2012年度(平成24年度)大学院入試

数学問題 A

実施日時

2011年(平成23年)8月29日(月)

9:00 ~ 12:00

- 監督者の合図があるまで問題冊子を開いてはならない.
- 問題冊子は表紙も入れて5枚である.
- 問題は全部で4問である.
- 解答には問題ごとに別々の答案用紙を用い, <u>それぞれ</u>の答案用紙に <u>受験番号</u>, <u>氏名</u>, 問題番号を記入すること.
- 答案用紙,下書き用紙は終了後すべて提出し,持ち帰ってはならない.

[1]以下の各問に答えよ.

(1) 実数列 $\{a_n\}_{n=1}^{\infty}$ が $\lim_{n\to\infty}a_n=0$ を満たすとき、

$$\lim_{n \to \infty} \left(1 + \frac{a_n}{n} \right)^n = 1$$

が成り立つことを示せ.

(2) s と t を正の実数として、実数列 $\{a_n\}_{n=1}^{\infty}$ を

$$a_n = (n+s)\cos\left(\frac{t}{\sqrt{n}}\right) - n$$
 $(n=1,2,3,\cdots)$

により定義する. 余弦関数 $\cos x$ のテイラー展開を用いて, $\lim_{n \to \infty} a_n = 0$ が成り立つような s と t の組 (s,t) をすべて求めよ.

(3) 次の積分の値を求めよ.

$$\int_0^\infty \lim_{n \to \infty} \left\{ \cos \left(\frac{t}{\sqrt{n}} \right) \right\}^n dt.$$

[2] A を 3×2 の複素行列, B を 2×3 の複素行列として, 積 AB が

$$AB = \begin{pmatrix} -3 & -2 & 1\\ 4 & 3 & -1\\ -4 & -2 & 2 \end{pmatrix}$$

であるとする.

- (1) AB の固有値 lpha をすべて求めよ. また各固有値 lpha に対応する固有空間 V_lpha の基底を一組求めよ.
- (2) $x \in V_{\alpha}$ に対し, y = Bx とおく. このとき $BAy = \alpha y$ が成り立つことを示せ.
- (3) $g_{\alpha}:V_{\alpha}\longrightarrow {f C}^2$ を $g_{\alpha}({m x})=B{m x}$ により定まる線形写像とする. 0 でない固有値 α に対し, g_{α} の像 ${
 m Im}\,g_{\alpha}$ の次元を求めよ.
- (4) BA **を求めよ**.

- [3] 実数全体の集合 ${f R}$ に通常の位相を与えて位相空間としたものを ${\cal X}$ とする. また、集合族 $\{\,[a,b)\mid a,b\in {f R},\ a< b\,\,\}$ を開基とするような位相を ${f R}$ に与えて位相空間としたものを ${\cal Y}$ とする. 集合 ${f R}$ の恒等写像から定まる ${\cal X}$ から ${\cal Y}$ への写像を f とし、同じく集合 ${f R}$ の恒等写像から定まる ${\cal Y}$ から ${\cal X}$ への写像を g とする.
 - (1) $f: X \longrightarrow Y$ は連続ではないことを示せ.
 - (2) $g: Y \longrightarrow X$ は連続であることを示せ.
 - (3) R の部分集合 A^+ と A^- を

$$A^{+} = \left\{ \frac{1}{n} \mid n = 1, 2, 3, \dots \right\} \cup \{0\}, \qquad A^{-} = \left\{ -\frac{1}{n} \mid n = 1, 2, 3, \dots \right\} \cup \{0\}$$

と定義する。これらが X においてコンパクトであるかないかを、それぞれについて理由をつけて答えよ。

(4) A^+ と A^- が Y においてコンパクトであるかないかを、それぞれについて理由をつけて答えよ.

[4] 複素平面上の有理関数

$$f(z) = \frac{1}{z^5 + 1}$$

を考える.

- (1) f(z) の $z=e^{i\pi/5}$ における留数を求めよ. ただし i は虚数単位とする.
- (2) 実数 R > 1 に対し、

$$\Gamma_R = \left\{ Re^{i\theta} \mid 0 \le \theta \le \frac{2\pi}{5} \right\}$$

とおく. このとき

$$\lim_{R \to \infty} \int_{\Gamma_R} f(z) dz = 0$$

が成り立つことを示せ.

(3) 次の等式を示せ.

$$\int_0^\infty \frac{1}{x^5 + 1} dx = \frac{\pi}{5 \sin(\pi/5)} \,.$$