VECTOR VALUED SIEGEL MODULAR FORMS OF
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1. INTRODUCTION

In this paper, we give explicit generators of the module given by
the direct sum over k of vector valued Siegel modular forms of degree
two of level 1 of weight det® Sym(j) for j = 2, 4, 6. The results have
been announced in [12] and [13] and also a version of preprint was
quoted in [7], but this is the first version containing precise proofs.
Vector valued Siegel modular forms seem to attract more attention
nowadays in many respects, like in Harder’s conjecture, cohomology
of local systems, or in some liftings or lifting conjectures (cf. [10],
(7], [21], [14], [17] for example), and it seems worthwhile to publish
these results now. More precise contents are as follows. We denote
by A ;(I'z) the linear space of Siegel modular forms of degree two of
weight det” Sym(j) where Sym(j) is the symmetric tensor represen-
tation of degree j and I’y is the full Siegel modular group of degree
two. When j = 0, this is nothing but the space of scalar valued
Siegel modular forms and we write Ago(I'2) = Ag(I'2). We define
Aeven ( ) - @k:evenAk,j(F2> and AOdd )( ) - @k:oddAk:j(F2) When

sym(j sym(j
j =0, we write A"(I'y) = AG"H, (I'2). Then obviously Ag (1)
or A (o) is an A«"(T'y) module T. Satoh gave the structure of

Aoy (I'2) as an A®*"(I'z) module in [22]. A rough content of our

sym
main theorem is as follows.

Theorem 1.1. We have the following results as modules over AV"(T's).
(1) A;’an ([y) is spaned by four generators of determinant weight 21,
23, 27, 29 and there is one fundamental relation between generators.

is a free module over 2) spanned by five free
2 AiZf:M) s a f dul Aever( d by five fi
generators of deter’minant weight 8, 10, 12, 14, 16.

9) 1S a free module over 9) spanned by five free
3 Asym(4) I's) is a f dul Aever(T d by five fi
generators of determinant weight 15, 17, 19, 21, 23.

1s a free module over 2) spanned by seven free

4 Ai;f:w s a fi dul Aever(T db fi
generators of determmant weight 6, 8, 10, 12, 14, 16, 18.

All these generators are given explicitly.
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Here by abuse of language we say that elements of A ;(I'2) have
determinant weight k. By the way, by T. Satoh it is known that
Ag;f:@)(r2> is spanned by 6 generators of determinant weight 10, 14,
16, 16, 18, 22 and there are three fundamental relations between gener-
ators. Some generalization for congruence sugroups of I'y of the above
result for j = 2 has been given by H. Aoki [1].

Precise construction of generators and structures will be given in the
main text. Here we explain some technical points. There are at least
three ways to construct vector valued Siegel modular forms.

(i) Eisenstein series.

(ii) Theta functions with harmonic polynomials.

(iii) Rankin-Cohen type differential operators.

Here (i) and (ii) are classical (cf. [3] for (i)). The Eisenstein series is
defined only when k£ is even. (ii) is very powerful but sometimes we
need a complicated computer calculation. The method (iii) is a way to
construct new vector valued Siegel modular forms from known scalar
valued Siegel modular forms. Forms of smaller determinant weight
than those of given scalar valued forms cannot be constructed by this
method, but this method is the easiest if it is available: easy to antici-
pate which kind of forms can be constructed, and easy to calculate large
numbers of Fourier coefficients for applications, and so on. Actually in
order to prove (4) of the above Theorem, we need all (i),(ii),(iii), but
we mainly use (iii) for the other cases (1), (2), (3). For even determi-
nant weight for sym(2), in [22] T. Satoh defined this kind of differential
operators on a pair of scalar valued Siegel modular forms. We have al-
ready developped a general theory of this kind of operators in [11] and
[5], and in the latter we gave certain explicit differential operators to
increase weight by sym(j). One of new points in this paper is to take
derivatives of three scalar valued Siegel modular form of even weights
to construct a vector valued Siegel modular forms of odd determiant
weight. We already used this kind of trick to construct odd weight
or Neben type forms in [2] (though the results in this paper had been
obtained earlier). Rankin-Cohen type differential operators are very
useful to give this kind of parity change.

We shortly write the content of each section. After reviewing ele-
mentary definitions and notation, we review a theory of Rankin-Cohen
type differential operators and give some new results of their explicit
shapes in section 2. If you are only interested in the structure theorems
of vector valued Siegel modular forms, you can skip this section and
proceed directly to later sections, where we can study odd deteminant
weight of Sym(2) in section 3 (cf. Theorem 4.1), all weights of Sym(4)
in section 4(cf. Theorem 5.1), and even deteminant weight of Sym(6)
in section 5 (cf. Theorem 6.1). We also give Theorem 4.2 on a struc-
ture of the kernel of the Witt operator on Ay, 2)(I'2) since we need it
in another paper on Jacobi forms [16].
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Of course we could continue a similar structure theory to higher
j though it would be much more complicated. For example, from
Tsushima’s dimension formula, it seems that A‘S’an(G) (I'y) and Ay s)(I'2)
are also free A°’"(I'y) modules, and we see that Agym,a0)(I'2) is not a
free module. This obsrvation will be explained in section 7, together
with some mysterious open problem.

Now we take all direct sum A" = @ ;504 ;(I'2). We have the
irreducible decomposition of the tensor product of symmetric tensor

representations as follows:

Sym(j) @ Sym(l) = Z det”Sym(j + 1 — 2v).
li—l|<j+l—2v
o<v
This isomorphism is not canonical at all, but if we fix a linear iso-
morphism in the above for each pair (j,1), we can define a product of
elements of A% by taking the tensor as a product and identify it with
an element of A9 through the above isomorphisms. We do not know
if we can choose these isomorphisms so that the product is associa-
tive, but it would be interesting to ask generators of this big “ring”.
Since A4 ;(I's) never vanishes for big j, there should exist infinitely
many “generators”. But it would be also interesting to ask if there is
any notion of “weak vector valued Siegel modular forms” Afjgak as in
the theory of Jacobi forms in [6] and if there are finitely many “gen-
erators” of A% . The structures of Agym(;)(I'2) for higher j and the

weak*
tensor structures of the big ring is an open problem for future.

2. DEFINITIONS AND A LEMMA FOR SMALL WEIGHTS

We review definitions and notation first, then give a lemma on di-
mensions. We denote by H, the Siegel upper half space of degree n.
We denote by Sp(n,R) the real symplectic group of size 2n and put
[, = Sp(n,Z) (the full Siegel modular group of degree n). We denote
by (Sym(j),V;) the symmetric tensor representation of G L, (C) of de-
gree j. For any Vj-valued holomorphic function F(Z) of Z € H; and

a b _
g= <c d) € Sp(2,R), we write

(Flilg])(Z) = det(cZ + d)™*Sym(j)(cZ + d) ' F(9Z).

We say that a Vj-valued holomorphic function F'(Z) is a Siegel modular
form of weight det” Sym(j) of T'y if we have F|; ;[y] = F for any v € I's.
When n = 2, Vj is identified with homogeneous polynomials P(uy, us)
in uy, uy of degree j and the action is given by P(u) — P(uM) for
M € GL,(C), where u = (uy, uz). Under this identification, Ay ;(I'y) is
the space of holomorphic functions F(Z,u) = 3! _ F,(Z)u} " u} such
that
F(yZ,u) = det(cZ + d)*F(Z,u(cZ + d))
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for any v = (CCZ Z) € I';. We say that F is a cusp form if ®(F) :=

7 0
0 A
forms by Sj ;(I'2). When j = 0, we simply write Ax(I's) = Ago(I'2). It
is easy to see that we have A ;(I'y) = 0 for any odd j and A ;(I'y) =
Sk.,j(I'y) for any odd k.

By Igusa [19], we have

limy o F = 0, where 7 € H;. We denote the space of cusp

@Ak(r2) = C[¢47 ®6, X10, X12] ¥ X35C[¢47 b6, X105 X12]‘
k=0

To fix a normalization, we review the definition of these Siegel modular
forms. We define each ¢; to be the Eisenstein series of weight ¢ whose
constant term is 1. Each form y;9 or xio is the unique cusp form

of weight 10 or 12 such that the coefficient at 1}2 1{2 is 1. We
denote by xs5 the Siegel cusp form of weight 35 normalized so that the

: 3 1/2). (T =z
coefficient at (1/2 9 ) is —1. For Z = (z w) € H,, we put

494 60 10x10 12x12
gy s Oixio Oixiz
A= (7)) =
3(2) oy Oopg Oax10 Oaxiz |’
(93¢4 (93% 83Xlo 33X12

where we write

L1 0 g O g O
0, = (2mi) IE, Oy = (2mi) 1%, 0s = (2m1) la—w.
Then as is shown in [2], we have y35 = det(As5(Z))/(27 - 34).
Now we give some comments on dimensions which we use later. For
j > 0, the dimensions for dim Ay ;(I'z) is known for £ > 4 in [24]. Here

we give a lemma for dim Ay, ;(I'y) for small k and j for later use.

Lemma 2.1. We have Ay j(I's) = S5;(I'2). We have Sk ;(I'2) = 0 for
all (k,7) with0 <k <4 and j <14, and Ay ;(I's) =0 for all j <6.

Proof. For any F € A ;(I's), we denote by WF' the restriction of F
to the diagonal. Then the coefficient of u] of WF is the tensor of
modular forms of one variable of weight £ 4+ j and k. When k =
2, a modular form of weight 2 is zero. Since the Siegel ® operator
factors through W, we have A, ;(I'y) = Ss,(I'2). Now as shown in
[18], for k < 4 we have dim Ay ;(I'y) < dim W (A ;(T2)). If we write
WE =" _ f,(r,w)u] uy, then for F € Ay ;(Ty), we have f,(1,w) =
(—=1)*f,(w, ) and this is in the tensor of S;_,,1(T'1) and S, (T) for
1 <v <j—1 and in the tensor of S;1,(I'1) and Ax(I'y) for v = 0. If
F e S;,(I2), fo(r,w) is in the tensor of S;x(I'1) and Si(I'1). Since
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Sm(I'1) = 0 for m < 12, we see that the image W (F') of F' € S ;(I')
is zero unless j — v+ k > 12 and v + k > 12 for some v. In this
case, we have 2k + j > 24 and this is not satisfied for £ < 4 and
j < 14, so W(F) = 0 and hence F' = 0 in these cases. By virtue
of Arakawa [3], for F' € A ;(I'y), we have ®(F) = f(r)u] for some
f € Si+j('1). When k£ < 4 and j < 6, we have Sp;(I'1) = 0, so
we also have Ay ;(I'y) = S ;(I'2), but we already have shown that the
latters are zero for these k, j. U

By the way, by virtue of Freitag [8], we have always A ;(I'2) = 0.
By vanishing of Jacobi forms of weight 1 by Skoruppa, we also have
Ay ;(I'y) = 0 for any j. There are more cases such that we can show
the vanishing in the similar ad hoc way as in the proof above (e.g. see
1))

3. REVIEW ON DIFFERENTIAL OPERATORS

3.1. General theory. We review a characterization of the Rankin-
Cohen type differential operators given in [11] restricting to the cases
we need here (see also [5],[4]). We consider V; valued linear homoge-
neous holomorphic differential operators D with constant coefficients
acting on functions of (Z1,...,7,) € Hy X --- x Hy. For any Z =

(2ij) € Ha, we write 07 = <21(J;fmj) 62_]_). We denote 2 x 2 symmet-

ric matrices of variable components by R;. Then it is clear that we
have D = Qp (0z,,...,0z,,u) for some polynomial Qp(Ry,..., R, u)
in components of R; and homogeneous in u; of degree j. We fix natural
numbers k; (1 < i < r) and k. We consider the following condition on
D.

Condition 3.1. For any holomorphic functions F;(Z;) on Hs,

Res(z)=z)(D((F1lk, [9])(Z1) - - (Fr . [9])(Z2)))
= (Resiz)=(z)D(F1(Z1) - - - F(Z)))) |kytothrskj 9]

for any g € Sp(2,R), where Res is the restriction to replace all Z; to
the same Z € H,.

This condition means that if F; € Ay, (I'2), then we have

R€3(21 ..... Z)=(Z,...,.2) (D(Fl(zl) T FT<Z7"))) € Ak1+--~+kr+k,j(r2)~

We have given a characterization of such D by the associated polyno-
mial @ in [11]. Indeed, consider the following conditions.

Condition 3.2. (1) For any A € GLsy, we have
QAR A, AR, 'A, u) = det(A)*Q(Ry, ..., R,, uA).
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(2) For 2 x d; matrices X; of variables components for 1 < i < r, the
polynomials Q(X1' Xy, -+, X, ' X, u) are pluri-harmonic with respect
to X = (Xl, .o ,XT) = (ZL’ij>, 1.€.

82
A
@xi,,axj,,

v=1
forany 1 <i,j5 <2.

For any such @), we write Dg = Q(0z,, ..., 0z,,u). If a polynomial @
satisfies the condition 3.2, then D, satisfies the condition 3.1. On the
contrary, if D satisfies the condition 3.1, then there exists the unique
Qp which satisfies the condition 3.2 such that D = Qp(9z,,...,0z,,u).

3.2. Brackets of two forms. For general j, in the case r = 2 and
k = 0, the above @ satisfying Condition 3.2 is given explicitly in [5] p.
460 Prop. 6.1 for general degree, and in the case k > 0 of degree 2 in
[20]. The degree two case for k = 0 is explained as follows. For the sake
of notational simplicity, we put By = R = (r;;) and Ry = S = (s;5) in
the previous section. Here R and S are 2 x 2 symmetric matrices. For
any natural number k, [, m, we put

oo =S (") (2 o

If we put 7 = r11u? + 2ri9ui Uy + Toou3 and s = sy1U; + 2512U Uy + So2,
then the polynomial Qg .m(r,s) in ri;, S, ui, us satisfies Condition
3.2 for k1 =k, ks = [, 7 = 2m. In other words, we have the following
results. We put

mlzuli—l—ulug 0 +us— 0 My = U3 — 0 + Uy Uy — 0 +u§i,
o 0% Owy’ 0Ty 0729 Owsy
and
Dk,l,(k+l,j) = Qk,l,j/z(ml, mz),
where Z; = Z Z € Hy (i = 1, 2). For any F € Ai(I'y) and

G € Ai(T'9), we define

{F,G}sym(;)(Z) = Resz,—z,—z (Dk,l,(k+l,j/2)(F(Zl)G(Zz)))o

Then we have {F, G} sym(j) € Akt1,(I'2). When j = 2, this is nothing
but the operator defined by T. Satoh[22] and given by

oG oF oG oF

oG _OF\ ,
(kF% -G m)
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(up to the difference of the choice of the coordinate). For the readers’
convenience, we give also explicit expression of brackets for j = 4 which
we use. For F' € Ai(I'y) and G € Aj('y), we have

{F,Glsym) =
(l(l ;r 1)?92712(1 — I+ 1)(k+ 1)2—52—? + k(k; 1)F§TC§> uf
+ <l(l + 1)5552(; —(k+1)(1+1) (%—Zg—f + g-fg-f)
+k(k+1)F§j§z) Wy <l(l;1>§7§a+z<z+1)§§ua
—(E+1)(I+ 1)2—5% —(k+1)(1+ 1)%—5%
+k<k2+ 1)F?;§ k1)t 1)2—5% +k(k + 1)F§:—8Gw) Wi
4 (l(l+1)§;a];G—(k+1)(l+1) (%%*g—f%)
+k(k+ 1)F§j—§i> U
+ <l(l ; 1>%G —(E+1)(I+ 1)3—5(2—5 + k(k; DFZZJ) Us.

An explicit shape of {F, G} sym(s) can be given similarly but omit it
here since it is lengthy and the general formula is already given above.
We give one more example from [5] p. 461. (Also note that a typo
there is corrected in [20] p. 374.) For any even natural number k, [, j,
we define a polynomial Q2 (R, S,u) in ri;, sij, u1, up as follows:
Qi (R, Su) = 47Qa(R, S)Qrs1,41,5/2(r, )
+271((20 — 1) det(R)s — (2k — 1) det(S)r)
0 ; 0 :
o (Hpea ) sl )
where r, s are defined as before and we put
Q2(R,S) = (2k—1)(2l —1)det(R+S) — (2k — 1)(2k + 21 — 1) det(S)
—(20 — 1)(2k + 21 — 1) det(R).
Then this Qy,2,;) satisfies Condition 3.2. For F' € Ay(I'y) and G €
Ay(T'2), we put
{F7 G}det2 Sym(j) — ReS(Zi):(Z) (Qk,h(?,j)(aﬁ ) 8Z27 U>F(ZI)G(Z2))

Then we have {F, G'}qee2 sym(j) € Artir2,(2)-
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3.3. Bracket of three forms. In case of bracket of two forms, we
cannot construct odd determinant weight from scalar valued Siegel
modular forms of even weight. But if we take three forms, we can
do such a thing. This is a crucial point for our construction. In order
to construct vector valued Siegel modular forms of weight det® Sym(2)
and det® Sym(4) for odd k, we define brackets in the following way. We
consider three 2 x 2 symmetric matrix R = (r;;), S = (s45), T = (ti;)
and we prepare two polynomials. For natural numbers kq, ko, k3, first
we put

Qdet Sym(2) (Rv Sa T) =

1 S tn i1 St ti kq ko ks
27”12 2812 2t12 u% -2 k’l k2 k,’g U Uy + 27’12 2812 2t12 u%
ki ke ks To2 S22 T2 roo S22 2o

For I' € Ak’l (Fz), G e AkQ(Fg), H e Akd(rz), we put

{Fa Ga H}det Sym(2)
- Res(Zihgigs:(z)(Qdet Sym(2) (821 ) 6Z27 8Z3)<F(Z1)G(ZQ)H(Z3)))

Then we have {F, G, H }aet Sym(2) € Aky+haths+1,2(I'2). More explicitly,
for Z = (Z f}), this can be written as

{F, G, H}det Sym(Q)(Z> U) =

oF 0.G oH onF oG oH kiF koG ksH
82F 82G 32H u%—2 le kQG /{ZgH U U+ 82F (92G 82H u%
k1F koG ksH OsF 0sG O0sH O3 F 0sG 0sH

Next we consider the case of Sym(4). We define the following poly-

nomial
4

Quet sym@ay (R, S, Tou) =Y Qu(R, 8, T)uy s,

v=0
where @, (R, S,T) are defined by
(kl -+ 1)T11 kz kg kl (kz + 1)811 kg
Qo = (ka+1) r si1 tn|— (ki +1)|rn sh ti1|,
r11712 S12 t12 r12 511512 12
(k1 +1)ra ko ks ki (ko +1)s12 ks
Q1 = 2(ka+1)| ruri si1 tin] — 2(ky + 1) | 511512 t11
1 S12 t12 T12 $1 t12
(k1 + 1)1 ky ks ki (ka+1)s11 ks
+(ke + 1) % st — (ki +1) | sh t1],

r11722 S22 192 92 S11822 22
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(1{31 + 1)T12 ]{32 k’3 ]{71 (k’z + 1)512 ]Cg
Qs = 3(ka+1)| ruri si1 tin| —3(ki+ 1) |rn $11512 t1],
T92712 S99 tag 92 822512 99
(kl + 1)7”12 kg k?3 ]{71 (k?g + 1)812 ]{73
Qs = 2(ka+1) e s12 tia| — 2(k1 + 1) |rig 579 12
712722 Sg2  t22 792 $12822 22
(k1 +1)rae ko ks ki (ko + 1)sge ks
+(ka+1)| 111790 st — (ki +1) | 511522 t11],
T3 Sg2  too 792 39 22
(]{‘1 + 1)’/’22 ]{2 k’g k,’l (k’Q + 1)822 k,’g
Qs = (ka+1)| roorp s12 tiz| — (k1 + 1) |12 592512 tia] .
T3 Sg2  t22 792 39 22

Taking F', G, H as before, we define

{F7 G7 H}det Sym(4) —
Res (Zi)= (QdetSym(4 (821,8227 aZ3)( (Zl)G(Z2)H(Z3))) :
Then we have {F, G, H} ot sym(1) € Akyhothat1,4(I'2). Explicit expres-
sion of {F, G, H }qet sym(a) by concrete derivatives is similarly obtained
as in {F,G, H}aet sym(2) but we omit it here since it is obvious but
lengthy.
4. STRUCTURE IN CASE Sym(2)

In this section, we prove the following two theorems.
Theorem 4.1. We have
A% y(Ta) = A (D) {4, d6, X10 Haet sym@) + A" (T2){ @4, do, X12 Fdet sym @)

+ A (T2){ ¢4, X105 X12 Fdet Sym(2) + A" (L2){ 06, X105 X12} det Sym(2)

with the following fundamental relation

4da{ b6, X10: X12 }det Sym(2) — 6061 P4, X10, X12 Fdet Sym(2)
+ 10x10{ 4, ¢67X12}det5ym @ — 12x12{ @4, D6, X10 Fdet sym(2) = 0.

For any holomorphic function F' : Hy — V5, we define the Witt
operator W by the restriction to the diagonals H; x H; given by

T 0
(WF)(r,w) = F (0 o)
where 7, w € Hy. For € = even or odd, we write
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Theorem 4.2. The modules Aizzl(g)(Fg) and AZZZQ((]z)(Fz) are free A°°"(T')
modules and given by

A (Da) = AP (T){ b4, 10} sym(2) & A" (T2) {6, X10} 5ym(2)
DA (I2){X10, X12} Sym(2),

AZZ::;%)(FQ) = A(T2){ 04, d6; X10 tdet sym(2) B A" (D2){ P4, X105 X12 }det Sym(2)
DA (T2) {6, X10, X12 }det Sym(2)-

4.1. Module structure of odd determinant weight. Theorem 4.1
can be proved in various ways but here we use the Fourier Jacobi ex-
pansion. For F' € Ay »(I'2), G € Ay, 2(T'9), H € Ay, ;(I's), we write

F(Z) = fo(r)+ filt,2)d + O(q'?),
G(Z) = go(r)+ q(7,2)d +O(d?),
H(Z) = ho(r) +h(r,2)d + O(¢"?),

T Z

where we write Z = € H, and ¢ = €™, Here fy, go, or hg

is an elliptic modular form of weight k1, ko or k3 and fi, g1, or hy is a
Jacobi form of index 1 of weight kq, ks, or k3. We write 0 = (27rz')_16%,

Dy = (2m1) 'L and 95 = (27mi)~'-Z as before. For any elliptic modular
0z Ow

forms f(7) of weight k and ¢(7) of weight [, we put

{fa 9}2 = kfalg - lgalf)

{f.gta = 27k(k +1)f08g — (k+ 1) (I +1)(01f)(0rg) + 27U(1 + 1)g0i .
This is the usual Rankin-Cohen bracket and for each i = 2 or 4,

{f, g}: is an elliptic modular form of weight k + [ + i. Also for Jacobi

forms ¢(7, z) of weight k of index 1 and (7, z) of weight [ of index 1,
we put

{0, U} jac = V020 — G021
Then {¢, 1} is a Jacobi form of weight k£ + [ + 1 of index 2 (cf. [6]
Th. 9.5). We can define many similar differential operators of this sort.
For example, for an elliptic modular form f of weight k£ and a Jacobi
form ¢ of weight [ of index m, we put

{f, 0} = kf(0 — (4m)~'05)p — (I — 1/2)p0 f.
Then we have {f, ¢}* is a Jacobi form of weight k + [ 4+ 2 of index m.
This operator is used implicitly in some calculations later in section 5
or 6 without explanation. The details will be omitted.
By definition, we have

{F,G, H} et Sym(2) =
({fo, 90}202h1 — { fo, ho}20291 + {90, ho}202f1)d" + O(CIIQ))U%
+({fo, got2h1 — {fo, ho}ag1 + {90, ho}oS1)d' + ¢ )urus
+(k1fol g1, hl}jac — kago{ f1, hl}jac + ksho{ f1, gl}jac)q/2 + O(q’3))u§-
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We apply these formulas to concrete cases. We denote by Ej(7) the
Eisenstein series of I'y of weight & whose constant term is one and by
A the Ramanujan Delta function. It is well known that

A Ey(1) 4+ 240E4:1(1,2)¢ + O(¢'?),
¢6(Z) = Es(r)—504Es,:(7,2)¢ + O(q'"?),
X10(Z) = ¢0a(7,2)d +O0(¢"?),
X12(Z) = ¢u2.1(7,2)¢d + O(¢?),

where ¢ = exp(2miw). Here we are using the same notation and nor-
malization as in [6] p. 38 for Jacobi forms. In particular, we have

Eyi(r,2) = 14 (126 +56(C+ (7)) + O(¢%),
Es1(1,2) = 1—(330+88(C+ ¢ 1)g+ O(q?),

b101(1,2) = (144) Y EsEy1 — E4Egy) = (2mi)222A(7) + O(2%),

= (=24¢+ (g +B6—-16(¢C+ ¢ —2(¢C° + (7)) + O(¢?),
b121(7,2) = (144) Y (E?Ey; — EsFs,) = 12A(71) + O(2%),

= (10+¢+¢ g+ (=132 =88(C+ () +10(¢° +¢72))¢” + O(¢?),

where ¢ = e(7), ( = e(z). We have {Ey, Fg}y = —3456A, {Ey, Ey}s =
4800A, {E4, E6,1}* = —264¢12,1, {E67 E4’1}* = 252¢1271. If we put
$232 = {P10,1, P12 }jac, then we have

Pa32(T, 2) = —24(2mi)A(T)*z + O(2?)

and in particular this is not zero. If we put ¢112 = {Fu1, Fo1}jac/144
as in [6] p. 112, then we have ¢392 = 12A¢1; 5. We also have

{04, b6, X10}det sym(z) = (—3456A(7))(02¢10,1(T, 2)ui + ¢10.1(7, 2)urus)q’ + O(q'?),
{04, b6, X12}det symz) = —3456A(T) (02121 (T, 2)ui + ¢12.1(7, 2)usus)q’ + O(q'?),
{04, X10, X12} det Sym(2) = O(q"*)ui + O(q'*)urus + (4E4<f>23,2ql2 +0(¢?))us.

The determinant B(Z) of the 3 x 3 matrix whose components are
coefficients of u?, ujus and u3 of the above three forms is equal to

4-127 - 3456° A By gt + O(q'%) # 0.

S0, { @4, 6, X10 Fdet Sym(2)s {045 P6> X12 }det Sym(2)> {P4> X105 X12 }det Sym(2)
are linearly independent over A®’*"(I'y). Actually we can have more

direct expression of this determinant. For any n X n matrix A =
(a;;) (1 < 4,5 < n), we write a;; the (i, j)-cofactor of A, that is,
(—1)"* times the determinant of matrix subtracting the i-th row and
j-th column from A. Then an elementary linear algebra tells us that
det((@; ;)a<ij<n) = a11 det(A)" 2. Applying this to the matrix As5(7),
we can show that det(B(Z)) = 4¢4 det(Az5(Z2)?) = 4(293%)%p4x % which
is not zero.
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Now we see the relation. For the sake of simplicity, we put

Foip = {4, D6, X10 et Sym(2)»
Fyzo = {4, b6, X12}det Sym(2)
Foro = {4, X10, X12}det Sym(2)
Fyo = {6, X105 X12 }det Sym(2)-

By deﬁnition, the coefficient of 4¢4F29’2 - 6¢6F2772 + X10F23,2 - XIQFQLQ
of u2, uyuy or u3 is given by

4oy 696 10x10 12x12 49y 6¢s 10x10 12x12
01¢s 0196 Oi1x10 Oixaz _ 019y 0196 Oixio Oixaz
Orpy Oags Oox10 OaXi2 49, 606 10x10 12x12
494 69 10x10 12x12 O30y O30 O3x10 O3X12

49y 6¢s 10x10 12x12

_ 401 6g6 10x10 12x12) _
Oapy O Oaxio O2Xi2 '
O30y O30 O3x10 O3X12

So we have the relation in the theorem. Now fix an odd natural number
k and assume that

Fi1Fo 0+ FoFog o + F3Fyr 0 + FylFogo =0

for some F, € Ak,gl(f‘l), F, € Ak,23<rg), Fg € Ak,27(F2) and I, €
Ag_29(I'2). Then by the above relation and the linear independence of
Fo19, Fa39, For o, we have

(Aps Fy+x12F0) Fo1 0+ (404 Fy—10x10Fy) Foz o+ (404 F34+6¢06 Fy ) For 2 = 0.

So we have 4¢4F1 + X12F4 = 4¢4FQ - 10X10F4 = 4¢4F3 + 6¢6F4 = 0.
Since Cloy, d6, X10, X12] 1S a weighted polynomial ring, we have F; =
4¢4F5 for some F5 S Ak_33(F2) and F1 = —X12F5, F2 = 1OX10F5,
I3 = —6¢gF5. So we have

FiFoi 9+ FoFogo + F3lFor o + FyFog o
= F5(4¢4F59 9 — 6¢6Fo7 2 + 10x10F1.2 — 12X12F%92).

So the relation in the theorem is the fundamental relation. Finally

we must show that these generates the whole A‘S’Zﬁl@)(f‘z). By the

dimension formula of Tsushima [24] and Lemma 2.1, we have

2(/.21 —l—t23—|—t27—|—t29 —t33
(= )(1 = ) (1 — 0)(1 —12)

Z dim A}ﬁg(rg)tk

k:odd

By the result we proved in the above, the sum below is a direct sum.

A" = A(Dy) Foy o A (Iy) Foz 0D A (I'y) Fo7 2D Cl s, X105 X12] F9,2-
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So it is obvious that
(L= 9)(1 — )(1 — (0)(1 — 1)

t29
(1 —1t5)(1 — ¢10)(1 — ¢12)
But this is equal to the generating function of Ay o(I'2) for odd k, so
we have A* = A% (Ty). q.e.d.

sym(2)

> dim (A N Ao (D))t =

k:odd

+

4.2. The kernel of the Witt operator. We first prove the even

weight case. By [22], Ai;fg@)(l’g) is spanned by 6 Rankin-Cohen type

bracket for a pair among ¢4, @6, X10, X12- Since x19 = O(z?), we
have W(0;x10) = 0 for i = 1, 2, 3, so we have W ({¢4, X10}sym(2)) =

W({ P, X10}sym(2) = W({Xx10, X12}sym(2)) = 0. Then by the structure
theorem of [22], we see that

W(AG 2 (L)) = W(A“(T2) )W ({ P, 6} sym(2))
FW (A (L2))W ({64, X12} sym(2)) +C[W (96 ), W (x12) W ({d6, X12} sym(2))-

It is obvious and well known that three functions W (¢,), W (¢s) and
W (x12) are algebraically independent. Assume that

W ({ b4, D6} sym(2)) +FoW ({4, X12} symi2)) FF3W ({06, X12} sym(2)) = 0
for Fy, Fy € W(A"(I'g)) and F3 € C[W(¢g), W(x12)]. By the relation
4¢4{¢6 X12}Sym (2) — 6¢6{¢4, X12}5ym + 12X12{¢4, ¢6}Sym(2 0,

we have

AW (p4)W ({06, X12}sym(2)) — 6W (d6)W ({45 X12} Symi2))
+ 12W(X12>W<{¢47 ¢6}Sym(2)) = 0.

So we have

(AW (pa) Fr — 12W (x12) F3)W ({ B4, P6 } sym (2))
+ (AW (@) Fo + 6W (¢6) F3)W ({ D4, X12 }sym(2)) = 0.
We have
W ({4, b6} sym(2)) = 1278(A(T) Ey(w) Eg(w)ui + Ey(7)Ee(T)A(w)u3),
W ({4, x12}sym(2)) = —240(Es(1)A(T) Ey(w) A(w)u? + By (17)A(T) Bg(w)A(w)u3),

and

A(7) Ey(w) Es(w) Ey(7)
Eg(T)A(T) Es(w)A(w)  Ey(1)A(7) Eg(w) A(w)
)

= Ey(7) A7) Ey(w) Eo(w) (A7) Eg(w)* — Eo(7)*Aw)) # 0.

So we have 4W(¢4)F1 = 12W(X12)F3 and 4W(¢4)FQ = —6W(X6)F3
Since Fy € C[W (¢s), W(x12)], we have F3 = 0 and F} = F, = 0. So

Eg(1)Aw)
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we prove the case of even determinant weight. When the determinant
weight is odd, then we see that W({F, G, H }det sym(2)) = 0 when F,
G, or H is x10. We see easily that W ({4, ¢s, X12}sym(2)) # 0. But
X101{P4, D6, X12} sym(2) is contained in the modules spanned by the other
generators, so we are done. q.e.d.

We can give an alternative proof of this theorem by using the sur-
jectivity of the Witt operator (cf. [18]) and the dimension formulas.

5. STRUCTURE IN CASE Sym(4)

In this section, we prove the following theorem.

Theorem 5.1. The two modules AG ) (I'2) and A"dd y(I'2) are free

sym(4 sym(4

Ae*™(T'y) module and explicitly given by

sy (F2) =AM (T2){ba, Pa}sym(ay © A" (L2){ s P6 }syma)
® A (T2){ b4, D6 }aet 2Sym(4) D A (T){ s, XlO}Sym(4)
@ A" (L) { b6, X10} sym(a)

and

Ay (Ta) =
A (To){ sy Gay D6 }aet sym(a) B A (D2){Pa, D6, D6 Fdet Sym(a)
DA (T2){ P4, Pa; X10 et Sym(a) B AT (L2){ P4, P4, X12}det Symi(4)
DA (T2){ P4, D6, P12 Fdet sym(a)

By Tsushima’s dimension formula in [24] and Lemma 2.1, we have
(1 +t7)(t8 +t10 +t12 +t14 +t16)

2 A At = Ty )

By seeing this, it is obvious that to prove the assertion of Theorem
5.1, all we should do is to prove the linear independence of generators
over Ae™(Iy). We sometimes idenfity F(Z) = St fi(Z)ui"u} €
A 4(To) with a vector “(fo(Z2), f1(Z), ..., fa(Z)). Since there are 5 gen-

erators for each of A/ ) or Asym (1), We have two 5x 5 matrix B®*"(Z)

whose column vectors are {4, @4} sym(a)s {P4: @6} sym(a)s {045 P6 }det 25ym(a);
{04, X10} sym(4), {@4, X12} Sym(4) in this order and B°4(Z) whose columns
are generators in the order as appearing in the theorem. We must show
that det(B®*"(Z)) and det(B°™(Z)) are not identically zero as holo-
morphic functions. The proof of this fact is quite technical and maybe
there are several ways to show this. We sketch one proof. We first
consider B*(Z). We have {¢4, @1} sym(1) = 4800Aut + O(¢'), where
¢ = e¥™_ All the other generators are divisible by ¢, so we have
det(B®"(Z)) = 4800A(B**"(Z))11 + O(q'®) where (x);; denotes the
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(1,1) cofactor for any matrix *. By definition, {¢u, ¢¢}sym(s)/840 is
given modulo ¢’? by ¢’ times the following vector

*
12(E68182E4,1 - E48182E671) - 1081E682E471 ‘I’ 2161E482E671
6F(03Ey 1 + 201Fy1) + 2101 E4Fg 1 — 100, EgEyy — 6E4(93Eg, + 20, Fg 1)
12(E682E471 — E482E671)
6(E¢Es1 — EyEga)

where % is a certain function of 7 and w. We write E. = 0,FE; and
E! = 0?E; for i = 4, 6. By using the relations

1448;9251071 — EﬁaéE4,1 - E485E6,17
1446’182¢10,1 = E68182E4,1 - E46182E6,1 + Eé82E4,1 - E482E6,17

the above vector is equal to

*
12 - 1440105101 + 11(3E}0yEg1 — 2405 Fy 1)
6 - 144(02¢101 + 201¢101) + 11(3E, Eg1 — 2E4Ey 1)
12 - 14485 $10.1
6 144610,

In the same way, we have

*
—55E0a¢101 + 20E401 02010 1

{é4, x10} sym(ay = ¢’ —55E)¢10,1 + 10E4(05¢10,1 + 201¢10,1) +0(q'?),
20E,02¢10,1
10E4¢10,1

%
—TTE{O2¢101 + 42E60102¢10.1
{66, Y10} sym@ay = ¢ | ~TTE¢101 + 21E(03010,1 + 2016101) [ +0(q'?),
12Eshno,

216010,

and

k
k
{4, G6 }aet? sym(a) = —32598720¢" x * +0(¢'?).
282¢12,1
¢12,1
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We can show easily that {¢a, X10}sym1) — 10Es{d4, P6} sym(a)/ (840 x
6 x 144) is given by
*
—220A, By
—220AEy; |,
0
0

and {¢67 XlO}Sym(4) - 21E6{¢47 ¢6}Sym(4)/(840 X 6 % 144) by

*
—462A0, Eg
—462AFEg,
0
0

So we have

det (B (2))
AOyEy; A0y Eg,
AE4,1 —AEﬁ’l
= AT ,q" 4+ 0(¢),

where ¢;, ¢o are certain non-zero constants. So we prove det B¢ (Z)
is not identically zero and theorem follows for A" (T'y). Now we

Oagr0,1 Oai21

14 /5
+0
¢10,1 ¢12,1 4 (q )

= ClA

sym(4)
sketch the proof of det B°¥(Z) # 0. We use the following relations.
{E4, EG}Z = —3456A,
{EG, EG}Q — O,
{Es, Es}s = 4800A,
{E47 E6}4 = 0,

{Es1,Ee1}jac = 144¢119.
By definition of the bracket, we have

k
k
{Ba, Pa, D6 Faet sym(ay = 4147200 | —=3A%Ey ;1 | ¢ + O(¢'?),
—QAE471
0

*
*
{¢4a ¢67 gbG}det Sym(4) — 4354560 3A82E16,1 q/ + O(q,2)a
2AE6’1
0
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Adrpr0,1
—2A¢10,1
{ @4, b4, X10 Fdet sym(a) = 4800 0 ¢ +0(q"?),

{¢47 ¢47 XlZ}det Sym(4) — 4300 0 q/ + O(q/z)a

{B4, D6, X12} det sym(a) = 5040-144

* X X ¥

—$12,102010,1 + ¢10,102012,1
So by noting ¢12,102¢101 — $10,102012,1 = 12A¢11 2, we see that
det B*(Z) = ¢ x A° ?1,261’6 +0(q'7)

for some non-zero large constant ¢, hence this is not zero. So we prove
Theorem 5.1. It is plausible that each det B®*"(Z) or det B°%(Z) is a
constant multiple of x35 and X35, since x35 = —A2¢112¢'% + O(¢'?).

6. STRUCTURE IN CASE Sym/(6)

First we see dimension formulas. By Tsushima’s dimension formula
and Lemma 2.1, we have

& ] (1+t5>(t6+t8+t10+t12+t14+t16+t18)
Zdlm Ars(l'2) = 4 6 10 12
2 (1= #9(1 = £9)(1 — £19) (1 — £12)

We have the following table of dimensions.

k 5 6 78 9 10 11 12 13 14 15 16 17 18 19
dimAg,e/0O 1 01 0 2 1 3 1 4 2 6 3 9 4
dimS,¢/0O 0O 0O 1 0 1 1 2 1 3 2 5 3 7 4

So we must construct a form in each Agg(I's), Ase(I'2) or Aige(I'2).
There is no way to construct Agg(I'2) by the Rankin-Cohen type bracket
since the deteminant weight should be at least 4 + 4 = 8 by such
construction. Also we see by definition that {¢4, ¢4} sym@e = 0 and
{04, ba}aet25ym(e) = 0, so we cannot construct Agg(I'y) or Ajge(I'2) by
this method, and we need other constructions. We use Eisenstein series
and theta functions with harmonic polynomials. First we define theta
functions in general. For a natural number m and vectors x = (z;),
(y;) € C™, we define (z,y) = >_7" 2;y;. We assume m = 0 mod 8 and

q/2_’_0<q/3>‘
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fix an even unimodular lattice L C R™ and an integer £ > 0. For any
a, b € C™ such that (a,a) =0, (b,b) =0, (a,b) =0, we put

eL,a,b,k,Z/(Z> =
(v,0) (y,a)|"
r,a j—v .a v ) 3 eﬂi((x,:v)T—l—Z(a:,y)z—&-(y,y)(u)'
2 @Gy g
We define

i,
OL.ap,)(Z) = (i) 0L appn(Z)0) " ub.
0

Then it is well-known and easy to see that we have 0,5 ;) (Z) €
A yaik;(T2) (cf. [9]). When k& > 0, this is also a cusp form. Now we
take the even unimodular lattice Eg C R® of rank 8 which is unique up
to isometry. More explicitly, Fg is given as follows as in [23].
8
Eg = {ZL’ == (xi)lgigg < QS, QI'Z € Z,.Ti — Xy < Z, ZCEZ < QZ}
i=1
We put
= (2,1,4,1,1,1,1,0),
b = (1,-1,i,4,1, -1, —i.7).
We define X&G < A&@(Fg) and X106 S AlO 6(F2) by
Xs6(Z) = Opgapa6)(Z)/111456000,
X106(Z) = Opgap66(2)/450252000.
By computer calculation, we can show that both forms do not vanish
identically. Here both Xg4(Z) and Xjp6(Z) are cusp forms. Now
we must construct Agg(I'y) also. Since 01 45 k5 is a cusp form when
k > 0 and rank(L) = 0 mod 8, we cannot construct a form in Ag¢(I'2)
by theta functions. But by virtue of Arakawa [3] Prop. 1.2, for any
f € Si+;(Iy) with even k£ > 6 and even j > 0, we have the Klingen type
Eisenstein series Fj ;(f) € Ay ;(T'2) such that ®(Ey ;(f)) = f(7)ub. So
for the Ramanujan Delta function A € Sj5(I'1), we have Egg(A) €
Ag6(I'2). Now we can state our theorem.

Theorem 6.1. The module AG)7q (I'2) is a free A" (I'y) module and
gien explicitly by
Agymiey(T2) = A" (T2)Egs(A) @ A (Tg) Xg 6 @ A" (T'2) X106
DA (L2){ 01, D6 Faer? sym(e) & A" (I2){das X10} sym(s)
DA (I'2){ 01, X12} sym6) © A" (I'2){ 06, X12} sym(6)-
The point of the proof is again to show the linear independence of the

generators. We can show that the determinant of the 7x 7 matrix C'(2)
whose columns consist of generators is equal to cA%¢?, ,¢'°+0(¢'") with
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some non-zero constant c¢. We can show this by similar calculation as
in the last section and we sketch the proof here. By definition, we have
FEs6(A) = Au§ + O(q'). All the other generators are divisible by ¢, so
we have det(C'(2)) = AC(Z)11 + O(¢'7) where C(Z)1; is the (1,1) co-
factor of C'(Z). So it is enough to show that C(Z)1; = ¢(7, 2)¢’+O0(¢'")
for a function ¢(7, z) which is not identically zero. To calculate ¢(r, 2),
we need the first Fourier-Jacobi coefficients of 6 generators except for
Es6(A), in particular the coefficients of u$~“ul for i > 0. Except for
Xsg e and X6, we can obtain these from the definition. As for X4 and
Xi0,6, to determine the Fourier-Jacobi coefficient of index one, (i.e. the
coefficient of ¢’ in the Fourier expansion), we use a general theory of
Fourier-Jacobi expansion of vector valued forms in [15]. Fourier-Jacobi
coefficients of index m of a vector valued Siegel modular form F' of
weight det” Sym(j) is a linear combination of usual Jacobi forms of
weight k 4+ v (0 < v < j) of index m and their derivatives (cf. [15]
Theorem 2.1). Since the space of Jacobi forms of index one is known,
we can obtain the Fourier-Jacobi coefficient of index one of F' if we have
enough Fourier coefficients of F'. We omit the details of the calculation,
but by this method we see that the coefficient of ¢’ of Xs¢ is given by

*

11 43 6 5
— 10050101 + 1791020101 + 75020121
30 92 6 5
—19050101 + 15910101 + 15P12,1

—202¢10,1
— 10,1
0

0

and that of X4 is by

*
5 120 53 30 5. 92 1045 3
1333 P10,1 — 15302 01010,1 + 1530201 D101 + 17 E1O2dr01 — 437(9 $121 + 4378231¢12 1

110615E4¢10 17 7o. 2382¢12 1 + 19. 2381¢12 1 + 13384¢10 1 + 13382¢10 1 — 1338182¢10 1
1982¢12 1 + 83¢10 1~ 79 801050101
¢12 1+ 150 82gb10 1~ 79 alﬁblo,l

602010,1
2¢10,1

where x are certain functions of 7 and z. For the sake of simplicity, we
write Fiag = {P4, P6 Faer? sym(s)/ 11642400. Then the coefficient of ¢" of
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Fia6 is given by

¢ (1, 2)
co(T, 2)

126 65 43 30
53 1020101 + 53050121 — 5301020121

63 90 72 15
3 Eadion + 53050121 — 53010121

3020121
P12,1
where
35 49 14
01(7, Z) = —E632¢10,1 - —E482¢12,1 - —81(E432¢10,1)
12 60 23
35 63 42 9
+2—3E4323¢10,1 + ﬁﬁgqu - E%S@l(bu,l + E@afébu,l,
35 49 14
co(T,2) = EE6¢10,1 — @E4¢12,1 — ﬁal(EMblO,l)
98 273 117 9
+2—3E48§¢10,1 + ﬁ%%m - 1—153183@2,1 + E8%¢12,1-

Coefficients of ¢ of each {¢4, X 10} sym(6), 194, X12} sym(s) and { @6, X 12} sym(6)
are given by

*

396 E; (Oa¢r10,1) — 360E4(0102610,1) + 60E4(9202610.1)
396E:1/¢10,1 - 18OE:1(231¢10,1 + a§¢10,1) + 60E4(8f¢1071 + é7la§¢10,1)
—360E,(92010.1) + 20E4(6(9102010,1) + O310.1)
—180E:1¢10,1 + 60E4(01¢10,1 + a30510,1)
60E4(02¢10,1)
20E4(¢10,1)

*

BA6E} (Drp12,1) — 420E,(0102612.1) + 60E4(0302¢12,1)

BA6Ey 12,1 — 210E, (2016121 + 03¢12,1) + 60EL (0] hr2,1 + 0105 ¢12,1)
—420E:1(82¢1271) + 20E,4(6(D102¢12.1) + O312.1)
—210E,¢121 + 60E4(01012.1 + O312.1)
60E4(D2¢12,1)
20E,(b12,1)
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and

k
T28Eg (D2¢12,1) — T84E(0102¢12,1) + 168E5(0702¢12,1)

T28Ey 191 — 392E4(2010121 + 02h19.1) + 168Es(2h19.1 + 0102612.1)
—T84E(0a12,1) + 56 E5(6(010212.1) + O3b12.1)
—392E5¢19.1 + 168F4(01¢12.1 + 03¢12.1)

168 E(y12.1)
56E6(¢12,1)

respectively. Now we put

G = {P4, X10}sym(s) — L0Es X106 + 60E6Xs 6,
Gies = {04, X12}sym©) — 20E4F126 — TOE; X3 6,
Giss = {P6, X12}sym(e) — D6EcFia6 — 196 £, X5 6.

Then the coefficients of ¢’ of G146, Gis6 and Gis¢ are given by

* * *
* * *
* * *
20E482¢12,1 ) 14OE662¢12,1 ) and 392E232¢12,1 )
10E4¢12,1 T0E6p12,1 196 £ 12,1
0 0 0
0 0 0

respectively, where * are certain functions of 7 and z. If we put Higg =
G16,6 — 7(E6/E4)G1476 and H18,6 = G18,6 — (196/10)E4G1476, then by
computer calculation, we see that the coeflicients of ¢ of Hygs and
Hig are given by

* *
A52¢12,1 Aa2@510,1
A¢512,1 ACblo,1

120960(F,)~* 0 , and 282240 0 ,

0 0
0 0
0 0
respectively. So det(C'(Z)) is a non-zero constant times

det<E6,6(A>7 X8,67 X10,67 F12,67 Gl4,67 H16,67 H18,6>
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and the (1,1) cofactor of this is a non-zero constant times

* * * * (Ey) ' Adyp1a1 Adadpion
* * * * (E)) 'A¢ra1 Adioa
—282¢10’1 * * 20E482¢12’1 0 0
—010,1 * * 10Es¢12,1 0 0
0 6020101 3020121 0 0 0
0 20101 P12,1 0 0 0

This is a constant multiple of A°¢?,,. So det(C(Z)) is a non-zero
constant times A%p?, ,, so this is not identically zero. So we prove
Theorem 6.1. It is plausible that det(C(Z)) is a constant multiple of

3
X35+
7. CONCLUDING REMARKS

We give here two concluding remarks.

Remark 1. When are Age .\ (I'2) or A . (T'2) free?
By Tsushima’s dimension formula, Satake’s surjectivity of the ®-operator,
and by some ad-hoc arguments, we can calculate the generating func-

tions of dimensions of Ay ;(I'z) for small j. We can show

tll + t13 + t15 + t17 + t19 + t21 + t23

dim Ay 6(I2)tF =
I;dd 11m k:,ﬁ( 2) (1 _ t4)(1 _ tG)(l _ tlo)(l _ t12) 9
S dim Ay s(T) 2" £+ 15 4 2000 4 2412 4 14 4 416 4 418
111 =
A (= )1~ @)1~ )1~ 1)
S dim Agg(Tayt = L2 2 T
11m =
G (=)= o)1 — o)1 - 1)

Z dim Ak710<F2)tk

k:even
O 210 2417 4 3 4 2810 1 4 20 — 2 0
B (1 —t4)(1 — t6)(1 — t19)(1 — ¢12) '

Since we have

1
im A (Ty) =
2 dm A = T
it is very likely that AOSZ% 6)(1'2), A (T'2), Ag‘;ﬁn (T';) are also free

A*"(T'y) modules, each spanned by elements with determmant weights
of the powers of ¢ appearing in the numerator of the generating func-

tions. On the other hand, as for AEZ%LOO (T3), by the above generating

function, we can see that there are no homogeneous free generators over
Aeve”(FQ). (Actually this means that AZ " (I'2) does not have either

sym(10
inhomogeneous free generators over A°’"(I'y). Indeed T. Hibi informed
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the author answering to his question that Juergen Herzog proved the
following claim. Let R be a graded ring such that Ry is a field and M
a finitely generated graded module over R. If M has (not necessarily
homogeneous) free generators over R, then we have homogeneous free
generators of M over R. )

Remark 2. Problem on mysterious weights.
In general, if we take f; € A, gym;)(I'2) fori =1,..., j+1 and identify
fi as a j+1 dimensional vector of functlons on Hg, then det(f1,..., fi+1)
is a scalar valued Siegel modular form of I'y of weight

ki+ke+- -+ ki +75(0+1)/2

We already note that when we take free generators of Ai;fr’} )(F2>,

A% 4y(Ta) and Angg (T'y), then the above weight of the detemi-
nant of generators is 70 =35 x 2,70 = 35 x 2, or 105 = 35 x 3,
respectively. Also by judging from the first non-vanishing Fourier
Jacobi coeflicients, it is very plausible that these are constant mul-
tiples of x3s, x35 and x3s, respectively. Now let’s believe the con-
jecture on free modules in Remark 1. Then surprisingly the similar
weights of the determinant are all multiples of 35. Indeed we have
11+ 13+ 15+ 17+ 19 + 21 + 23 + 21 = 140 = 35 x 4 for A% o (T'2),

sym/(6

4+8+4+2x104+2x124+14+16+18+36 = 140 = 35 x 4 for A?y’fg(g (Ty)
and 94+ 114+ 13+2x154+2x 17+ 19423+ 36 = 175 = 35 x 5 for
Asym( y(I'2). It is natural to ask if all these determinants are constant
mutiples of powers of x35. We can make a bolder guess including the
case when Agyn)(I'2) itself is not free. Assume that f; € Ay, ;(I'2),

, fir1 € Ax,,,;(I'2) are free over A°*"(I'y) and k; mod 2 are the

same. Assume that
ki +- 4+ ki +5(+1)/2=35¢+r

with 0 <r < 35. Then, is the determinant det(fi, ..., f;4+1) divisible by
X457 We can show that this is true at least for generators of Agym(2)(I'2).

8. APPENDIX

Fourier coefficients of the generators which appear in the previous
sections are easily calculated by Fourier coefficients of the ring gen-
erators of A®*"(I'y) except for Xgg, Xi106. The ring generators o,
®6, X10, X12 of AY"(I") are all Saito-Kurokawa lifts and their Fourier
coefficients are very easy to calculate. Here we give tables of Fourier
coefficients for the remaining cases, i.e. for Xg¢ and X0, which we
used implicitly in the calculation of section 6. For any half integral ma-

a b/2
b/2
at T" of Xgg or Xjp6. Then we have

trix 7' = , we denote by (a, c,b,i) the coefficients of u®~“ul,
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[1]

(G;, C, b, Z) X8,6 X1076 (a, C, b, Z) Xg,ﬁ Xlo)ﬁ T

(6,1,3,0) | —3600 21120 | | (7,1,0,5) 0 0 ((;‘fg?) fgslg _21);02’8
(6,1,3,1) | —3960 22680 | | (7,1,0,6) 0 25088 | | 7’1’50 | 953 | 46805
(6,1,3,2) 840 86400 | | (7,1,1,0) | 10656 | —3184776 7135 ' I
(6,1,3,3) | 1440 39600 | | (7,1,1,1) | ~40896 | 1507464 | | )50 0 o6
(6,1,3,4) 240 4200 || (7,1,1,2) | ~36612 | —1208700 | | 21" geee | et
(6,1,3,5) 0 4320 || (7,1,1,3) | 8568 | 408960 | | 'y Gl 0
(6,1,3,6) 0 480 | | (7,1,1,4) | 4280183060 | | o0 el geog
(6,1,4,0) |  —600 —5688 | | (7,1,1,5) 0 —25704 | | o oze | “saaso
(6,1,4,1) | —1200 3984 | | (7,1,1,6) 0 =8568 | | 10 | a72 | _323%0
(6,1,4,2) | —876 15780 | | (7,1,2,0) | ~40752 | 3663744 | | 7' g i
(6,1,4,3) | —288 12000 | | (7,1,2,1) | —28176 | 7733712 | | 2 0 el
(6,1,4,4) ~36 1380 || (7,1,2,2) | =822 | 4172040 | |20 0 131
(6,1,4,5) 0 864 | (7,1,2,3) | 5856 | 281760 | | v Tl 1050
(6,1,4,6) 0 72| | (7,1,2,4) | 1464 41160 | | 2o g L08%5
(7,1,0,0) | 32256 | —2458624 | | (7,1,2,5) 0 —1mses | | 2| o 600
(7,1,0,1) 0 0l |(7.1,2,6) 0 2028 | | 2 15
(7,1,0,2) | 58112 | =5608960 | | (7,1,3,0) | 10116 | 66138 | | 2" 0 20
(7,1,0,3) 0 0| | (11,3,1)] 21252| 974226 | | 200 0 )
(7,1,0,4) | —12544 | —290560 | | (7,1,3,2) | 9361 26455 19
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