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APPENDIX A: ASYMPTOTIC REPRESENTATION THEOREM FOR CLASSICAL
LAN

This section gives a comprehensible proof of the asymptotic representation theorem for
classical LAN models (Theorem 1.1). This also provides an alternative view for the ‘ran-
domized’ statistics appeared in the theorem.

In constructing a statistic 7" that enjoys 7'("") 2T for all h, van der Vaart [1] emphasized
that one must invoke external information. This prescription reminds us of a quantum POVM
in which one makes use of an ancillary system in realizing it. In what follows, therefore, we
identify the randomized statistic 7' with a o-finite measure on R* x R? that gives the desired
limit distribution £}, for every h € R?.

PROOF. For each t € R?, let
(Al) M(n) (t, (JJ) = :H-T(n)_l((foo,t})(w)’ (n € [Nv w e Q(n))

Referring to the diagram

om A% Rd

(n)

Pg n)—1 )
[0,1] <> F 5" B(RY)

we define, for each t € R, a finite Borel measure ugn) on R? as follows:

(A2) B[ MOEwdr @), (BeBEY).
A TY(B)
Note that the set {u,g")}n is tight. In fact, since A("™ LN (0,.7), the sequence A" is tight
under Pe(:)’ that is, for any € > 0, there exists a K > 0 such that for all n,
PM(A™ ¢ [, K] <.
Consequently,

W (R K, K] = / MO (t,0)dP (w)
A ¢[—K,K]¢

</ dP{ ()
A K, K]

= P{"(A™ ¢ [K, K]%) <
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proving the tightness of { ,ugn)}n. It then follows from the Prohorov theorem that there is a
subsequence { uﬁ”k)} ¢ that is weakly convergent for all ¢ € Q%, i.e.,

(A3) W, (Ve Q).
Observe that for any continuity point 2 € R? of 1,

pu((—o0,z]) = lim M) (t,0)dP™ ()
k—oo JAm) <o 0

= lim Py (T <t} n {AM) < o).
—00

Let us extend g to all £ € R® so that p;((—o0, z]) is right-continuous in ¢ for each z € R?,
and denote the extension by i, that is,

(A.4) (=00, z]) := inf{ pa ((—o0, z]) | € Q°, a > t}.
Specifically, since 7(™) 2 Ly, the total mass of 1z, for a continuity point ¢ of Ly is given by
Fie(RY) = iy (RY) = lim P (1) <) = Lo((—o00,1]).
k—oo

Further, since A -5 N (0,.J), we have from the joint tightness of (A T(")) that

fino(B) := lim pu(B) = lim Py (A e B) = / go(z)da.

t—o00 —00 B

Here, g5 (x) denotes the density of N (Jh,.J) with respect to the Lebesgue measure dz. Put
differently, 1z, ~ N(0,J).

Since 7i,(B) < fio.(B) for all t € R*, we find that 1z, is absolutely continuous to i, and
hence to the Lebesgue measure. This guarantees the existence of the density

dp. 1 dp
- e ().

AP go(z) d
Note that 0 < M;(x) < 1 and M;(x) T My (z) =1 for each x € R%.

We prove that this is the one that gives the desired limit distribution, in that

(A.6) Li((—o00,1]) = /[R on(x) My(x) da

(A.5) My(x) :

for any h € R? and any continuity point ¢ € R® of L.
Because of (1), we have

(n) (n)
(A.7) P¢90+h/\/ﬁ <a B,
which, in particular, entails that %n/)“/ﬁ is uniformly integrable under P(,(:), and hence
ap,
0
under ,ul(tn) for any ¢t € R®. Consequently, for any continuity point ¢t € R® of L}, we have
(A.8) Lp((—o00,t]) = k:lggo ) MY (t,w) dP90+h/\/7Tk(W)
apr{™)
= lim M(”k)(t,w) — both/yin dPe(n’“)(w)
k—00 J(ny) dpe(glk) o

. RIAYR _Lpind g 5 () ¢ A (n
= Jim | AT AR,
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Here, the first equality follows from the assumption that 7™ & 3L;,, the second from (A.7)
and Lemma A.1 below, and the third from (1) and (A.2). Now we prove that

. iAR) _1pipgT e gh<1‘) o
(A9) lim el A 2P i g (%) Amx) :/ dii. (z
k=00 JRa My ( ) R go(:C) lut( )

for any continuity point ¢t € R® of £},. Given € > 0 arbitrarily, take another continuity point
t" € R® of £}, and a rational point o € Q° (¢ < av < t') such that

(A.10) 0< Eh((—oo,t/]) —Lp((—o0,t]) <e
and

9n(x) @)
(A1 o< [ S dnate) = [ S ) <

The existence of such ¢’ is assured by the assumption that ¢ is a continuity point of £, and
the existence of such a € Q° by (A.4) and the monotone convergence theorem. Then

(A.12)

RIAM —Lpind g o (nk) ¢ A (k) / gn(z) ‘
et i 2 id A — di,(x
L ) aen) - [ A i

< / M AT = FR I Ty gy () (A () / AT SRR Ty gy () (A L)
R Re
4 / ehiAE"’“’;hih-fJijdugnk)(A(nk))_/ gh(m)dua(a:)
Rd Rre 9o(T)

w@) e,
| [ Gy ) = [ S )"

Firstly, due to (A.8) and (A.10), for sufficiently large k, the second line of (A.12) is evaluated
from above by

iANME) _1pipiT.. g ny iANME) _1pip; ; ng n
/[RdehAi 2hh‘]”7du§ )(A( ))_/[RdehAl zth]dﬂg/ )(A( ))‘

<

iANME) _1pipgo7. N Nk
/[Rd eh A; 2hh Jij dlui )(A( ))—ﬁh((—OO,tD‘
+ | L((=00, 1)) = Li((—o0, 1))

+

iANME) _1pipgT Nk N
Er((oest) = [ o3 gy a0
[Rd

< 3e.
Secondly, due to (A.3) and the Lemma A.2 below, for sufficiently large k, the third line of

(A.12) gets smaller than ¢. Finally, due to (A.11), the last line of (A.12) is bounded from
above by e. Putting these evaluations together, we find that

RIAT) _Lpipg g o () ¢ A (n) / gn(z)
et =i 2 id A — di, (x
L ) aen) - [ A i

< e,

proving (A.9).
Now that (A.8) and (A.9) are established, the desired identity (A.6) follows immediately

from (A.5) and the assumption that T L L. ]



LEMMA A.1. Let the probability measures Py, and Q,, on ), satisfy Q,, < P,. Then, for
any measurable subset F,, of Q,,

. 3 d n
(A.13) Jm Eq, [1r,]= lim Ep, [ﬂFn dJQﬂn] ’

provided either of the limits exists.

PROOF. Let @, = Q% 4 Q.- be the Lebesgue decomposition with respect to P, and let
Ay, = supp Q%°. Since P, (AS) =0 for all n, we have from @, < P, that Q,(A¢) — 0.
Therefore,

/Qn HF,L(W)dQnZ/An ]lF,L(w)dQn+/ 1p (w)dQn

A
= / 1F, (w)% dP, + Qn(A; N F,),
Q. dP,

from which (A.13) immediately follows. ]

c
n

LEMMA A.2. Let X, € L*(P,) for all n, and let X € L'(P). Suppose that {X,} is
uniformly integrable and X,, ~~ X. Then

lim Epn [Xn] = EP[X]

n—oo

PROOF. For K € [0,00), define a function fx : R — [- K, K| as follows:

K, (x>K)
fr@)={s (-K<u<K)
—K, (r<—K)

Given € > 0, we can choose K so that, by the uniform integrability,

Ep, 11X — fx(Xa) | < Bp, (Xl Xl > K] < 2, (V)

and

Ep[|X = fic (X)) < Bp[IX]: |X| > K] < .

Further, since X,, ~ X, we can choose ng € N such that, for all n > ny,
|Ep,[fx(Xn)] — Ep[fr(X)]| <

The triangular inequality therefore implies that, for n > ny,

|Ep,[Xn] = Ep[X]| <e,

€
3

and the proof is complete. O

APPENDIX B: GAUSSIAN STATES ON DEGENERATE CCR ALGEBRAS

This section gives a brief account of degenerate canonical commutation relations (CCR)
and hybrid classical/quantum Gaussian states.

Let V' be areal symplectic space with nonsingular symplectic form A. The unital x-algebra
generated by elements of V' satisfying
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is called the canonical commutation relations (CCR) algebra. There is a distinct, but closely
related notion of the CCR. Let H be a separable Hilbert space and let W : V' — B(#H) satisfy
the relations

W(H)W(g)=e 7 AUDW(f +g), W =W(-f), (f.geV).

These are called the Weyl form of the CCR. Specifically, the above relations imply that W ( f)
is unitary and W (0) = 1.

One would like to represent the CCR by using selfadjoint operators on H. We first treat the
case when V' is a two-dimensional symplectic space with symplectic basis {ey, f1} satisfying
A(eq, f1) = 1. Then the above relation reduces to

W (ter)W (sfr) = e "7t W(tey + sfr) = e VLW (sf1)W (ter).

Let us regard U(t) := W (te1) and V (s) := W (sf1) as one-parameter unitary groups acting
on H. By Stone’s theorem, there is a one-to-one correspondence between selfadjoint oper-
ators and (strongly continuous) one-parameter unitary groups. Thus one defines a pair of
selfadjoint operators () and P by

U(t):= eﬁtQ, Vis)= eﬁsp,

which fulfills the Weyl form of the CCR
6\/?”@6\/?18]3 _ e—\/jlste\/?lsPe\/?th.

Formally differentiating this identity with respect to ¢ and s at s = ¢ = 0, one has the Heisen-
berg form of the CCR

QP — PQ=+—-11.

The operators () and P are called the canonical observables of the CCR.

There are variety of choices of Hilbert spaces 7{ and irreducible representations of canon-
ical observables on . However, according to the Stone-von Neumann theorem, they are
unitarily equivalent [2]. Thus one may use any one of them. In this paper, we canonically
use the Schrodinger representation on the Hilbert space H = L?(R). Note that the von Neu-
mann algebra generated by {eV 1@} is L°°(R), and the von Neumann algebra generated by
{eV~1Q+sP)Y is B(H).

Extending the above formulation to a generic even-dimensional symplectic space V is
standard. This also allows us to use a more flexible formulation as follows. Given a regular
(2k) x (2k) real skew-symmetric matrix S = (5;;), let CCR(S) denote the von Neumann

algebra generated by {e¢V~10:X1 ¢V =1t2tXox) that satisfy the CCR

oV—TEXi V=11X, _ VT titiSis V=Tt Xi4, X;)

and call X = (Xj,..., Xoi) the canonical observables of the CCR(.S). This is done by just
finding a regular matrix 7" satisfying

01 _
10

0-1
T 1 10
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to obtain a suitable symplectic basis {e;, fi }1<i<r Which generates {Q;, P;}1<;<k such that
each X; belongs to an R-linear span of {Q;, P; }1<i<k-

Now we formally extend this formulation to a generic d x d real skew-symmetric matrix
S = (5;;) as follows. We first find a regular matrix 7 satisfying

-0 5

1
T'ST ==
2

0-1
10 |

to obtain a basis {€1,...,&,} U{e;, fi}1<i<k, where r + 2k = d. We then extend {é1,...,€,}
to {él, fi}lgigr to form a symplectic basis {él, fi}lgigr U {ei, fi}lﬁigk of a 2(7“ + k‘)-
dimensional symplectic space V', which defines a von Neumann algebra A, the canonical ob-
servables of which are denoted by {Qz, ]5@-}199 UA{Qi, Pi}1<i<k- Now we denote CCR(S)
to be the von Neumann subalgebra of A generated by

{eﬁ&Q"}lgigr L {eﬁtiQi,eﬁsiPi}lgigk_

In summary, given a possibly degenerate d x d real skew-symmetric matrix .S = (.5;;), let
CCR(S) denote the algebra generated by the observables X = (X7, ..., Xy ) that satisfy the
following Weyl form of the CCR

€¢j1§iX1r6¢j1anj = 6\/_71675176\/?1(£+77)iXi (E’ n € [Rd)

which is formally rewritten in the Heisenberg form
V-1

2
This formulation is useful in handling hybrid classical/quantum Gaussian states. Given a

possibly degenerate d x d real skew-symmetric matrix S = (5;;), a state ¢ on CCR(S) with
the canonical observables X = (X1,...,Xy) is called a quantum Gaussian state, denoted

¢ ~ N (1, %), if the characteristic function F¢{¢} := ¢(eV~1€'X1) takes the form

[Xi, X;] = Sij (1<, <d).

Felo} = eV TEm—36€V,

where € = (¢)L, € RY, = (;)L, € R%, and V = (V;;) is a d x d real symmetric matrix
such that the Hermitian matrix 3 := V + /=15 is positive semidefinite. When the canonical
observables X need to be specified, we also use the notation (X, @) ~ N (u,X).

When we discuss relationships between a quantum Gaussian state ¢ on a CCR and a state
on another algebra, we need to use the quasi-characteristic function [4]

T

B.1) & (H eﬁf?xi> = exp (Z (ﬁ&%m - ;5@5%%) -3 ) 6?6%%)
t=1

t=1 t=1 u=t+1

of a quantum Gaussian state, where (X, ) ~ N(u, %) and {&}7_; C R%. Note that (B.1) is
analytically continued to {&;}7_, C C%.
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The notion of quasi-characteristic function is exploited in discussing the quantum coun-
terpart of the weak convergence [3, 4, 5]. For each n € N, let p™ be a quantum state and

xm=(x" . ,Xc(ln)) be a list of observables on a finite dimensional Hilbert space (.
We say the sequence (X, p(™) converges in distribution to (X, $) ~ N(u, X), in symbols

(XM p™y s (X,¢) or XM o N(p, %)
if

nh—>Holo Trp(n) (H eﬁfin”w) —¢ (H 6@5;}&)
t=1

t=1
holds for any = € N and subset {&;}7_; of R%.

APPENDIX C: D-EXTENDIBILITY FOR I.I.LD. AND NON-LI.D. MODELS

This section is a continuation of Remark 2.3, demonstrating the D-extendibility of
i.i.d. models, the idea behind the terms ‘asymptotic D-invariance’ and ‘D-extension’, and
a proper asymptotic treatment of the model presented in Example 2.1. We also give an exam-
ple of a sequence of quantum statistical models that is non-i.i.d. but is, nevertheless, g-LAN
and D-extendible.

Given a quantum state p on a finite dimensional Hilbert space #, let D, : B(H) — B(H)
be Holevo’s commutation operator [2] with respect to p defined by

L,—R
D =+/—1Z22 P
P L,+R,’

where £, and R, are superoperators defined by
L,7 = pZ, RpZ = Zp, (Z € B(H)).
They are positive (selfadjoint) operators with respect to the Hilbert-Schmidt inner product
(A, B)ys := Tr A*B of B(H) because
(Z,LyZYus =Tr Z*pZ >0
and
(Z Ry Zyus =T 2" Zp=Tr ZpZ* >0

forall Z € B(H).
When p is not faithful, D, is regarded as a superoperator acting on the quotient space
B(H)/K,, where'

K, ={KeB(H): Kp=pK=0}.

Since D, sends selfadjoint operators to selfadjoint operators, it is also regarded as a superop-
erator on B, (H)/K ,, where Bg,(H) is the set of selfadjoint operators.

A subspace V of Bg,(H) is called D,-invariant if V// K , is D -invariant. Given two lists of
selfadjoint operators (X1,...,X;) and (L1,...,Lq), the former is called a D,-invariant ex-
tension of the latter if Spang { X;}/_, D Spang {L;}%_, and Spang { X;}/_, is D,-invariant.

The following theorem motivated us to adopt the term ‘asymptotic D-invariance’ in order
to describe an asymptotic version of D), -invariance.

'In [2], commutation operator Dy was defined on the space L? (p) of square-summable operators, which
is the completion of B(#) with respect to the pre-inner product (X,Y’), := % Trp(X*Y 4+ Y X™). Note that
(K,K)p=0if and only if Kp = pK = 0. The ‘if’ part is obvious, and the ‘only if” part is proved by observing
2(K,K)p="Tr(K\/p)"(K\p)+Tr(/pK)*(\/pK).



THEOREM C.1. Given a quantum statistical model S := {pg : 0 € © C R?} on a finite
dimensional Hilbert space H, let (L, ..., L) be its SLDs at 6y € ©, and let S™ := {p5"
e C IRd} be its i.i.d. extensions. Take a linearly independent Dy, -invariant extension
(X1,...,Xy) of (L1, .., Lq) satisfying Tr pg, X; =0 foralli=1,...,r, and let

1 n
AW = N D o e fh ) (1<i<d)
) \/ﬁ ? - ’
k=1
xM .= \}ﬁ d Vg X rh (1<i<r).
k=1

Then X (™ satisfies conditions (4) — (6) in Definition 2.2.
We prove Theorem C.1 in a series of lemmas.

LEMMA C.2. Given a quantum state p and a list of observables (X1, ..., Xy) on a finite

dimensional Hilbert space H, let A and J be d x d nonnegative matrices whose (i, j)th
entries are A;; = Tr\/pX;\/pX; and J;j = Tr pX; X;. Then, both A and J#J T are real
matrices and satisfy

A< J#JT,
where # denotes the operator geometric mean.
PROOF. A = A is obvious, and
JHIT = JH#J = J#J = J#T = J#J .

Now recall that the operator geometric mean P#() for positive operators P and () is char-

acterized as [6]
P#Q:max{Xzoz ()12,25) ZO}.

Since the Gram matrix for {\/pX1,...,\/pXa} U {X1y/p,..., X4,/p} with respect to the
Hilbert-Schmidt inner product is

J A

A JT )

the inequality A < J#. " immediately follows. U

LEMMA C.3. Let J=V ++/—1S5 be nonnegative matrix, and assume that V = Re J is
strictly positive. Then

9y 1/2
(C.1) J#J T =12 {[ + <V—1/2SV—1/2) } V12,

PROOF. By changing J into J + <1 for € > 0 and considering the limit € |, 0, it suffices to
treat the case when J > 0. Set

Sy =V28V"12 and X :=VV2{1 482}

V12,
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Then
-1
XJIX =X {VW(I + \/—ISV)Vl/Q} X
— VY2 I+ ST+ V=1Sy} V12
=V - V=1sy V2
=J".
This proves that X = J#.J . O

LEMMA C.4. Under the setting of Lemma C.2, assume further that V = Re J is strictly
positive. Then the following conditions are equivalent.

() A=J#JT

. d d
(i) Spang {/pXi + Xi\/p};_, D Spanc {\/pXi — Xi\/p},_,
(iii) Spang {pXi + Xip}i_, D Spanc {pX; — Xip}_,

(iv) Spang {X;}% | is D,-invariant.

(v) Spang {Xi}le is D,-invariant.

PROOF. We first prove that (i) < (ii). Letting J =V + /—15, the Gram matrix G for
{V/pXi+Xi /o U{\/pXi — Xi\/p}e, withrespect to the Hilbert-Schmidt inner product

1s written as
G—2 V+A =18\ (I I J A I 1T
“\v=1s v—4a) \u-1)\aJgt)\1-1)"

Condition (ii) is equivalent to saying that

rank G =rank (V + A4) = d.

J AN (VY2 0 I++v/=1Sy Ay vz oo

AJT) 0 vi2 Ay T—+/—1Sy 0o viz)
where Ay :=V Y24V "1/2 and Sy := V125V ~1/2 condition (ii) is further equivalent to
saying that the nonnegative matrix

(Hﬁb‘v[_j%sv) _ (é ?> N <\/j1VSv _/%S»

is of rank d, that is, the matrix

Since

v—=1Sy Ay
Ay —/—1Sy
has eigenvalues —1 and +1 each with multiplicity d. (Note that if (z,y) ' is an eigenvector

corresponding to the eigenvalue —1, then (y, —z)' is an eigenvector corresponding to the
eigenvalue +1.) This is equivalent to

V=ISy Ay )L A2 — 52 V=1(Sy Ay — AySy)\ (10
Ay —v=1Sy ) T \VEI(Sv Ay — Ay Sy) A2 - 82 “\or1)

)T

or

Ay = {1+ 533",
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Due to Lemma C.3, this is further equivalent to
A=V 14 82 PVI2 = T,

We next prove that (ii) <> (iii). Condition (ii) says that SpanC{Xi}gzl is invariant under

the action of
p, = VEr= VR
VL, +v/R,
while condition (iii) says that Spang{X;}%_, is invariant under the action of
_Lp—Ry
L, + R,

Since both D; and D are selfadjoint with respect to the Hilbert-Schmidt inner product, and
—1 <D;,Dy <1, continuous functional calculus shows that they are related as

_\/1+D2—\/1—D2 and Do — 2D,
VIEDs+1-D; T 14D%

Consequently, D;-invariance and Ds-invariance are equivalent.
Further, since D, = v/—1D>, we have (iii) <> (iv). Finally, (iv) < (v) is obvious. ]

2

Dy

PROOF OF THEOREM C.1. Firstly, condition (6) is obvious because (Xi,...,X,) is a
Dpeo -invariant extension of (L1, ..., Lg). Secondly, condition (4) follows from the quantum
central limit theorem for sums of i.i.d. observables [4] (cf., Lemma C.6 below), in that

®n
Pog

X3 N(0,D),

where YJ;; = Tr py, X; X;. Now we prove the key condition (5).
Let us regard H := B(#) as a Hilbert space endowed with the Hilbert-Schmidt inner
product. We introduce selfadjoint operators Ly, and Rx, on H fori=1,...,7 by

Lx, 7 :=X;Z, Rx, 2 :=7ZX;, (Z € B(H)).
Further, let 19 := ,/pg, be a reference vector in 7. Note that
(0, Lx,%0)us = Tr \/pg, (Xiv/pe,) = Tr pg, Xi =0,

and (Yo, R x,%0)us = 0 likewise. Now consider the operators on HE" defined by

(n)._ 1 - ®(k—1) Q(n—k)
= — I I
Ly T ;:1 ®Lx, ® ,

1 n
RY = N 18D g Ry @ [9H)
e \/ﬁ; ®Rx, ® :

and apply the quantum central limit theorem to the i.i.d. extension states (|2) (1g|)®", t

obtain
n n n n (Wo><¢o\)®" 2 A
€@ () (0, (34,

where

(0}

Aij = (Yo, Lx, Rx,Yo)us = Tr /po, Xi\/Po, X ;-
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Since Spang {X;};_; is D, -invariant, we see from Lemma C.4 that
A=#3T,
Further, for all £,7 € R?, we have

lim Tr p®"eV*1£in‘(n) p®"eV*1"iXi(")
n—r00 bo bo

1 n — i p(n) ip(n)
= lim Tr (|o) (o)) V(L) REY)

6 GHE]

where (C.2) is used in the second equality. This proves (5). ]

=exp

REMARK C.5. Several remarks on the D-extendibility of the one-dimensional pure state
model py treated in Example 2.1 are now in order. Let us first show that

1 n

AW = LS et g g g ek
Jn

k=1

is not asymptotically D-invariant at § = 0. To this end, it suffices to prove that A(™) does not
satisfy the identity

) 63)6)
lim Tr \/pgmeV 1™ [paney=tac _ \n) \JJ)\n

n—oo

for £, € R, where J := Tr pgo2 = 1 is the SLD Fisher information of the model at § = 0.
In fact, since Tr \/pg 05 +/po 0z = 0, we can compute in a quite similar way to the proof of
Theorem C.1 that

) (63)()
lim Tr pg@ne\/flgNm p?"e‘/jl"A(m:e 2\n 01 n .

n—o00

This proves the claim.

We next verify that A has a D-extension and therefore the model is D-extendible at
6 = 0. While this is a straightforward consequence of Theorem C.1, we demonstrate this by a
direct computation. Let (X1, X») := (04, 0y), which is a D, -invariant extension of the SLD
oy at pg, and let

)

m L ™ ke o r®(n—k) -
x™._ - N7 X, @1 : =1,2).
\/ﬁkzﬂ ®X; ® (i )

Then by a direct computation similar to the above identity, we have

_1 <§>T<E 0 )(f)
lim Tr y/pene"1eX" [penev=twx o *\n) \0ZT )\

n—oo
for £,1 € R?, where
1 —v-1
E:[TrpoXin]ij: <\/_—1 1 )
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Since T#X T =0, we see that X (™) is a D-extension of A (= an)) with F' = (1,0) .
Finally, we demonstrate a proper perspective on the local parameter i.i.d. model pf/" N As

shown in Example 2.1, the sequence M (™ = {p§™ (™) — p®"} of binary POVMs does not

have a binary POVM on the ‘classical’ Gaussian shift model N (h, 1) that gives the limiting

distribution Ly, = (efiw7 1-— efihQ). This fact nullifies the naive conjecture presented just
before Example 2.1, but it does not rule out the existence of a POVM on another CCR
algebra that gives the above limiting distribution L. In fact, Theorem 2.4 tells us that M ()
has a limiting binary POVM M (>) = { M(>)(0), M (>*)(1)} on the ‘quantum’ Gaussian shift

model
¢n~ N((ReXF)h,%) = N <<g> , <¢1?1 F))

that satisfies ¢y, (M (°)(0)) = L£,(0) for every h € R. To be specific, let H(>) be a separable
Hilbert space that irreducibly represents the CCR(Im X)), and let pgb *) be the density operator
of the quantum Gaussian state ¢h on (> Then, from the noncommutative Parseval identity

[2], we see that the POVM M (%) = {p{>) 1) — plooly gy

det( ImE
Ty M0 \/ P FM ) 0)) e

== e~ V-1Eh=3lEl? | ¢ ;IIEHng_e i
|R2
for every h € R.

Let us proceed to the issue of handling non-i.i.d. quantum statistical models. We start with
a slightly generalized version of the quantum central limit theorem.

LEMMA C.6 (Quantum central limit theorem for sums of non-i.i.d. observables). For
each k € N, let H*%) be a finite dimensional Hilbert space, and let o®) and A®) =

(Agk), . .,Aﬁk)) be a quantum state and a list of observables on H"¥). Assume thar A%)
are zero-mean:

Tra(k)Al(k) =0 (1<i<r),
uniformly bounded:

sup
kEN,1<i<r

AW H < 00,
and there is an r X r nonnegative matrix Y such that

lim Tra(k)Ag.k)Agk) =3 (1<i,j<n).

n—oo

Then under the tensor product states:

exhibit
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PROOF. We need only check the convergence of quasi-characteristic functions

lim Trp” Hef 6x ‘””—exp{—Za xg; - Z Zszgt}

t=1 s=t+1

forall 7 € N and {ft _1 C R". Observe

T
V=T ¢i g (k)
{Trg(k)H€ ﬁgtAi }

t=1

I
~+
s L

k=1

Z Hmt < - l(k)>mt

ZTt 1

1{ (a3 ) )

where Z = {0} UN, EZ(?) ="Tr U(k)Ag»k)AZ(»k), and

\/jl mi+- +mT
B (n) = Z ( (m14>— s k)H my! (ft k)>

my+-+mr>3

I
=

i
I

I
’:]:

k

Note that, since {Agk) }i i are assumed to be uniformly bounded,

i-0(st)

Consequently, we can further evaluate the quasi-characteristic function as

T
log {Tr P T eV TEXE” }

t=1

—Zlog{1—< thTZ “LXT: ZT: gz(k)&) +O<n\1/ﬁ>}

t=1 s=t+1

n 1 1 T - (k) T T - (k) 1
=Y 5= Wa+ IR +O<)}-
S {t(fxamtary 3 avve) o (o

Taking the limit n — oo, we have

nli_)rglolog{Trp H VoIgx (n)} Z@, Eft—z Z 5 &t

t=1 t=1 s=t+1

max C( )
1<k<n

This proves the claim. O

We are now ready to give an example of a sequence of quantum statistical models that is
non-i.i.d. but is, nevertheless, q-LAN and D-extendible.
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EXAMPLE C.7. Given a sequence {oék) :0 € © C R4} .¢p of quantum statistical models

on a fixed finite dimensional Hilbert space H, let us consider their tensor products on H®"
defined by

n = k
pé )= ®aé ),
k=1
(00)

If aék) converges to a model o, in a certain mode of convergence as k — oo, it is ex-
pected that the model pén) will be g-LAN and D-extendible, because it is almost i.i.d. in
the asymptotic limit. In what follows, we demonstrate a sufficient condition for realizing this
scenario.

Assume that, for some 6, € O,
: (k) _ _(o0)
(C.3) lim oy, = aejo

and the SLDs {LZ(.k) d | of aék) at 0y € © is convergent:

(C.4) lim L =1 (i=1,...,4).

k—o00 i
(n) s
Then p, " with
1 n
A — = N7 70k-1) o 1F) o 10(n—k)
i ﬁ; ®L"®

is D-extendible at 8.
Assume further that the square-root likelihood ratios ng) = R(Jéfl ml aéf)) around 6y
satisfy

1 .
(C.5) sup ‘ RW —1— ' LM = o(|In|))
kENU{oo} 2
and
(C.6) sup <1 ~Tray) Rgf)z) = o(||h||?).
keNU{co}

In the left-hand side of (C.5), the norm || - || stands for the operator norm. Then pén) is g-LAN
at 0.

PROOF. Let D(®) = (Dgoo),...,Dfnoo)) be a D, -invariant extension of L(®) =
(Lgoo), e, LEIOO)) such that Dioo) = LZ(OO) fori=1,...,d. Accordingly, we define, for each

k € N, a set of observables D(*) = (ng), . ,Dﬁk)) by

w _ [LY (1<i<d)
l D — (Tray /DN (d+1<i<r)’
It then follows from (C.3) and (C.4) that
Egg V= Tr Ué’:)Dy('k)Dz(k)a AE}“) = Tr oéf)Dg('k) Uéf)D(’“)
for k € NU {oo} satisfy

lim ©*) = x() lim A®) = A(),

k—o00 k—o00
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Moreover, since D() ig D, () -invariant, we see from Lemma C.4 that Ale0) — Z(”)#E(O")T.
Let X(™) = (XYL), . ,X,gn)), where

(n) 1 - ®(k—1) (k) ®(n—k)
X' = I D; I .
; ﬁ; ®D;” ®

In order to prove the D-extendibility, it suffices to verify the following:

(1) There is an r x d matrix F' satisfying A,E:n) = F,ﬁX i(n) for all n.

(n)
Gi) X "8 N (0, (),

(iii) Forall £,m € R",

(g) ! ( ES) n(ee) 3™ (¢
: [ () vTex™ [ () JTIpx™ _ n) \BEgn)  xe)’ n)
nlg)go Try/py ‘e Py, € =e

Firstly, by definition of D), (i) is satisfied by the following matrix

r=(4).

where I is the d x d identity matrix and O is the (7 — d) x d zero matrix. We next show (ii)
and (iii) simultaneously by modifying the proof of Theorem C.1. Let us regard H:=B (H) as
a Hilbert space endowed with the Hilbert-Schmidt inner product (A, B)yq := Tr A*B, and
let us introduce, for each X € B(H), linear operators £x and Rx (1 <i <) on H by

=

LxZ=XZ,  RxZ=2X, (Z€BH)).

Further, let Qp(()k) = aéf) € 7 and introduce operators on HEn by

. 1 S sk o & [8(—K)
Ly’ \/ﬁ; ®£Xf ) ® ;

1 - k—1 n—k
2 TV eRyw @17,
k=1

Then, applying the quantum central limit theorem (Lemma C.6) to the product states

A =& [ (w®)
k=1

Rg?t) =

i

we obtain

n n pe) E(OO) E(Oo) E(OO)T

This proves (ii) and (iii).
We next prove that, with additional assumptions (C.5) and (C.6), the model pén) is -LAN
at 0. Let Ji(f) =Tr aéf)Lg.k)Lf.k) for k € NU {oco}. Since

Py

AP N(0, J0))
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has been shown in (ii) of the proof of D-extendibility, it suffices to prove that

1(iA(M) 11T 7(c0 _ 2
e i o) (0 ) gt
for R;zn) = R(pg;zrh NG | péz)). The sequence appeared in the left-hand side of (C.7) is

rewritten as
(C.8) Tr p(n) RiAS ThTJep +Tr p(n)R(”) — 9ReTr p(n)R(n) l( "'AE;")*éhTJ(‘X‘)h) )
In order to prove (C.7), therefore, it suffices to verify the following:

(iv) hm Tr p( ") hAT =R Oh g

) lim TepyV Ry =1.
(vi) hm Trp(n)R( )e (WA =3hTI<R) 1.
Firstly, because of (C.4), the SLDs {L(k)}kenxl,lgigd are uniformly bounded, and thus

i L pif®
Trp(go) AT HTraak) vl
k=1

- <1+1hTJ<k>h+0<1 ))
Pt 2n n\/n

") — 0 was used, and the remainder term O(1/n+/n) is uniform

In the second line, Tr aé];)LE
in k. Consequently,

() Al _ ) - 1+ 1

:JL%Z( 2o (7))

1
S A
R S

proving (iv).
Secondly, taking the logarithm of

k=1

we have

log Tr ,09 Z log Tr aek) R}(Lk/)f

2{< )

S (1)}
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In the last equality, we used (C.6). Since the last line converges to 0 as n — oo, we have (v).
In order to prove (vi), we need to show that

1. .
BY(h) =1+ 0L - RYP

satisfies
1
(C.9) Troy) B® (h/v/n) = J®h o (n)
where the remainder term o(1/n) is uniform in k. This is shown by observing the identity
2
~Tro® R ® L pin® _ g
1 Rh/\f —Tro <I+ 2\/5}1 L; B (h/\/ﬁ)>

1
—%hTJ(’“)h Trcr B® (h/vn)’

o L B0/ Vi)

k h!

+2Troy) B® (h/v/n) + NG
1 1

- _%hTJ(k)h +2Tro) B (h/v/n) + o <n> :

Here, (C.5) was used in the last equality. Since the above quantity is of order o(1/n) due to
(C.6), the equality (C.9) is proved.
Now we are ready to prove (vi), i.e.,

17T J(oo _1pT g iL{®
Trpé )R() F(WAT =TI R) = hT )hHTrae jo)f(#fhj:k =1 (n— o).
k=1

We have from (C.5) and (C.9) that

(k) p(k) i
Tro, Rh/\ﬁe

=Tray (1+ 2thL(k (h/f))

Lotk oL (i 0)2 1
I+ —niL™ 4+ — (pir! -
><<+2\/ﬁh ) +8n<h Z>+o -

:1+8ihTJ<k>h+ —hTI®h - Troy B ’f>(h/f)+o<1>
n

— 14+ ENRSTON +o <1> .
4n n

Therefore,
(0 L i S Lrgwn (L
nh_{lgologHTr Rh/\f nli}n(}o;log <1—|—4nh JY¥h4o -
1 1
= lim <hTJ(k)h—|—o(>>
n—o00 4n n
k=1
_ Ly

4
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or equivalently,
— 1 (n) oo
lim Trpé )R( )osh' A _ G3hTIh
n—oo

This proves (vi), and the proof of (C.7) is complete. O

APPENDIX D: PROOFS OF LEMMAS IN SECTION 3

In this section, we give detailed proofs of lemmas presented in Section 3.
D.1. Proof of Lemma 3.1.

PROOF. Let p be the density operator of N (0, .J) on the irreducible representation Hilbert
space ‘H. Then p is pure if and only if Tr p? = 1. On the other hand, due to the noncommuta-
tive Parseval identity [2

/det det S . det S \/ \/ det S
—-£'VE _
/ deFelell” =\ = /[R dee \/ etV Vdetv

As a consequence, p is pure if and only if det V =det S. O

D.2. Proof of Corollary 3.2.

PROOF. We first remark that the dimension d of the matrix .J is even because the skew-
symmetric matrix .S = Im J is invertible. Now we set

g 7 J#JT
T\J#JT gt )

Then

det(Im J) = det (g ;T> = (det S)%.

On the other hand, J is rewritten as
joL(I I V+J#JT /=18 I1I
I-1 V=18 V—J#JT ) \I-1)"
Therefore, setting Sy := V_I/QSV_I/Q, we have

V4 J#IT 0
0 V —J#JT

= det(V 4+ J#J ) det(V — J#JT)

= (det V)% det (I+ \/I+S‘2,> det (I— ,/I+S§)

= (det V)2 det(—S%)
= (det S)%

det(Re J) = det <

Here we used Lemma C.3 in the third equality. It then follows from Lemma 3.1 that N (0, J )
is a pure state. O



SUPPLEMENTARY MATERIAL TO EFFICIENCY OF ESTIMATORS FOR Q-LAN MODELS 19
D.3. Proof of Lemma 3.3.

PROOF. We first verify that the subspace H = Spanc{%(§)}¢ep is dense in H. Since @)
is a cyclic vector, the subspace Spang{1/(€)}¢cga is dense in . Further, given & € R%, take

an arbitrary sequence £ € D that is convergent to £. Then
2
Tim |l(€) — w(e™)|| =22 lim Re (1(€), (™)
—9_ ; —/—1€7 8¢ —V=1(6—¢™
=2 Znh_)HgORe { <w (€)X ¢>}
=0.

This proves that # is dense in H.
We next introduce a sesquilinear functional F : HxH—C by

Zazw ijw ) 1=ZZGH¢ ).

i=1 j=1
We need to verify that F' is well-defined. Let
Y aiv(E) =) aip(E?) and Y biw(nP) = tun).
i=1 i=1 j=1 j=1

be different representations of the same vectors in . The well-definedness of F is proved
by showing the following series of equalities:

EXID 3 WIECURCINS 3) prrs )= 35 a0,

=1 j=1 =1 j=1 =1 j=1

The first equality in (D.1) is equivalent to
> b€ D) =y ey =0, (W e D),
j=1 =1

which is further equivalent to the following proposition:

r

02) D avE®) =0 = > ae®e®)=0, (¢ eD).
k=1

k=1
Since 0 < ¢ < ¢y, the antecedent of the above proposition (D.2) implies that for any r € N,
{5(”}09@ C D, and {Ci}Ogigr C C with cp =0,

2
'
O<ZZC7,C]<10 <ZZCzC]SOI )): chd)(g(k)) =0.
i=0 j=0 =0 j=0 k=0
This shows that the vector (co, c1,. .., c.) " belongs to the kernel of the positive-semidefinite

matrix

PG

0<i,j<r

As a consequence,

D (€56 W) =3 " e (¢ @3¢ =0,
k=1 k=0
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proving the proposition (D.2). The second equality in (D.1) is proved in the same way.

Now, fix an element ¢ € H arbitrarily. Then the map ¢; — F(¢1,¢0) is a bounded
conjugate-linear functional on a dense subset H of #, so that it is continuously extended
to the totality of #, and there is a vector gbg € ‘H such that

<¢17¢(€> :F(¢17¢0)'

Since the map ¢g — qbg is a bounded linear transformation on 7, it is continuously extended
to H, and there is a bounded operator A satisfying ¢ = Agy for all ¢y € H. In summary,

F(¢1,¢0) = (¢1, Ado).

Since F'(¢p1,p0) = F (¢, ¢1), the operator A is selfadjoint. Further, since 0 < ¢ < ¢, we
see that 0 < A < I. Finally, since

p(&n) = F((£),1(n) = (&), Av(n))

on D x D, it is continuously extended to R? x R<. O
D.4. Proof of Lemma 3.4.

PROOF. In view of (8), it suffices to show that V' (¢) and eV =IEXei+GXs) commute for
any (. € R% and ¢, € R%. For any &, 1. € R%, &g>Mg € R, and &4, 7, € R,

({60 s a) eV TR QXY () VIR ARy (1 g ) )

— VI Sabat G Sae) (4 (£0 + oy Egy a4 Ca)y V()Y (e + CorNgs Tla + Ca))

= 6\/?1(_4“ SabatCa Sana)‘ﬂ(&c + C&gq,fa + Ca; Ne + CCa N> Ta + Ca)

= e\/jl(ica Sabatla Sana)ei\/jl(gﬂr(a) Sa(na+<a)§0(£c — e, éqa ga — Na; 0, Ng> 0)

./ T
=€ V-l Sana@(gc - 770:§q7§a - 77a;0777q70)
Since the last line is independent of (. and (,, the proof is complete. O
D.S. Proof of Lemma 3.5.
PROOF. Let LY, . (R) denote the set of real-valued bounded Borel functions on R that are
continuous almost everywhere. To prove Lemma 3.5, it suffices to verify that

(D.3) lim Tr p(”)e\/jlfixfn) f(CiXi("))A(”)e\/?lnin")

n—oo

= Ty (o) eV TIEX £ (i x () A(00) v/~ X

for all £,1,( € R? and f € L, . (R). In fact, since f(CiXZ»("))A(”) are also uniformly

c.a.e.
bounded, (11) can be derived by applying (D.3) and its complex conjugate recursively.
We first show that (10) can be extended to all § € RY. For any € > 0 and ¢ € R, there
exists a £ € Q% such that

2

Tr p() ‘ <€ﬁaixs°°> _ eﬁéin‘”)) " < e
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Then, by using the Schwarz inequality,

lim sup | Tr p™) (ev—lfin”) _ e\/—léiX}"”) A /T X ‘2
n—oo
) - 2 v
< limsup Tr P(n) (eﬁ&X,i(") — eJTI&le">>* % Trp(") A(n)e\/—ilani(") 2
n—oo
2

<ML ’ (eﬁﬁ"Xim’ - eﬁéiXim)y

< M2,
where M :=sup,, || A" ||. Similarly, we have

‘Trp(oo) (eﬁe‘xi“” _ eﬁgi)qm) 4(00) V=T X ) 2 - M

It then follows from Lemma E.1 that (10) holds for all £ € R? and 5 € Q?. By applying a
similar argument to 7, we see that (10) holds for all £,7 € R%.
We next show that

(D.4) lim Tr p(")eﬁfixf")e\/lein")A(n)e\/jniXi(m

n—oo

= Ty pl09) eV =TE X oV =IEXI™ y(00) V=T X[

for all £,7,¢ € R In fact, letting S = Im .J,

lim sup | Tr p™) <eﬁ51x5”)eﬁ<’x5m - eﬁﬁsceﬁ(&o%f")) A Ty X |
n—oo
< limsup Tr p™ (eﬁCin%ﬁéXﬁ) - eﬁﬁsceﬁgﬂwi””)* ’
n—o0
« Ty (™) | A v =T X |
2

S M2 Tr p(OO) ‘ (e\/jC'inx) e\/_ilg'iXi(DO) _ e\/jlgTSCe\/jl(g'f'C)iX;w))*

=0.
By using this, (D.4) is proved as follows.
lim Tr p(M eV ~1E X" oV=TEX J () v/ =T X[

n—oo

= VIS i Ty p(”)eﬁ(&oixﬂwA(”)e\/jﬂiXi”)

n—o0

frd e\/?lfTSC TI. p(oo)e\/jl(£+<)lem)A(Oo)e\/jlnlem)
— Ty pl09) oV TTE X VEIEX(™ f(00) (V=T X{

In the second equality, (10) is used.
Now we are ready to prove (D.3). Let Z(™ := ¢i X" for each n € NU {oo} and ¢ € R?,
According to (D.4), for any f € Spanc{eﬁm}tem, we have

(D.5) lim Tr pMeVTIEX £ 7)) A() V=T X[

= T pl2) VTN f(7(50) A0V TT0X



22

Our goal is to prove this identity for all f € L2, . (R).

c.a.e.
Let
pén) — e—ﬁgixf”p(n)eﬁgix;")’
and let u(”) be the classical probability measure on R that has the characteristic function

n n) =Ttz
goé )(t) = Ii"pé Jev=1tZ™
It then follows from (9) that, for all ¢t € R,

lim goén) (t) = lim Trp(”)e‘/jlgixi(me‘/jltCiXime_\/?lfiX;n)
n—o0

n—o0

— Ty plo0) eV TIE X V=T X /= TE X

— ¢ 2VTICTSE Ty 5(00) oV ETECX

T T 7
— exp [\/jt (g h—92¢ Sg) -5¢ JC] .
This shows that that
u) N (CTh—2¢T8¢, ¢ IC).

Let p¢ be the density function of the classical Gaussian distribution NV (¢ Th—2¢T8¢, ¢TJ¢ ),
and let ¢¢ := ,/P¢ € L*(R). Then, the portmanteau lemma shows that, for all f € LS9 (R),
lim Trp{" f(20) = tim [ f(z)pg"” (dz) = / F(@)pe(2)dz, = (e, foe)

where

(1,2 = /[R D@z ($10n € LA(R)).

Now recall that

——SOT [ ~Ttw o
Spang {eﬁt }teR:L (R).

Thus, foralle > 0and f € LEO;L (R), there exists a real-valued function f S Span@{eﬁm}tena
such that

I(f = Fvell® = (e, (f — )*e) <e.

Then by using the Schwarz inequality,

—Teix (™ n Z0 o (n n) /I XM
Tr p(W) eV —TE' X {f(z< N — f(z¢ >)}A( ) V=T X

2
(D.6) lim sup ’

n—oo
. 2 () (2
< limsupTrp(") {f(Z(”)) — f(Z(”))} x Tr p(™) A(m) V=T X"
n—oo

< Mg, (f = [)*e)

< M?3.
Likewise,

(oo - (oo 2

(D.7) Trp(oo)eﬁgle ) {f(Z(OO)) - f(Z(OO))} AR VI XET o pr2g

Now that (D.5) (D.6) (D.7) have been verified, the identity (D.3) is an immediate consequence
of Lemma E.1. ]
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D.6. Proof of Lemma 3.6. We begln with a brief review of the uniform integrability.
Given sequences of quantum states {p("™ },,c)y and observables { B },,c\y on Hilbert spaces
{H™}, en, we say that B™) is uniformly integrable with respect to p{™ if for all € > 0,
there exists L > 0 that satisfies

(D.8) Tr p(™)

B™ —hL(B(”))‘ <e

for all n. Here, the function Ay, is defined by

x (Je] <L)
D.9 hr(x)= .
(D.9) L(z) {0 (I > L)
When Tr p(") |B (")| < oo for all n € N, the uniform integrability is equivalent to saying that
limsup Tr p™ | B — b (BM)| < e.
n—oo

Note that (D.8) implies Tr p(™ |B (”)| < L + ¢ for all n. In other words, uniform integrability
entails uniform boundedness of Tr p(™ |B(™)].

PROOF OF LEMMA 3.6. Set

A ::{ﬁfs@;Xf”’ } ">{Hgt ix ™) } .
s=2

Then A(™ is uniformly bounded, i.e., there is an M > 0 such that ||A™| < M for all n €
N U {oo}. Further, set

). gi‘Xi(n), Zn) . _ nzl'Xi(n)7 y® .—y® o&”), Zn) .— zn) oé”)_

It then follows from the proof of Lemma 3.5 that, for any s,¢ € R,

lim Tr () eV =IsY ) J(0) VT2 iy (00) (V/=T8Y ) f(00) o/ =TeZ1)

n—oo
and therefore
lim Tr p(”)e*/jlsy(")fl(")e‘/?”Z(") = Tr p() V=LY f(00) V=121

n—0o0

We can further deduce from Lemma 3.5 that, for any L > 0,
D.10) i Tept™ fr,(Y ) A (Z20)) = Tr p>) f1,(v ) A, (205,

where f7 := hro f1 and g1, := hp o g; are bounded functlons Our goal is to prove that f7, and
gz, in (D.10) can be replaced with f; and g; if both f1(Y ()2 and gl(Z (7))2 are uniformly
integrable under p(™).

As stated in the preliminary remark of this subsection, there exists a K > 0 that fulfills

for all n € NU {oo}. In addition, for any € > 0, there exists an L > 0 such that

(D.12) max{Trp (fl(Y<")—fL(Y(">))2,Trp(”)(gl(Z("))—gL(Z("))>2}<€
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for all n € NU {oo}. Observe that, for all n € N,

(D.13) |Trp™) () A0 gy (Z09) = T plo) (v ) A g, (20|

< [T ™) (T ) A gy (Z00) T o) (700 A g1 (20|

+ |Tr p(”)fL(?(”))A(”)gL(Z(")) _ Trp(OO)fL(y(OO))A(OO)gL(Z(OO))‘

_l’_

T %) 1y (¥ 00) A g (25)) = T plo) (v ) A¥) gy (29

The second line in (D.13) is evaluated as follows. For any € > 0, take L > 0 satisfying (D.12).
Then by using (D.11),

T o) fu (V) A gy (Z20) = T pl0) f1.(F00) A gy (20
<[ o™ { (700 — (7} A gy (200)|

[T (PN A {1 (20) g2 }]

(D.14)

~ 2
(”)91(2("))’

~ ~ 2
< \/TI“P(”) {fl(Y(”)) - fL(Y(”))} x Tr p()

\/Trp
<2MVeK.

The last line in (D.13) is evaluated just by setting n = oo in (D.14). Finally, the third line in
(D.13) is evaluated as follows: because of (D.10), for any £ > 0, there is an N € N such that
n > N implies

(@00 A0) [ T plr) { o (200 - gy (200))

T p™) fo (V) A gy (Z0) = T pl) (v ) A g, (209) | <.

Putting these evaluations together, we have

Trpt™ fr (Y M)A gy (2 ))—Tl"p(oo)fl(Y(oo))A(“)gl(Z(oo>)‘<4M\FK+5.

Since € > 0 is arbitrary, the proof is complete. O
D.7. Proof of Corollary 3.7.

PROOF. The first assertion (12) immediately follows from the conventional quantum Le
Cam third lemma [5, Corollary 7.5]. We focus our attention on the proof of (13) and (14).

The basic observation for the proof of (13) is that the square-root likelihood ratio R,(L") is
an (unbounded) function of X () Therefore, in order to invoke the extended version of the
sandwiched Lévy-Cramér continuity theorem (Lemma 3.6), we need to show the uniform
integrability. As a matter of fact, uniform integrability of (R;Ln) +or2 (pé:)))2 under pé,:) has
been shown in [5, Theorem 6.2]. For the sake of the reader’s convenience, however, we give

a simplified proof.
Let 0(®) be the density operator of N(0,.J) and let {Agm)}le be the corresponding

canonical observables. Since the model pén) is g-LAN at 6, for any € > 0, there exists an
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L > 0 such that

limsup Tr pe

m su (Rh +ora(py! ))>2 —hyp, <{R§l") + om(péﬁf))}Q)}

< hgiso%p {1 rpe ({Rﬁl”) + o1z (Pé?)}Q) }
{

i A (1) iA(n)  (n)
=limsup{1— Trpo hL (ehAi —3hT Jhtop(h'A; ,peo)>}

n—oo
=1-Tro>®n, (ehmgw)*%m]h>
<eE.

Here, the function hj, is defined by (D.9), and the last equality is guaranteed by the quantum
Lévy-Cramér continuity theorem (cf., Lemma 3.5 with A = J("))_ This proves that (Rgn) +

orz (pén)))2 is uniformly integrable
Now we prove (13). Since {X }1<k<r is a D-extension of {A }1<1<d,
AW — (0
It then follows from the definition of g-LAN that, for all h € R4,

R™ —exp{2 <(Fh)1Xi( ) _ hTJh+o< )>} or= ("),

where o( ") = oD((Fh)iXi(n), péz)), and J = F'$F. Since (R;Ln) +or2 (péZ)))Q is uniformly
(n)

integrable for all / under p,, *, we can conclude from the extended version of the sandwiched
Lévy-Cramér continuity theorem (Lemma 3.6) that

: (n) p(1) 4(n) p(n)
nh_)I]gOTrpeo Ry AR,
_ li_)m Trpg:)eé((Fhl)in")féthJhlJroEl’l))A( )5 ((Fha)' X{™ =] Jhatoy))
Ty p((]oo)e%((Fhl)iXi(‘x’)f%thJhl)A(oo)eé((th)inC’C)f%h;JhQ)
= Trp{ R A R,

Finally, (14) immediately follows from (13) and the fact that the singular parts asymptoti-
cally vanish [5, Corollary 7.5], in that,

: (n) (n) (n) p(n)| _ 1 (n) p(n)
Jim T (ofr) = BB = i {1 R <0
The proof is complete. 0

D.8. Proof of Lemma 3.8.

PROOF. The Hilbert-Schmidt norm under consideration is calculated as

2
WENOW I )3/ pr) — V=1 I W (& 4 )y fp)
HS

= Tr [ oW () W (€)W ()W (1) )
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+Tr \/ﬁwm) (E+m) W (E+n)y/p™
~2Re {eﬁm T p WO ) W W €+ 1)y fpto) }

—92_92Re {eﬁwn T p WO (LW ()W) (¢ n)} '
Letting W (€) := eV~ 1'% we see from the assumption (X (™, p()) ~ N(0,J) that
li_>m Tr p(")W(”)(—n)W(n)(—f)W(n) (&+mn)
=Te pOW (=)W (=)W (& + 1)
= VI O S Ty O (o — )W (E 4+ 1)
— e\/jlnTSE’

where p(oo) is the density operator of N (0, .J). Since S is real skew-symmetric,

2
i HW(n) WM ()y/ pm) — V71T W) (e 4 )y [ pl)

n—oo

=2—-2Re {eﬁgsn . eﬁ”Tsf} =0.

HS

This proves the claim. O

APPENDIX E: PROOFS OF THEOREMS IN SECTION 5
In this section, we give detailed proofs of theorems presented in Section 5.

E.1. Chain of convergence. We begin with the following Lemma, which is elementary
but is useful in later applications.

LEMMA E.1 (Chain of convergence). Let X and Y be sets and (Z,d) be a metric space.
Suppose that sequences of functions F,,: X — Z and G, Y — Z for n € NU {oo} satisfy
the following conditions:

ILm F,(z) = Foo(x), (Vz e X),
and for all e > 0 and y € Y, there exists x € X satisfying
limsupd (G(y), Fu(2) <& and d(Gooly), Foo()) <.

n—o0

Then
lim Gn(y) = Goo(y), (VyeY).

n—oo

PROOF. Take € > 0 and y € Y arbitrarily. Then, there exist z € X and /N € N such that
d(Fp(z),Fx(z))<e and d(Gn(y),Fn(x)) <2e
for all n > N, and
d(Goo(y), Foolz)) <e.
Thus
d(Gn(y), G (y)) < d(Gn(y), Fu(2)) + d (Fn(z), Foo(2)) + d (Foo(2), G (y)) <4,

proving the claim. O
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E.2. Proof of Lemma 5.1.

PROOF. Let L be the classical distribution obtained by applying the shifted POVM M — h
to ¢y, that is, L(B) := ¢, ((M — h)(B)), which is independent of i by assumption. Let m
be the first moment of £. Then, foreachi=1,...,d,

/ (2 — W)ign((M —m)(dz)) = / (z — m — h)l S(M(dx))
[Rd

Re+m

_ / (y —m) 6 (M — h)(dy))
Ri+m—h

— [ = m)ciay =o.
Rd

This implies that M — m is an unbiased estimator for the parameter h of ¢j,. It then follows
from the quantum Cramér-Rao type inequality [2] that

) <Gy [z = 1= hPon(M — m)(dz)

ey (y— m)i(y — m) én((M — h)(dy)
Ré+m—h

=Gy {/ y'y' L(dy) — mimj} :
[Rd
As a consequence,

Gij /[R (= )" (x = h)’ ¢n(M(dx)) = Gj; / ih Yy o (M — ) (dy)) > i,

proving the claim. 0

Note that this result is closely related to what Holevo established in [2] within the frame-
work of group covariant measurement, where the achievability of the lower bound was also
discussed.

E.3. Proof of Theorem 5.2.

PROOF. By applying the representation Theorem 2.4 to the sequence
N = MWk = /n(M™ — 6)

of POVMs that is independent of h € R?, we see that there exists a POVM N on on ~
N((ReT)h,X) such that

h
(VO o) & (Nen) (YR ERY),
Let £;, denote the classical probability distribution of outcomes of N applied to ¢y. Then,
by construction, for any B € B(R?) that satisfies L,(0B) =0,

Lp(B) = ¢n(N(B))

= lim Trp(:) MMM B — h)

nvao L Pooth/ym

= L(B—h).
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Here, £ is the limit distribution of M (™" under p(?) which is independent of i by

fo+h/\/n’
regularity. As a consequence,

on((N = 1)(B)) = 6(N(B + ) = Ly(B+h) = L(B).

Since the last side is independent of h, N is equivalent in law. Thus, Lemma 5.1 yields
[ Guslo = 1o~ hp on(V (o)) = 7,
[Rd
which implies (25), and the portmanteau lemma proves (26). O

E.4. Proof of Theorem 5.3.

PROOF. Let {X;}!_, be the canonical observables of ¢y, ~ N((ReT)h,X), and let
(E.1) Yaii= (KX,

where K, is the » x d matrix K that achieves the minimum in the definition (7) of cgel’ ).

Thus,
cge”):TrGReZ*—i-Tr VGIm Z, VG| =Tr GV,

where
Z,=K]YK,
is the complex d x d matrix whose (4, j)th entry is ¢o(Y ;Y5;), and
V,i=ReZ,+VG  |VGm 2z VG| VG,

is areal d x d matrix. Note that V, > Z,, since

V., >ReZ, +V-IVG VGImZ VGVG ' =7,

By analogy to (E.1), we introduce a sequence of transformed observables

yr

v ). (K*)gX](n)
on H(™).

Let us consider another quantum Gaussian state qg ~ N (0, Z*) with Z* =V, — Z, and
canonical observables Y = (Y1,...,Yy) on an ancillary Hilbert space H. Accordingly, for
each n € N, we introduce a quantum state ai”) and observables 17*(”) = (f/(n) . }7*(3)) on

an ancillary Hilbert space H™) satisfying o
(E2) W™ o™y N(0, Z,).
A key observation is that the series of observables?
v —vWersrev?  (1<i<a
on the enlarged Hilbert spaces H™ © H (™) exhibits

—(n n n h
(E.3) (" ol ) & N (h, V).

)
+h/ym ® O

2This construction was inspired by the optical heterodyne measurement [2].
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This can be verified by calculating the limit of the quasi-characteristic function

(E4)  Tr <p§0>+h/f®a )H VTGS

T
_ \/7 Jx(") ;Y/
—{Trpeo+h/fH S } {TM* H }

where {&;}]_, C R%. In fact, since
n h
(XM, 90 ) > N((Re)h, ),

which follows from the quantum Le Cam third lemma (Corollary 3.7), the first factor in the
second line of (E.4) has the limit

T

(E.5) exp [Z{ﬁgg( O (Rer)jph* —

t=1

1

TSR

SIS TIRTY

t=1 u=r+1

T
= exp [Z{ﬁﬁ%hj ftft } Z Z ny

t=1 t=1 u=r+1

Here, the equalities K, (Rer) =1 and K YK, = Z, have been used. On the other hand,
due to the assumption (E.2), the second factor in the second line of (E.4) has the limit

i{—% } Z Z &el(z

t=1 t=1 u=r+1

Since Z, + Z, = V,, (E.4), (E.5), and (E.6) yield

(E.6) exp

T
Jm T (47 04 ) [T 6
t=1

T
=exp [Z{\/jlg&ijhj ftft (Vi) } Z Z ftfj (Vi)ji

t=1 t=1 u=r+1

This is nothing but the quasi-characteristic function of the classical Gaussian shift model
N (h,V,), proving (E.3).
We next construct a sequence Mf")

of POVMs by means of functional calculus for }7*(").

Since {1_/*(?) le do not in general commute, we need some elaboration. For each positive
integer m € N, define an indicator function S(™ : R — {0,1} by

. 1, ifze _L’ 3
2m 2"’ 07 lf x ¢ ( 2m’ Qm]

Then, for each x € R and n € N, the map enjoys the identity

(E.7) > gim <ac — k) =1.

kez
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For each pair (n,m) of positive integers, define
d d *
™ () = (H g(m) <17*(;1) _ w)) (H g(m) (}7*(?) _ w)) 7
i=1 i=1

w:(wl,...,wd)EQ(m)::{(%,... j:i)|zl, szZ}.

where

It then follows from (E.7) that M*(n’m) is a POVM on H(™ @ H whose outcomes take values
on Q™).

Note that, due to (E.3) and the quantum Lévy-Cramér continuity theorem (cf., Lemma 3.5
with A = J(") as well as the fact that the set of discontinuity points of S(") has Lebesgue
measure zero, the following equality holds:

T (péﬂh/f@"(n)) M (w) _/ HS(m i —wi)d

where pp,(x) denotes the probability density function of N (h, V*). Note also that for each
t = (t;) € R, the indicator function x;(z) := 1(—oo,4 () fulfills the following equality

d

lim Z Xt(w)HS(m)(x —w;) = xt(x)

m—0o0
for all z € R? but z = t. Combining these equalities, we have
lim lim xt(w)Tr (pé?yh/\/ﬁ@JyL)) ) (w) = /[Rd xt(z)pp(x)dx

m—00 N—ro0
weNm)

for all h € R? and ¢ € RY.
As a consequence, the diagonal sequence trick shows that there exists a subsequence

{m(n)}nen such that

nh—>nc}o Z Xt((.L))TI‘ (pé -)i-h/f ® O'(n)) ME (”))(w) = /[Rd Xt(qj)ph(x)dx
weQm(n)

for all h € Q% and t € Q?. Setting M( ", M(n ™) and Q") .= = Q") we get
(E.8) nl;rgo Z Xt(w)Tr (p(g:ih/f@@a(n)) _*(n)(w) = /[Rd Xt (z)pn(x)dx

we)
for all h € Q% and t € Q. Moreover, since both sides of (E.8) are monotone increasing in t,
and the right-hand side is continuous in ¢, (E.8) holds for all ¢ € R? and all h € Q.
Now let, for each ¢ € R?,

Mft) =Tr g0, Z Xt(w)M,En)(w) (I( )®O'(n)>,
weQ™

(n) .

where Tr ., denotes the partial trace on H(™) . Then, M .+ 1s a resolution of identity on
H(") satisfying

€9 i T M i, (1) 5

weQ(™

= / Xt(z)pp(x)dx
IRd
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for all t € R¢ and all h € Q.
Finally, we extend the identity (E.9) to all h € RY. Let

90 +h/\/ﬁ pe()

and fix h € R? and t € R¢ arbitrarily. Then for all € > 0, there exists an he Qd that satisfies

%o ((Rﬁf") _ R}f’))Q) <e.

B =R (o}

(n)> and Réoo) — o3 ((FR)X{™ — hT FTSFh)

On the other hand,

: (n) _ (n)
(E.10) llgogp Tr <p90+h/\/ﬁ p00+ﬁ/ﬁ> M.,

=limsup | Tr (Rgn)pgg) Rgln) — R(n)pg;)R(n)> Mf?)

< liHLsup{ Tr (R,(ln) — R]%n)) p((,:)RELn)M *(?)

+ TR o (R — RE) Ay

Here, the second line follows from (14) in Corollary 3.7, which tells us that the contribution
of the singular parts of pé:lh N asymptotically negligible. By using Corollary 3.7, the
third line of (E.10) is evaluated as follows:

2
lim sup
n—o0

e (R~ R 0B

2 * 2
<limsup Tr p(n) R™ — R™) < Ty p(n) R
0o h 3 0o h *t

n—oo

2
<limsup Tr pg:) (R;ln) — RI({L))

n—oo

= ¢o <(R§L°°) — R%oo)f) <e.

Since the fourth line of (E.10) is evaluated similarly, we can conclude that

- <p<n> (n) ) M| <2z

(E.11) lim sup Both/v/m '090+B/\/ﬁ

n—o0

In a quite similar way, we can prove that
(E.12) on (M) = g5 (MG )| < 2v2
Now that we have established (E.9) (E.11) (E.12), Lemma E.1 leads us to

nh—>Holo Tr pg;-)i-h/\/ﬁMf?) - th (Min)) - /|Rd Xt(SU)ph(I')du’U

for all t € R? and h € R?. To put it differently, letting M.™ be the POVM that corresponds

to the resolution of identity M*(?) we have

n n h
(M6 ) & NV (Ve R,

This completes the proof. O
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E.5. Proof of Theorem 5.5.
PROOF. For the quantum Gaussian shift model ¢, ~ N((Re7)h,X), take a family of
unitary operators {U (k) } r.cre on H that satisfy
on(U(k) AU(K) = dnk(4) (VA € CCR(ImE)).
Given a POVM M, let M, := M (—o0, t] be the corresponding resolution of identity, and let
us define, for each ¢ € R% and L € N, a bounded operator

oy 1 / N
N - U(k)* My, 1 U (k) dk,
t (2L)d [_L7L]d ( ) t+k ( )

where the integration is taken in the weak operator topology (WOT). It is not difficult to show

that {Nt(L) }era is a resolution of identity for all L € N. From this resolution of identity, we
shall construct a POVM N that is equivalent in law and surpasses the original M. Here we
follow the method used in Step 2 of the proof of Theorem 2.4.

Take a cyclic vector ¢ on the Hilbert space H, and consider the sandwiched coherent state
representation

oD (5m) = (VTN NP/ T Xy )

Since ’@%L) (&; n)‘ <1forall L€ N,teR% and &, n e R”, the diagonal sequence trick shows

that there is a subsequence {L,,} C {L} through which @&L’")(g ;m) is convergent for all
o€ Q¥ and ¢,m € Q", yielding a limiting function ¢, (&;7). Due to Lemma 3.3, this limiting
function uniquely determines an operator N, that satisfies

@a(f? 77) = <€\/_71§iXi¢7 NaeﬁniXiw> .
In this way, we obtain the WOT-limit
(E.13) Ny := lim N

for all & € Q. Further, for each ¢ € R?, let

(E.14) N;:= inf N,.
a>t,acQl

Then {N;}icre determines a POVM N over R?, and by transferring the measure at infinity
N(R?\ R?) to the origin, we have a POVM N over R? defined by

N(B):=N(B)+6(B)N[R\RY)  (BeB(RY)).

Let us prove that ¢y, (N (B)) = ¢p,(N(B)) for all B € B(R?). For each m € N, let N (Z)
be the POVM that corresponds to the resolution of identity Nt(L’"’), and let

i (B) = on (N (B))

1 *

= (2Ln)d /[—Lm,Lm]d on, (U(k)*M (B + k)U(k)) dk
1

2L /[_ L Ok (M (B +k)) dk.
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Then, letting y := x + k,

(E.15) / Gij(z — h)'(z — h)jugm)(dx)
Rd

1 ‘ A
:<2L>d/[ oo o Gty = = )y = = kY G (M (dy)

<sup | Gyly—0)"(y—0) ¢ (M(dy)).
VER J R4

This shows that the second moments of {Mém)}menw are uniformly bounded. As a conse-

quence, { ugm) }men is uniformly tight, and by Prohorov’s lemma, there exists a subsequence

{ms} C {m} and a probability measure /i, that satisfy ugm'“) ~ fip,. We show that

(E.16) fin(B) = on(N(B)) = ¢n(N(B))

for all B € B(RY). Actually, since fij, is a probability measure on R?, having no positive
mass at infinity, it suffices to prove that jij,(—oo,t] = ¢5,(NN;) for all continuity point ¢ € R?
of ¢+ fip(—00,t]. For any o € Q? satisfying o > t,

fin(—00,t] = lim gy, (V™) < Tim gy, (N{™)) < (00,0

In the last inequality, the portmanteau lemma is used. Taking the limit « | ¢, and recalling the
definition (E.14) as well as

Jim on (N™)) = on (M)

which follows from (E.13), we have jij, (—00,t] = ¢ (N).
Now we proceed to the proof Theorem 5.5. To this end, it suffices to show the following
(1) and (ii):

(i) N is equivalent in law.
(ii) N satisfies the following inequality:

sup / Gij(x — h)"(z — h)! ¢y, (N (dz))
|Rd

heRd

< sup Gij(z — h)'(z — h) ¢p(M (dz)).
heRe JRe
In fact, suppose that (i) is true. Then Lemma 5.1 tells us that the first line of the inequality in
(ii) is further bounded from below by the Holevo bound c(GH). This is nothing but the desired
minimax theorem.

Let us prove (ii) first. From (E.15), we have

sup / G (2 — h)i (2 — hY (M (d))
Rd

heRd

> liminf / Gij(w — h) (& — hY "™ (dz)
[Rd

§—00

> g Gij(x —h)'(z — h) fup(de)

=/ Gij(z —h)'(z — h) ¢ (N(dx)) .
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Here, the second inequality follows from the portmanteau lemma, and the last equality from
(E.16). Since the first line is independent of h, we have (ii).
We next prove (i), that is,

(E.17) én (Niyn) = do (Ne)
for all t € R% and h € R?. Since

¢n (Ntyn) = én (Nt+h) = inf ¢p (Na—i-h) )

a>t,aceQd

it suffice to prove
(E.18) On (Nan) = 00 (Mo )
for all & € Q% and h € R?. The left-hand side is rewritten as

On (Na+h) = lim ¢y <Nc(j_az)>

m—ro0
1

= W}gnoo W /[Lm,Lm}d on (U (k)" Moyn+1U (K)) dk

1

= lim —— M, dk
lim L) /[Lm,Lm}d¢h+k( hik)

. 1 /
= lim ——— b0 (Maap) de.
m—00 (2Lm)d [=Lm,Lin]4+h ( + )

Since \hz\ < 2Ly, (i=1,...,d) for sufficiently large m,

o (o) 0 ()

) 1
< lim_ L /[Rd L= Lo Lo ]9+ A ([ Lo L)) (K) K

d
:%Enoo(Qle)d X2 {(QLan -TIeL. - \hi‘)}

i=1
ST
= fm 241 ,Hl(l “an, ) (0
1=
Here, A\ denotes the symmetric difference. This proves (E.18). ]

E.6. Proof of Theorem 5.6.

PROOF. For notational simplicity, we denote by MEL") the probability measure of outcomes

of POVM M (™ applied to pé:)+ Wy The first inequality immediately follows from the fact

that for any § > 0 and finite subset I of R?, there exist N € N so that n > N implies

sup Gij(x —h)'(z — h)juén) (dz) >sup | Gij(z—h)(z — h)j,ugln)(dx).
[Rl[<oy/n /R heH JR?
The second inequality is obvious. We prove the last inequality.
Following the proof of [1, Theorem 8.11], place the elements of Q? in an arbitrary order,
and let H}, consist of the first k£ elements in this sequence. Let

cp i= sup / kA {Gij(z — h)'(z —h)7} ugn)(dx),
heH; JR4
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and let

¢k :=liminfcy and c:= lim .
n—00 k—o0
Since c is not greater than the third line of (27), it suffices to show that ¢ > ¢, . Since the
inequality is trivial when ¢ = co, we assume that ¢ < co.
Take a subsequence {n;} C {n} that satisfies

(rep)

lim c* =c.
k—o0

In fact, just choose ny so that ny > ny_1 and
e — | <1/k
hold for all £ € N. Let us prove that { ué""’)} & is uniformly tight for all h € Q<.
Suppose that { pﬁln"')} % is not uniformly tight for some h € Q%. For this h, let
Kp:= {m eR?: Gyj(a — h)i(x — h)! < L} . (L>0).
Then there exists an € > 0 such that

limsup ™) (K§) > ¢

k—o0

for all L > 0. Since h € Hy, for sufficiently large k, it holds that

c= lim c*

k—o0
> limsup/ kA {GU(QZ — h)l(gj — h)]} M;’nk)(dl’)
k—o0 R4

> L - limsup ugn’“) (K%)

k—o0
>L-e.

Since L > 0 is arbitrary, this contradicts the assumption that ¢ < co.

Now that {uglnk )} x is proved uniformly tight for all i € Q?, by the Prohorov lemma and
the diagonal sequence trick, we can take a further subsequence {k;} C {k} that satisfies

i)~ A,

for all h € Q%. It then follows from the asymptotic representation theorem for h € Q% that
there is a POVM M (*) on N((Re7)h,¥) ~ (X, ¢p,) such that

on (MO)(B)) =un(B), (VB €B(RY), vhe ).
Now, for any h € Qd and L > 0,

. ?’L}CQ
c= lim (.
S—00 s

§—00

> lim inf / LA{Gij(x = h)i (@ —h)} ™) (d)
IRd

- /R LA {Gisw = )iz — B} pn(d).
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In the last equality, we used the portmanteau lemma. Thus

(e BV — B (0)
czii%:g&AdLA{Gl](x h)i(x h)9}¢h(M (dx))

= sup sup / LA{Gij(z—h)'(x—h)} ¢p (M(Oo) (dx))
L>0heRre JRa

— sup /[R Giyla—h)'(z = k)i <M<°°> (da;)>

heRd

(rep)

> céep .

Here, the second line follows from the fact that h — ¢p(A) is continuous for all A €
CCR(ImY) satisfying ||A|| < 1, the third line is due to the monotone convergence theo-
rem, and the last line follows from the minimax Theorem 5.5 for a quantum Gaussian shift
model, as well as the fact that the asymptotic representation bound cgez’ ) is nothing but the

Holevo bound for the quantum Gaussian shift model {N((Re7)h,X) : h € R%}.

Finally, we prove that the last inequality of (27) is tight. Recall that the sequence an) of
POVMs constructed in the proof of Theorem 5.3 satisfies

(Mi”) ) w N(h,V,)  (VheR?)

(n
9 peo"l‘h/\/ﬁ

and
TrGV, = C(Gmp).

We show that this sequence M*(n) saturates the last inequality in (27). Let pj, be the probabil-
ity density of the classical Gaussian shift model N (h, V;). Then

sup sup liminf su / LA{Gy(x —h)(z—h) Y Tr p™ M (g
L>% Hp n—00 he]I'—)[ Rd { ]( ) ( ) } p@o-‘rh/\/ﬁ * ( )

= sup sup sup / LA{Gyj(z —h)(z — )} pp(2)dz
Rd

L>0 H heH
=TrGV,.
Here, the first equality follows from the portmanteau lemma and the fact that H is a finite
set. The proof is complete. O
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