lifts in [12] related with Miyawaki’s conjecture.
We call these lifts as Ikeda lift and Ikeda-Miyawaki lift and here we
study relations between our conjectures and these lifts. We assume
that 2m ≥ 3n + 2, n > 2 and that n and m are even. Then for any
primitive form f0 ∈ S2m−2n(Γ1), we have the Klingen type Eisenstein
series E(f0) ∈ An+2,2m−3n−2(Γ2) such that E(f0) is a Hecke eigenform
with Φ(E(f0)) = f0 (cf. [2]). When n = 2, the weight in question is
det4 Sym(2m−8), and since the power of the determinant is small, the
Klingen type Eisenstein series itself might not converge. But since the
Siegel Φ operator is surjective to S2m−4(Γ1) even from A4,2m−8(Γ2) (cf.
[10]), we have also a Hecke eigenform E(f0) ∈ A4,2m−8(Γ2) defined by
theta series such that Φ(E(f0)) = f0 and we take this in that case. By
[19] or [2], we have

Lcls(s, E(f0), Sp) = L(s, f0)L(s− n, f0).

So we have

L(s, E(f0), Sp) = Lcls

(
s+

2m− n− 1

2
, E(f0), Sp

)
= L

(
s+

2m− n− 1

2
, f0

)
L

(
s+

2m− 3n− 1

2
, f0

)
.

Hence we have

n∏
i=1

L

(
s+

n+ 1

2
− i, E(f0), Sp

)

=
n∏

i=1

L(s+m− i, f0)L(s+m− n− i, f0) =
2n∏
i=1

L(s+m− i, f0).

Since we assumed that m is even, and so m − n ≡ n mod 2, we have
the Ikeda lift I(f0) ∈ Sm(Γ2n) of f0. Then we have L(s, I(f0), St) =
ζ(s)

∏2n
i=1 L(s+m−i, f0). So this satisfies the relation of the L functions

in Conjecture 3.1 for f = E(f0) and F = I(f0), and the conjectured
lift is nothing but the Ikeda lift in this case. Here f is not a cusp
form but F is a cusp form. Note that here we are assuming that n is
even and 2n ≡ 0 mod 4, so the Ikeda lifts for odd n are not covered
by our Conjecture. By the way, we also see the compatibility with
Saito-Kurokawa lift. For any f0 ∈ S2k−2(Γ1) with even k, we have the
Saito-Kurokawa lift f ∈ Sk(Γ2) = Sk,0(Γ2) and we have Lcls(s, f, Sp) =
ζ(s− k + 1)ζ(s− k + 2)L(s, f0). If we take this f as the origin of our
lifting, then we should put n = k − 2, m = (3n + 2)/2 = 3k/2 − 2.
Since we are assuming that m is even, we should assume here that
k ≡ 0 mod 4. Then we have (k − 1) + (k − 2)/2 ≡ 0 mod 2 and this is
the parity condition of the existence of the Ikeda lift I(f0) ∈ Sm(Γk−2)

with L(s, I(f0), St) = ζ(s)
∏k−2

i=1 L(s + 3k/2 − 2 − i, f0). If there is a
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Hecke eigenform F ∈ Am(Γ2k−4) such that Φk−2(F ) = I(f0), then we

have L(s, F, St) = L(s, I(f0), St)
∏k−2

i=1 ζ(s+ k/2− i)ζ(s− k/2 + i). So

we have L(s, F, St) = ζ(s)
∏k−2

i=1 L
cls(s+m−i, f, Sp) and F satisfies the

demand of the conjecture and the situation is compatible. Since the
weight of I(f0) is small compared with the degree, we cannot construct
F by the Klingen Eisenstein series, but if the weight of I(f0) is 0 mod 4
and it is a theta series, then we can prolong it to F . Note that in this
example, f is a cusp form but F is not.

Next we consider Conjecture 3.2. By a part of the results in Ikeda
[12], for any primitive forms g0 ∈ Sm(Γ1) and f ∈ S2m−2n(Γ1), we can
construct F0 = Ff,g0 ∈ Sm(Γ2n−1) such that if F0 ̸= 0, then

L(s, F0, St) = L(s, g0, St)
2n−2∏
i=1

L(s+m− 1− i, f).

Here by definition we have

L(s, g0, St) = ζ(s)
∏
p

(1− (a(p)2p−m+1 − 2)p−s + p−2s)−1,

where g0(τ) =
∑∞

n=1 a(n)q
n with q = exp(2πiτ), τ ∈ H1. For this

Ikeda-Miyawaki lift F0 = Ff,g0 , we take the Klingen type Eisenstein
series E(F0) ∈ Am(Γ2n) above F0 under the assumption that m > 4n
for convergence. Then the spinor L function of E(F0) is by [19] given
by

Lcls(s, E(F0), Sp) = Lcls(s, F0, Sp)L
cls(s−m+ 2n, F0, Sp),

so we have

L(s, E(F0), St) = ζ(s−m+ 2n)ζ(s+m− 2n)L(s, F0, St).

On the other hand, if we take the Klingen Eisenstein series g = E(g0) ∈
Am−2n+2,2n−2(Γ2) above g0, then we have

Lcls(s, g, Sp) = L(s, g0)L(s−m+ 2n, g0),

so

L(s, g, St) = ζ(s−m+ 2n)ζ(s+m− 2n)L(s, g0, St).

So we have

L(s, E(F0), St) = ζ(s−m+ 2n)ζ(s+m− 2n)L(s, g0, St)
2n−2∏
i=1

L(s+m− 1− i, f)

= L(s, E(g0), St)
2n−2∏
i=1

L(s+m− 1− i, f).

So if we put F = E(F0), then this satisfies the relation of the L func-
tions in Conjecture 3.2 for the pair f and g = E(g0). On the contrary,
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if there is a lift from the pair f and E(g0) to F ∈ Am(Γ2n) which sat-
isfies the relation in the conjecture and Φ(F ) = F0, then F0 may be
regarded as an Ikeda-Miyawaki lift for f and g0.

3.4. Homomorphisms between L-groups. Langlands philosophy
predicts that if there is a homomorphism between L groups of dif-
ferent algebraic groups, then there should exist a correspondence be-
tween automorphic representations of both groups(cf. [7]). So in this
section we see what are homomorphisms which explain the lifting con-
jectures above. First we explain a morphism related to Conjecture 3.1.
We fix a prime p and denote the Satake parameters of an eigenform
f ∈ An+2,2m−3n−2(Γ2) at p by α0, α1, α2. Here we note that α

2
0α1α2 = 1

and the Euler p factor of the Spinor L function of f is given by

(1− α0p
−s)−1(1− α0α1p

−s)−1(1− α0α2p
−s)−1(1− α0α1α2p

−s)−1.

Then for a lifting F ∈ Sm(Γ2n) from f in Conjecture 3.1, the parameters
for the standard L function of F are given by{

1, prα0, p
rα0α1, p

rα−1
0 , pr(α0α1)

−1; r ∈
{
±1

2
,±3

2
, . . . ,±n− 1

2

}}
.

Here we assumed that n is even. These parameters are given by the

diagonal components of the tensor of Symn−1
(

p1/2 0

0 p−1/2

)
and

diag(α0, α0α1, α0α2, α0α1α2), where Symn−1 is the symmetric tensor
representation of SL2(C) of degree n − 1 and diag(ai) is the diagonal
matrix whose diagonal components are ai. Since n is even, we have
an alternating form invariant by Symn−1(SL2(C)) given by (u1v2 −
u2v1)

n−1 regarding ui
1u

n−1−i
2 and vj1v

n−1−j
2 as bases and taking two

copies of this, we have a morphism of Symn−1(SL2(C))× Sp(2,C) into
SO(4n). More precisely, if we take the metric h(x, y) on Cn × Cn

defined by h(ωi, ωj) = (−1)i
(
n
i

)
δi,n−j where ωi (0 ≤ i ≤ n − 1) is

a natural basis of Cn above and δ is the Kronecker delta, then we
have h(Symn−1(g)x, Symn−1(g)y) = h(x, y) for h ∈ SL2(C). If we
take the metric H = h(x1, y1) + h(x2, y2) and define an action of

G =

(
A B
C D

)
∈ Sp(2,C) on C4n regarded as four row vectors in Cn by

X1

X2

Y1

Y2

 = G×


x1

y1
x2

y2

 ,

then we have h(X1, Y1) + h(X2, Y2) = h(x1, y1) + h(x2, y2). So re-
garding H as a quadratic form of 4n variables, we have a homomor-
phism Symn−1(SL2(C)) × Sp(2,C) → SO(4n). Adding the identity,
this is prolonged to a mapping to SO(4n + 1) which is the L group
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of Sp(2n) (of rank 2n, i.e. of matrix size 4n). This explains Con-
jecture 3.1. Next we consider Conjecture 3.2. For any eigenform
f =

∑∞
n=1 a(n)q

n ∈ S2m−2n(Γ1), we define the Satake parameter β,
β−1 of f at p of by

∞∑
ν=0

a(pν)p−νs = (1− βp(2m−2n−1)/2−s)−1(1− β−1p(2m−2n−1)/2−s)−1.

We write the parameters of an eigenform g ∈ Am−2n+2,2n−2(Γ2) at a
prime p in SO(5) by {1, α1, α

−1
1 , α2, α

−1
2 } such that the Euler p-factor

of L(s, g, St) is given by

(1− p−s)−1(1− α1p
−s)−1(1− α−1

1 p−s)−1(1− α2p
−s)−1(1− α−1

2 p−s)−1.

Then the parameters for the standard L function of the lifting F in the
conjecture 3.2 is given by{

1, α1, α2, α
−1
1 , α−1

2 , prβ, prβ−1; r ∈
{
±1

2
,±3

2
, . . . ,±2n− 3

2

}}
.

Again there exists an alternating form of degree 2n − 2 invariant by
Sym2n−3(SL2(C)) and in the same way as before, we have a homomor-
phism

SO(5)×Sym2n−3(SL2(C))×SL2(C) → SO(5)×SO(4n−4) → SO(4n+1).

So Conjecture 3.2 can be explained by this morphism of the corre-
sponding L groups.

4. Appendix. Spinor L functions and Standard L functions

We give examples of relations between the standard L functions and
the spinor L functions for small n for the convenience for the readers.
We use L functions which have the functional equation (conjectural
for spinor) for s → 1 − s. Then for a Siegel eigenform F of degree n
(withour character), (the inverse of) the Euler p-factors Hp(p

−s, F, St)
or Hp(p

−s, F, Sp) of each L functions has the following definition.

Hp(x, F, St) = (1− x)
n∏

i=1

(1− αix)(1− α−1
i x),

Hp(x, F, Sp) = (1− α0x)
n∏

r=1

∏
1≤i1<i2<···<ir≤n

(1− α0αi1αi2 · · ·αirx),

where α0, αi (1 ≤ i ≤ n) are the Satake parameters of F . In our
setting, we have α2

0α1α2 · · ·αn = 1. This means that the polynomial
Hp(x, F, Sp) is reciprocal, i.e. the coefficients of xi and x2n−i are the
same for any i. Also we see that the coefficient of x2i of Hp(x, F, Sp) is
a symmetric polynomial of αj +α−1

j with 1 ≤ j ≤ n and if we put b1 =
α0

∏n
i=1(1+αi) which is (−1) times the coefficient of x of Hp(x, F, Sp),
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then for any i, the coefficient of x2i+1 is b1 times a symmetric polynomial
of αj + α−1

j . On the other hand, we have

b21 = α2
0

n∏
i=1

(1 + αi)
2 =

n∏
i=1

(αi + α−1
i + 2),

so this is also written by the coefficients of Hp(x, F, St). So Hp(x, F, Sp)
is determined by Hp(x, F, St) up to the sign of b1. It seems that there
is no way to predict this sign in general (cf. Ryan, Cris and Yuen [16]).
The procedure to express coefficients of Hp(x, F, Sp) by the coefficients
of Hp(x, F, St) and b1 is not completely straight forward but this is an
elementary algebra to express symmetric polynomials by fundamental
symmetric polynomials. Concrete results for 2 ≤ n ≤ 4 are given
below.

4.1. The case n = 2. We write

Hp(x, F, Sp) = 1− b1x+ b2x
2 − b1x

3 + x4,

Hp(x, F, St) = (1− x)(1− c1x+ c2x
2 − c1x

3 + x4)

for x = p−s. Then we have

b21 = 2 + 2c1 + c2,

b2 = 2 + c1.

By the way, if we write the Euler p factor of L(s, f) for a primitive
form f ∈ Sk(Γ1) as 1− ap(k−1)/2−s + pk−1−2s, then the Euler p factor of
L(s, f ⊗ F ) defined by (2.2) is given by

Hp(x, f ⊗ F ) = 1− ab1x+ (b21 + (a2 − 2)b2)x
2 − b1(a

3 − 3a+ ab2)x
3

+ ((a2 − 2)2 + (a2 − 2)b21 + b22 − 2)x4 − b1(a
3 − 3a+ ab2)x

5

+ (b21 + b2(a
2 − 2))x6 − ab1x

7 + x8.

4.2. The case n = 3. We write

Hp(x, F, Sp) = 1− b1x+ b2x
2 − b3x

3 + b4x
4 − b3x

5 + b2x
6 − b1x

7 + x8,

Hp(x, F, St) = (1− x)(1− c1x+ c2x
2 − c3x

3 + c2x
4 − c1x

5 + x6).

Then we have

b21 = 2 + 2c1 + 2c2 + c3,

b2 = 1 + 2c1 + c2,

b3 = b1(1 + c1),

b4 = 2 + 2c1 + c21 + c3.
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4.3. The case n = 4. We write

Hp(x, F, Sp) = 1− b1x+ b2x
2 − b3x

3 + b4x
4 − b5x

5 + b6x
6 − b7x

7 + b8x
8

−b7x
9 + b6x

10 − b5x
11 + b4x

12 − b3x
13 + b2x

14 − b1x
15 + x16,

Hp(x, F, St) = (1− x)(1− c1x+ c2x
2 − c3x

3 + c4x
4 − c3x

5 + c2x
6 − c1x

7 + x8).

Then we have

b21 = 2 + 2c1 + 2c2 + 2c3 + c4,

b2 = c3 + 2c2 + c1,

b3 = b1(c2 + c1 − 1),

b4 = −2 + 2c21 + c22 + 2c1c2 + c1c4 + c4 − 2c3 − 2c2,

b5 = b1(c4 + 2c3 + c1c2 + c21 − 3c3 − c2 − 1),

b6 = −c1 + c31 + 2c21c2 − 2c22 − c3 + c21c3 + c2c4,

b7 = b1(1− c1 + c31 − c1c2 + c3 + c1c3 − c4),

b8 = 2− c21 + 2c31 + c41 − 4c1c2 − 2c21c2 + 2c22 + 4c3

+2c1c3 + 2c21c3 + c23 − 2c4 − 2c1c4 + c21c4 − 2c2c4.
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