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APPENDIX A: ASYMPTOTIC REPRESENTATION THEOREM FOR CLASSICAL
LAN

This section gives a comprehensible proof of the asymptotic representation theorem for
classical LAN models (Theorem 1.1). This also provides an alternative view for the ‘ran-
domized’ statistics appeared in the theorem.

In constructing a statistic T that enjoys T (n) h⇝ T for all h, van der Vaart [1] emphasized
that one must invoke external information. This prescription reminds us of a quantum POVM
in which one makes use of an ancillary system in realizing it. In what follows, therefore, we
identify the randomized statistic T with a σ-finite measure on Rs × Rd that gives the desired
limit distribution Lh for every h ∈ Rd.

PROOF. For each t ∈ Rs, let

(A.1) M (n)(t,ω) := 1T (n)−1((−∞,t])(ω), (n ∈N, ω ∈Ω(n)).

Referring to the diagram

Ω(n) ∆(n)

−→ Rd

[0, 1]
P

(n)
θ0←−F (n) ∆(n)−1

←− B(Rd)
,

we define, for each t ∈ Rs, a finite Borel measure µ(n)t on Rd as follows:

(A.2) µ
(n)
t (B) :=

∫
∆(n)−1(B)

M (n)(t,ω)dP
(n)
θ0

(ω), (B ∈ B(Rd)).

Note that the set {µ(n)t }n is tight. In fact, since ∆(n) 0⇝N(0, J), the sequence ∆(n) is tight
under P (n)

θ0
, that is, for any ε > 0, there exists a K > 0 such that for all n,

P
(n)
θ0

(∆(n) /∈ [−K,K]d)< ε.

Consequently,

µ
(n)
t (Rd\[−K,K]d) =

∫
∆(n) /∈[−K,K]d

M (n)(t,ω)dP
(n)
θ0

(ω)

≤
∫
∆(n) /∈[−K,K]d

dP
(n)
θ0

(ω)

= P
(n)
θ0

(∆(n) /∈ [−K,K]d)< ε,

1

https://imstat.org/journals-and-publications/annals-of-statistics/
mailto:fujiwara@math.sci.osaka-u.ac.jp\protect \spacefactor \@m {}
mailto:yamagata@nii.ac.jp\protect \spacefactor \@m {}


2

proving the tightness of {µ(n)t }n. It then follows from the Prohorov theorem that there is a
subsequence {µ(nk)

t }k that is weakly convergent for all t ∈ Qs, i.e.,

(A.3) µ
(nk)
t

0⇝ ∃µt, (∀t ∈ Qs).

Observe that for any continuity point x ∈ Rd of µt,

µt((−∞, x]) = lim
k→∞

∫
∆(nk)≤x

M (nk)(t,ω)dP
(nk)
θ0

(ω)

= lim
k→∞

P
(nk)
θ0

({T (nk) ≤ t} ∩ {∆(nk) ≤ x}).

Let us extend µt to all t ∈ Rs so that µt((−∞, x]) is right-continuous in t for each x ∈ Rd,
and denote the extension by µt, that is,

(A.4) µt((−∞, x]) := inf{µα((−∞, x]) |α ∈ Qs, α > t}.

Specifically, since T (n) 0⇝ L0, the total mass of µt for a continuity point t of L0 is given by

µt(R
d) = µt(R

d) = lim
k→∞

P
(nk)
θ0

(T (nk) ≤ t) = L0((−∞, t]).

Further, since ∆(n) 0⇝N(0, J), we have from the joint tightness of (∆(n), T (n)) that

µ∞(B) := lim
t→∞

µt(B) = lim
k→∞

P
(nk)
θ0

(∆(nk) ∈B) =

∫
B
g0(x)dx.

Here, gh(x) denotes the density of N(Jh,J) with respect to the Lebesgue measure dx. Put
differently, µ∞ ∼N(0, J).

Since µt(B)≤ µ∞(B) for all t ∈ Rs, we find that µt is absolutely continuous to µ∞, and
hence to the Lebesgue measure. This guarantees the existence of the density

(A.5) Mt(x) :=
dµt
dµ∞

(x) =
1

g0(x)

dµt
dx

(x).

Note that 0≤Mt(x)≤ 1 and Mt(x) ↑ M∞(x) = 1 for each x ∈ Rd.
We prove that this is the one that gives the desired limit distribution, in that

Lh((−∞, t]) =
∫

Rd

gh(x)Mt(x)dx(A.6)

for any h ∈ Rd and any continuity point t ∈ Rs of Lh.
Because of (1), we have

(A.7) P
(n)

θ0+h/
√
n
◁▷ P (n)

θ0
,

which, in particular, entails that
dP

(n)

θ0+h/
√
n

dP
(n)
θ0

is uniformly integrable under P (n)
θ0

, and hence

under µ(n)t for any t ∈ Rs. Consequently, for any continuity point t ∈ Rs of Lh, we have

Lh((−∞, t]) = lim
k→∞

∫
Ω(nk)

M (nk)(t,ω)dP
(nk)
θ0+h/

√
nk
(ω)(A.8)

= lim
k→∞

∫
Ω(nk)

M (nk)(t,ω)
dP

(nk)
θ0+h/

√
nk

dP
(nk)
θ0

dP
(nk)
θ0

(ω)

= lim
k→∞

∫
Rd

eh
i∆

(nk)

i − 1

2
hihjJij dµ

(nk)
t (∆(nk)).
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Here, the first equality follows from the assumption that T (n) h⇝ ∃Lh, the second from (A.7)
and Lemma A.1 below, and the third from (1) and (A.2). Now we prove that

(A.9) lim
k→∞

∫
Rd

eh
i∆

(nk)

i − 1

2
hihjJij dµ

(nk)
t (∆(nk)) =

∫
Rd

gh(x)

g0(x)
dµt(x)

for any continuity point t ∈ Rs of Lh. Given ε > 0 arbitrarily, take another continuity point
t′ ∈ Rs of Lh and a rational point α ∈ Qs (t < α < t′) such that

(A.10) 0≤Lh((−∞, t′])−Lh((−∞, t])< ε

and

(A.11) 0≤
∫

Rd

gh(x)

g0(x)
dµα(x)−

∫
Rd

gh(x)

g0(x)
dµt(x)< ε.

The existence of such t′ is assured by the assumption that t is a continuity point of Lh, and
the existence of such α ∈ Qs by (A.4) and the monotone convergence theorem. Then

∣∣∣∣∫
Rd

eh
i∆

(nk)

i − 1

2
hihjJij dµ

(nk)
t (∆(nk))−

∫
Rd

gh(x)

g0(x)
dµt(x)

∣∣∣∣
(A.12)

≤
∣∣∣∣∫

Rd

eh
i∆

(nk)

i − 1

2
hihjJij dµ

(nk)
t (∆(nk))−

∫
Rd

eh
i∆

(nk)

i − 1

2
hihjJij dµ(nk)

α (∆(nk))

∣∣∣∣
+

∣∣∣∣∫
Rd

eh
i∆

(nk)

i − 1

2
hihjJij dµ(nk)

α (∆(nk))−
∫

Rd

gh(x)

g0(x)
dµα(x)

∣∣∣∣
+

∣∣∣∣∫
Rd

gh(x)

g0(x)
dµα(x)−

∫
Rd

gh(x)

g0(x)
dµt(x)

∣∣∣∣ .
Firstly, due to (A.8) and (A.10), for sufficiently large k, the second line of (A.12) is evaluated
from above by∣∣∣∣∫

Rd

eh
i∆

(nk)

i − 1

2
hihjJij dµ

(nk)
t (∆(nk))−

∫
Rd

eh
i∆

(nk)

i − 1

2
hihjJij dµ

(nk)
t′ (∆(nk))

∣∣∣∣
≤
∣∣∣∣∫

Rd

eh
i∆

(nk)

i − 1

2
hihjJij dµ

(nk)
t (∆(nk))−Lh((−∞, t])

∣∣∣∣
+
∣∣Lh((−∞, t])−Lh((−∞, t′])∣∣

+

∣∣∣∣Lh((−∞, t′])− ∫
Rd

eh
i∆

(nk)

i − 1

2
hihjJij dµ

(nk)
t′ (∆(nk))

∣∣∣∣
< 3ε.

Secondly, due to (A.3) and the Lemma A.2 below, for sufficiently large k, the third line of
(A.12) gets smaller than ε. Finally, due to (A.11), the last line of (A.12) is bounded from
above by ε. Putting these evaluations together, we find that∣∣∣∣∫

Rd

eh
i∆

(nk)

i − 1

2
hihjJij dµ

(nk)
t (∆(nk))−

∫
Rd

gh(x)

g0(x)
dµt(x)

∣∣∣∣< 5ε,

proving (A.9).
Now that (A.8) and (A.9) are established, the desired identity (A.6) follows immediately

from (A.5) and the assumption that T (n) h⇝ ∃Lh.
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LEMMA A.1. Let the probability measures Pn and Qn on Ωn satisfy Qn ◁ Pn. Then, for
any measurable subset Fn of Ωn,

(A.13) lim
n→∞

EQn
[1Fn

] = lim
n→∞

EPn

[
1Fn

dQn
dPn

]
,

provided either of the limits exists.

PROOF. Let Qn =Qacn +Q⊥
n be the Lebesgue decomposition with respect to Pn, and let

An := suppQacn . Since Pn(Acn) = 0 for all n, we have from Qn ◁ Pn that Qn(Acn)→ 0.
Therefore, ∫

Ωn

1Fn
(ω)dQn =

∫
An

1Fn
(ω)dQn +

∫
Ac

n

1Fn
(ω)dQn

=

∫
Ωn

1Fn
(ω)

dQn
dPn

dPn +Qn(A
c
n ∩ Fn),

from which (A.13) immediately follows.

LEMMA A.2. Let Xn ∈ L1(Pn) for all n, and let X ∈ L1(P ). Suppose that {Xn}n is
uniformly integrable and Xn⇝X . Then

lim
n→∞

EPn
[Xn] =EP [X].

PROOF. For K ∈ [0,∞), define a function fK : R→ [−K,K] as follows:

fK(x) :=

K, (x >K)
x, (−K ≤ x≤K)
−K, (x <−K)

Given ε > 0, we can choose K so that, by the uniform integrability,

EPn
[|Xn − fK(Xn)|]≤EPn

[|Xn| ; |Xn|>K]<
ε

3
, (∀n)

and

EP [|X − fK(X)|]≤EP [|X| ; |X|>K]<
ε

3
.

Further, since Xn⇝X , we can choose n0 ∈N such that, for all n≥ n0,

|EPn
[fK(Xn)]−EP [fK(X)]|< ε

3
.

The triangular inequality therefore implies that, for n≥ n0,

|EPn
[Xn]−EP [X]|< ε,

and the proof is complete.

APPENDIX B: GAUSSIAN STATES ON DEGENERATE CCR ALGEBRAS

This section gives a brief account of degenerate canonical commutation relations (CCR)
and hybrid classical/quantum Gaussian states.

Let V be a real symplectic space with nonsingular symplectic form ∆. The unital ∗-algebra
generated by elements of V satisfying

fg− gf =
√
−1∆(f, g), f∗ = f, (∀f, g ∈ V )
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is called the canonical commutation relations (CCR) algebra. There is a distinct, but closely
related notion of the CCR. LetH be a separable Hilbert space and let W : V →B(H) satisfy
the relations

W (f)W (g) = e−
√

−1

2
∆(f,g)W (f + g), W (f)∗ =W (−f), (f, g ∈ V ).

These are called the Weyl form of the CCR. Specifically, the above relations imply that W (f)
is unitary and W (0) = 1.

One would like to represent the CCR by using selfadjoint operators onH. We first treat the
case when V is a two-dimensional symplectic space with symplectic basis {e1, f1} satisfying
∆(e1, f1) = 1. Then the above relation reduces to

W (te1)W (sf1) = e−
√

−1

2
stW (te1 + sf1) = e−

√
−1 stW (sf1)W (te1).

Let us regard U(t) :=W (te1) and V (s) :=W (sf1) as one-parameter unitary groups acting
on H. By Stone’s theorem, there is a one-to-one correspondence between selfadjoint oper-
ators and (strongly continuous) one-parameter unitary groups. Thus one defines a pair of
selfadjoint operators Q and P by

U(t) := e
√
−1tQ, V (s) = e

√
−1sP ,

which fulfills the Weyl form of the CCR

e
√
−1tQe

√
−1sP = e−

√
−1ste

√
−1sP e

√
−1tQ.

Formally differentiating this identity with respect to t and s at s= t= 0, one has the Heisen-
berg form of the CCR

QP − PQ=
√
−1 I.

The operators Q and P are called the canonical observables of the CCR.
There are variety of choices of Hilbert spaces H and irreducible representations of canon-

ical observables on H. However, according to the Stone-von Neumann theorem, they are
unitarily equivalent [2]. Thus one may use any one of them. In this paper, we canonically
use the Schrödinger representation on the Hilbert space H= L2(R). Note that the von Neu-
mann algebra generated by {e

√
−1tQ} is L∞(R), and the von Neumann algebra generated by

{e
√
−1(tQ+sP )} is B(H).

Extending the above formulation to a generic even-dimensional symplectic space V is
standard. This also allows us to use a more flexible formulation as follows. Given a regular
(2k) × (2k) real skew-symmetric matrix S = (Sij), let CCR(S) denote the von Neumann
algebra generated by {e

√
−1 t1X1 , . . . , e

√
−1 t2kX2k} that satisfy the CCR

e
√
−1 tiXie

√
−1 tjXj = e

√
−1 titjSije

√
−1(tiXi+tjXj),

and call X = (X1, . . . ,X2k) the canonical observables of the CCR(S). This is done by just
finding a regular matrix T satisfying

T⊤ST =
1

2



0−1
1 0

0−1
1 0

. . .
0−1
1 0


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to obtain a suitable symplectic basis {ei, fi}1≤i≤k which generates {Qi, Pi}1≤i≤k such that
each Xi belongs to an R-linear span of {Qi, Pi}1≤i≤k.

Now we formally extend this formulation to a generic d× d real skew-symmetric matrix
S = (Sij) as follows. We first find a regular matrix T satisfying

T⊤ST =
1

2



0
. . .

0
0−1
1 0

0−1
1 0

. . .
0−1
1 0


,

to obtain a basis {ẽ1, . . . , ẽr}t{ei, fi}1≤i≤k, where r+2k = d. We then extend {ẽ1, . . . , ẽr}
to {ẽi, f̃i}1≤i≤r to form a symplectic basis {ẽi, f̃i}1≤i≤r t {ei, fi}1≤i≤k of a 2(r + k)-
dimensional symplectic space V , which defines a von Neumann algebraA, the canonical ob-
servables of which are denoted by {Q̃i, P̃i}1≤i≤r t {Qi, Pi}1≤i≤k. Now we denote CCR(S)
to be the von Neumann subalgebra of A generated by

{e
√
−1 t̃iQ̃i}1≤i≤r t {e

√
−1 tiQi , e

√
−1 siPi}1≤i≤k.

In summary, given a possibly degenerate d× d real skew-symmetric matrix S = (Sij), let
CCR(S) denote the algebra generated by the observables X = (X1, . . . ,Xd) that satisfy the
following Weyl form of the CCR

e
√
−1ξiXie

√
−1ηjXj = e

√
−1ξ⊤Sηe

√
−1(ξ+η)iXi (ξ, η ∈ Rd)

which is formally rewritten in the Heisenberg form
√
−1
2

[Xi,Xj ] = Sij (1≤ i, j ≤ d).

This formulation is useful in handling hybrid classical/quantum Gaussian states. Given a
possibly degenerate d× d real skew-symmetric matrix S = (Sij), a state ϕ on CCR(S) with
the canonical observables X = (X1, . . . ,Xd) is called a quantum Gaussian state, denoted
ϕ∼N(µ,Σ), if the characteristic function Fξ{ϕ} := ϕ(e

√
−1ξiXi) takes the form

Fξ{ϕ}= e
√
−1ξiµi− 1

2
ξiξjVij

where ξ = (ξi)di=1 ∈ Rd, µ= (µi)
d
i=1 ∈ Rd, and V = (Vij) is a d× d real symmetric matrix

such that the Hermitian matrix Σ := V +
√
−1S is positive semidefinite. When the canonical

observables X need to be specified, we also use the notation (X,ϕ)∼N(µ,Σ).
When we discuss relationships between a quantum Gaussian state ϕ on a CCR and a state

on another algebra, we need to use the quasi-characteristic function [4]

(B.1) ϕ

(
r∏
t=1

e
√
−1ξitXi

)
= exp

(
r∑
t=1

(√
−1ξitµi −

1

2
ξitξ

j
tΣji

)
−

r∑
t=1

r∑
u=t+1

ξitξ
j
uΣji

)
of a quantum Gaussian state, where (X,ϕ)∼N(µ,Σ) and {ξt}rt=1 ⊂ Rd. Note that (B.1) is
analytically continued to {ξt}rt=1 ⊂ Cd.
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The notion of quasi-characteristic function is exploited in discussing the quantum coun-
terpart of the weak convergence [3, 4, 5]. For each n ∈ N, let ρ(n) be a quantum state and
X(n) = (X

(n)
1 , . . . ,X

(n)
d ) be a list of observables on a finite dimensional Hilbert space H(n).

We say the sequence (X(n), ρ(n)) converges in distribution to (X,ϕ)∼N(µ,Σ), in symbols

(X(n), ρ(n))⇝ (X,ϕ) or X(n) ρ
(n)

⇝ N(µ,Σ)

if

lim
n→∞

Trρ(n)

(
r∏
t=1

e
√
−1ξitX

(n)
i

)
= ϕ

(
r∏
t=1

e
√
−1ξitXi

)
holds for any r ∈N and subset {ξt}rt=1 of Rd.

APPENDIX C: D-EXTENDIBILITY FOR I.I.D. AND NON-I.I.D. MODELS

This section is a continuation of Remark 2.3, demonstrating the D-extendibility of
i.i.d. models, the idea behind the terms ‘asymptotic D-invariance’ and ‘D-extension’, and
a proper asymptotic treatment of the model presented in Example 2.1. We also give an exam-
ple of a sequence of quantum statistical models that is non-i.i.d. but is, nevertheless, q-LAN
and D-extendible.

Given a quantum state ρ on a finite dimensional Hilbert space H, let Dρ :B(H)→B(H)
be Holevo’s commutation operator [2] with respect to ρ defined by

Dρ =
√
−1 Lρ −Rρ
Lρ +Rρ

,

where Lρ and Rρ are superoperators defined by

LρZ := ρZ, RρZ := Zρ, (Z ∈B(H)).
They are positive (selfadjoint) operators with respect to the Hilbert-Schmidt inner product
〈A,B〉HS := TrA∗B of B(H) because

〈Z,LρZ〉HS =TrZ∗ρZ ≥ 0

and

〈Z,RρZ〉HS =TrZ∗Zρ=TrZρZ∗ ≥ 0

for all Z ∈B(H).
When ρ is not faithful, Dρ is regarded as a superoperator acting on the quotient space

B(H)/Kρ, where1

Kρ := {K ∈B(H) :Kρ= ρK = 0}.
Since Dρ sends selfadjoint operators to selfadjoint operators, it is also regarded as a superop-
erator on Bsa(H)/Kρ, where Bsa(H) is the set of selfadjoint operators.

A subspace V ofBsa(H) is calledDρ-invariant if V/Kρ isDρ-invariant. Given two lists of
selfadjoint operators (X1, . . . ,Xr) and (L1, . . . ,Ld), the former is called a Dρ-invariant ex-
tension of the latter if SpanR {Xi}ri=1 ⊃ SpanR {Li}

d
i=1 and SpanR {Xi}ri=1 is Dρ-invariant.

The following theorem motivated us to adopt the term ‘asymptotic D-invariance’ in order
to describe an asymptotic version of Dρθ0 -invariance.

1In [2], commutation operator Dρ was defined on the space L2(ρ) of square-summable operators, which
is the completion of B(H) with respect to the pre-inner product ⟨X,Y ⟩ρ := 1

2 Trρ(X∗Y + Y X∗). Note that
⟨K,K⟩ρ = 0 if and only if Kρ= ρK = 0. The ‘if’ part is obvious, and the ‘only if’ part is proved by observing
2⟨K,K⟩ρ =Tr(K

√
ρ)∗(K

√
ρ) +Tr (

√
ρK)∗(

√
ρK).
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THEOREM C.1. Given a quantum statistical model S := {ρθ : θ ∈ Θ ⊂ Rd} on a finite
dimensional Hilbert space H, let (L1, . . . ,Ld) be its SLDs at θ0 ∈Θ, and let S(n) := {ρ⊗nθ :

θ ∈ Θ ⊂ Rd} be its i.i.d. extensions. Take a linearly independent Dρθ0 -invariant extension
(X1, . . . ,Xr) of (L1, . . . ,Ld) satisfying Trρθ0Xi = 0 for all i= 1, . . . , r, and let

∆
(n)
i :=

1√
n

n∑
k=1

I⊗(k−1) ⊗Li ⊗ I⊗(n−k), (1≤ i≤ d),

X
(n)
i :=

1√
n

n∑
k=1

I⊗(k−1) ⊗Xi ⊗ I⊗(n−k), (1≤ i≤ r).

Then X(n) satisfies conditions (4) – (6) in Definition 2.2.

We prove Theorem C.1 in a series of lemmas.

LEMMA C.2. Given a quantum state ρ and a list of observables (X1, . . . ,Xd) on a finite
dimensional Hilbert space H, let A and J be d × d nonnegative matrices whose (i, j)th
entries are Aij = Tr

√
ρXj
√
ρXi and Jij = TrρXjXi. Then, both A and J#J⊤ are real

matrices and satisfy

A≤ J#J⊤,

where # denotes the operator geometric mean.

PROOF. A=A is obvious, and

J#J⊤ = J#J = J#J = J#J = J#J⊤.

Now recall that the operator geometric mean P#Q for positive operators P and Q is char-
acterized as [6]

P#Q=max

{
X ≥ 0 :

(
P X
X Q

)
≥ 0

}
.

Since the Gram matrix for {√ρX1, . . . ,
√
ρXd} ∪ {X1

√
ρ, . . . ,Xd

√
ρ} with respect to the

Hilbert-Schmidt inner product is (
J A
A J⊤

)
,

the inequality A≤ J#J⊤ immediately follows.

LEMMA C.3. Let J = V +
√
−1S be nonnegative matrix, and assume that V =ReJ is

strictly positive. Then

(C.1) J#J⊤ = V 1/2

{
I +

(
V −1/2SV −1/2

)2}1/2

V 1/2.

PROOF. By changing J into J + εI for ε > 0 and considering the limit ε ↓ 0, it suffices to
treat the case when J > 0. Set

SV := V −1/2SV −1/2 and X := V 1/2
{
I + S2

V

}1/2
V 1/2.
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Then

XJ−1X =X
{
V 1/2(I +

√
−1SV )V 1/2

}−1
X

= V 1/2
{
I + S2

V

}{
I +
√
−1SV

}−1
V 1/2

= V 1/2
{
I −
√
−1SV

}
V 1/2

= J⊤.

This proves that X = J#J⊤.

LEMMA C.4. Under the setting of Lemma C.2, assume further that V =ReJ is strictly
positive. Then the following conditions are equivalent.

(i) A= J#J⊤

(ii) SpanC

{√
ρXi +Xi

√
ρ
}d
i=1
⊃ SpanC

{√
ρXi −Xi

√
ρ
}d
i=1

(iii) SpanC {ρXi +Xiρ}di=1 ⊃ SpanC {ρXi −Xiρ}di=1

(iv) SpanC {Xi}di=1 is Dρ-invariant.
(v) SpanR {Xi}di=1 is Dρ-invariant.

PROOF. We first prove that (i) ⇔ (ii). Letting J = V +
√
−1S, the Gram matrix G for

{√ρXi+Xi
√
ρ}di=1∪{

√
ρXi−Xi

√
ρ}di=1 with respect to the Hilbert-Schmidt inner product

is written as

G= 2

(
V +A

√
−1S√

−1S V −A

)
=

(
I I
I −I

)(
J A
A J⊤

)(
I I
I −I

)
.

Condition (ii) is equivalent to saying that

rankG= rank (V +A) = d.

Since (
J A
A J⊤

)
=

(
V 1/2 0

0 V 1/2

)(
I +
√
−1SV AV

AV I −
√
−1SV

)(
V 1/2 0

0 V 1/2

)
,

where AV := V −1/2AV −1/2 and SV := V −1/2SV −1/2, condition (ii) is further equivalent to
saying that the nonnegative matrix(

I +
√
−1SV AV

AV I −
√
−1SV

)
=

(
I 0
0 I

)
+

(√
−1SV AV
AV −

√
−1SV

)
is of rank d, that is, the matrix (√

−1SV AV
AV −

√
−1SV

)
has eigenvalues −1 and +1 each with multiplicity d. (Note that if (x, y)⊤ is an eigenvector
corresponding to the eigenvalue −1, then (y,−x)⊤ is an eigenvector corresponding to the
eigenvalue +1.) This is equivalent to(√
−1SV AV
AV −

√
−1SV

)2

=

(
A2
V − S2

V

√
−1(SVAV −AV SV )√

−1(SVAV −AV SV ) A2
V − S2

V

)
=

(
I 0
0 I

)
,

or

AV =
{
I + S2

V

}1/2
.
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Due to Lemma C.3, this is further equivalent to

A= V 1/2
{
I + S2

V

}1/2
V 1/2 = J#J⊤.

We next prove that (ii)⇔ (iii). Condition (ii) says that SpanC{Xi}di=1 is invariant under
the action of

D1 =

√
Lρ −

√
Rρ√

Lρ +
√
Rρ

,

while condition (iii) says that SpanC{Xi}di=1 is invariant under the action of

D2 =
Lρ −Rρ
Lρ +Rρ

.

Since both D1 and D2 are selfadjoint with respect to the Hilbert-Schmidt inner product, and
−I ≤D1,D2 ≤ I , continuous functional calculus shows that they are related as

D1 =

√
1 +D2 −

√
1−D2√

1 +D2 +
√
1−D2

and D2 =
2D1

1 +D2
1

.

Consequently, D1-invariance and D2-invariance are equivalent.
Further, since Dρ =

√
−1D2, we have (iii)⇔ (iv). Finally, (iv)⇔ (v) is obvious.

PROOF OF THEOREM C.1. Firstly, condition (6) is obvious because (X1, . . . ,Xr) is a
Dρθ0 -invariant extension of (L1, . . . ,Ld). Secondly, condition (4) follows from the quantum
central limit theorem for sums of i.i.d. observables [4] (cf., Lemma C.6 below), in that

X(n)
ρ⊗n
θ0⇝ N(0,Σ),

where Σij =Trρθ0XjXi. Now we prove the key condition (5).
Let us regard Ĥ := B(H) as a Hilbert space endowed with the Hilbert-Schmidt inner

product. We introduce selfadjoint operators LXi
and RXi

on Ĥ for i= 1, . . . , r by

LXi
Z :=XiZ, RXi

Z := ZXi, (Z ∈B(H)).

Further, let ψ0 :=
√
ρθ0 be a reference vector in Ĥ. Note that

〈ψ0,LXi
ψ0〉HS =Tr

√
ρθ0(Xi

√
ρθ0) = Trρθ0Xi = 0,

and 〈ψ0,RXi
ψ0〉HS = 0 likewise. Now consider the operators on Ĥ⊗n defined by

L(n)Xi
:=

1√
n

n∑
k=1

I⊗(k−1) ⊗LXi
⊗ I⊗(n−k),

R(n)
Xi

:=
1√
n

n∑
k=1

I⊗(k−1) ⊗RXi
⊗ I⊗(n−k),

and apply the quantum central limit theorem to the i.i.d. extension states (|ψ0〉 〈ψ0|)⊗n, to
obtain

(C.2)
(
L(n)X1

, . . . ,L(n)Xr
,R(n)

X1
, . . . ,R(n)

Xr

)
(|ψ0⟩⟨ψ0|)⊗n

⇝ N

(
0,

(
Σ A
A Σ⊤

))
,

where

Aij = 〈ψ0,LXi
RXj

ψ0〉HS =Tr
√
ρθ0Xi

√
ρθ0Xj .
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Since SpanR {Xi}ri=1 is Dρ0 -invariant, we see from Lemma C.4 that

A=Σ#Σ⊤.

Further, for all ξ, η ∈ Rd, we have

lim
n→∞

Tr
√
ρ⊗nθ0 e

√
−1ξiX

(n)
i

√
ρ⊗nθ0 e

√
−1ηiX

(n)
i

= lim
n→∞

Tr (|ψ0〉 〈ψ0|)⊗n e
√
−1(ξiL(n)

Xi
+ηiR(n)

Xi
)

= exp

[
−1

2

(
ξ
η

)⊤(
Σ A
A Σ⊤

)(
ξ
η

)]
,

where (C.2) is used in the second equality. This proves (5).

REMARK C.5. Several remarks on the D-extendibility of the one-dimensional pure state
model ρθ treated in Example 2.1 are now in order. Let us first show that

∆(n) :=
1√
n

n∑
k=1

I⊗(k−1) ⊗ σx ⊗ I⊗(n−k)

is not asymptotically D-invariant at θ = 0. To this end, it suffices to prove that ∆(n) does not
satisfy the identity

lim
n→∞

Tr
√
ρ⊗n0 e

√
−1ξ∆(n)

√
ρ⊗n0 e

√
−1η∆(n)

= e
− 1

2

ξ
η

⊤J J
J J

ξ
η



for ξ, η ∈ R, where J := Trρ0 σ
2
x = 1 is the SLD Fisher information of the model at θ = 0.

In fact, since Tr
√
ρ0 σx

√
ρ0 σx = 0, we can compute in a quite similar way to the proof of

Theorem C.1 that

lim
n→∞

Tr
√
ρ⊗n0 e

√
−1ξ∆(n)

√
ρ⊗n0 e

√
−1η∆(n)

= e
− 1

2

ξ
η

⊤1 0
0 1

ξ
η


.

This proves the claim.
We next verify that ∆(n) has a D-extension and therefore the model is D-extendible at

θ = 0. While this is a straightforward consequence of Theorem C.1, we demonstrate this by a
direct computation. Let (X1,X2) := (σx, σy), which is a Dρ0 -invariant extension of the SLD
σx at ρ0, and let

X
(n)
i :=

1√
n

n∑
k=1

I⊗(k−1) ⊗Xi ⊗ I⊗(n−k), (i= 1,2).

Then by a direct computation similar to the above identity, we have

lim
n→∞

Tr
√
ρ⊗n0 e

√
−1ξiX

(n)
i

√
ρ⊗n0 e

√
−1ηjX

(n)
j = e

− 1

2

ξ
η

⊤Σ 0
0 Σ⊤

ξ
η



for ξ, η ∈ R2, where

Σ= [Trρ0XjXi]ij =

(
1 −

√
−1√

−1 1

)
.
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Since Σ#Σ⊤ = 0, we see that X(n) is a D-extension of ∆(n) (=X
(n)
1 ) with F = (1,0)⊤.

Finally, we demonstrate a proper perspective on the local parameter i.i.d. model ρ⊗n
h/

√
n

. As

shown in Example 2.1, the sequence M (n) = {ρ⊗n0 , I(n) − ρ⊗n0 } of binary POVMs does not
have a binary POVM on the ‘classical’ Gaussian shift model N(h,1) that gives the limiting
distribution Lh = (e−

1

4
h2

, 1− e−
1

4
h2

). This fact nullifies the naive conjecture presented just
before Example 2.1, but it does not rule out the existence of a POVM on another CCR
algebra that gives the above limiting distribution Lh. In fact, Theorem 2.4 tells us that M (n)

has a limiting binary POVMM (∞) = {M (∞)(0),M (∞)(1)} on the ‘quantum’ Gaussian shift
model

ϕh ∼N((ReΣF )h,Σ) =N

((
h
0

)
,

(
1 −

√
−1√

−1 1

))
that satisfies ϕh(M (∞)(0)) = Lh(0) for every h ∈ R. To be specific, let H(∞) be a separable
Hilbert space that irreducibly represents the CCR(ImΣ), and let ρ(∞)

h be the density operator
of the quantum Gaussian state ϕh onH(∞). Then, from the noncommutative Parseval identity
[2], we see that the POVM M (∞) := {ρ(∞)

0 , I(∞) − ρ(∞)
0 } fulfills

Trρ
(∞)
h M (∞)(0) =

√
det(ImΣ)

π2

∫
R2

Fξ[ρ
(∞)
h ]Fξ[M (∞)(0)]dξ

=
1

π

∫
R2

e−
√
−1 ξ1h− 1

2
∥ξ∥2 · e−

1

2
∥ξ∥2

dξ = e−
1

4
h2

for every h ∈ R.

Let us proceed to the issue of handling non-i.i.d. quantum statistical models. We start with
a slightly generalized version of the quantum central limit theorem.

LEMMA C.6 (Quantum central limit theorem for sums of non-i.i.d. observables). For
each k ∈ N, let H(k) be a finite dimensional Hilbert space, and let σ(k) and A(k) =

(A
(k)
1 , . . . ,A

(k)
r ) be a quantum state and a list of observables on H(k). Assume that A(k)

are zero-mean:

Trσ(k)A
(k)
i = 0 (1≤ i≤ r),

uniformly bounded:

sup
k∈N,1≤i≤r

∥∥∥A(k)
i

∥∥∥<∞,
and there is an r× r nonnegative matrix Σ such that

lim
n→∞

Trσ(k)A
(k)
j A

(k)
i =Σij (1≤ i, j ≤ r).

Then under the tensor product states:

ρ(n) :=

n⊗
k=1

σ(k),

the scaled sums of observables

X
(n)
i :=

1√
n

n∑
k=1

I⊗(k−1) ⊗A(k)
i ⊗ I

⊗(n−k)

exhibit

X(n) ρ
(n)

⇝ N(0,Σ).
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PROOF. We need only check the convergence of quasi-characteristic functions

lim
n→∞

Trρ(n)
T∏
t=1

e
√
−1ξitX

(n)
i = exp

{
−1

2

T∑
t=1

ξ⊤t Σξt −
T∑
t=1

T∑
s=t+1

ξ⊤s Σξt

}
,

for all T ∈N and {ξt}Tt=1 ⊂ Rr . Observe

Trρ(n)
T∏
t=1

e
√
−1ξitX

(n)
i

=

n∏
k=1

{
Trσ(k)

T∏
t=1

e
√

−1√
n
ξitA

(k)
i

}

=

n∏
k=1

Trσ(k)
∑
m∈ZT

+

T∏
t=1

1

mt!

(√
−1√
n
ξitA

(k)
i

)mt


=

n∏
k=1

{
1− 1

n

(
1

2

T∑
t=1

ξ⊤t Σ
(k)ξt +

T∑
t=1

T∑
s=t+1

ξ⊤s Σ
(k)ξt

)
+ c(k)(n)

}

where Z+ = {0} ∪N, Σ(k)
ij := Trσ(k)A

(k)
j A

(k)
i , and

c(k)(n) :=
∑

m1+···+mT≥3

(
√
−1)m1+···+mT

n(m1+···+mT )/2
Trσ(k)

T∏
t=1

1

mt!

(
ξitA

(k)
i

)mt

.

Note that, since {A(k)
i }i,k are assumed to be uniformly bounded,

max
1≤k≤n

∣∣∣c(k)(n)∣∣∣=O

(
1

n
√
n

)
.

Consequently, we can further evaluate the quasi-characteristic function as

log

{
Trρ(n)

T∏
t=1

e
√
−1ξitX

(n)
i

}

=

n∑
k=1

log

{
1− 1

n

(
1

2

T∑
t=1

ξ⊤t Σ
(k)ξt +

T∑
t=1

T∑
s=t+1

ξ⊤s Σ
(k)ξt

)
+O

(
1

n
√
n

)}

=

n∑
k=1

{
− 1

n

(
1

2

T∑
t=1

ξ⊤t Σ
(k)ξt +

T∑
t=1

T∑
s=t+1

ξ⊤s Σ
(k)ξt

)
+O

(
1

n
√
n

)}
.

Taking the limit n→∞, we have

lim
n→∞

log

{
Trρ(n)

T∏
t=1

e
√
−1ξitX

(n)
i

}
=−1

2

T∑
t=1

ξ⊤t Σξt −
T∑
t=1

T∑
s=t+1

ξ⊤s Σξt.

This proves the claim.

We are now ready to give an example of a sequence of quantum statistical models that is
non-i.i.d. but is, nevertheless, q-LAN and D-extendible.
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EXAMPLE C.7. Given a sequence {σ(k)θ : θ ∈Θ⊂ Rd}k∈N of quantum statistical models
on a fixed finite dimensional Hilbert space H, let us consider their tensor products on H⊗n

defined by

ρ
(n)
θ :=

n⊗
k=1

σ
(k)
θ .

If σ(k)θ converges to a model σ(∞)
θ in a certain mode of convergence as k →∞, it is ex-

pected that the model ρ(n)θ will be q-LAN and D-extendible, because it is almost i.i.d. in
the asymptotic limit. In what follows, we demonstrate a sufficient condition for realizing this
scenario.

Assume that, for some θ0 ∈Θ,

(C.3) lim
k→∞

σ
(k)
θ0

= σ
(∞)
θ0

and the SLDs {L(k)
i }di=1 of σ(k)θ at θ0 ∈Θ is convergent:

(C.4) lim
k→∞

L
(k)
i = L

(∞)
i (i= 1, . . . , d).

Then ρ(n)θ with

∆
(n)
i =

1√
n

n∑
k=1

I⊗(k−1) ⊗L(k)
i ⊗ I

⊗(n−k)

is D-extendible at θ0.
Assume further that the square-root likelihood ratios R(k)

h :=R(σ(k)θ0+h
| σ(k)θ0

) around θ0
satisfy

(C.5) sup
k∈N∪{∞}

∥∥∥∥R(k)
h − I −

1

2
hiL

(k)
i

∥∥∥∥= o(‖h‖)

and

(C.6) sup
k∈N∪{∞}

(
1−Trσ

(k)
θ0
R

(k)2

h

)
= o(‖h‖2).

In the left-hand side of (C.5), the norm ‖ · ‖ stands for the operator norm. Then ρ(n)θ is q-LAN
at θ0.

PROOF. Let D(∞) = (D
(∞)
1 , . . . ,D

(∞)
r ) be a Dσ(∞) -invariant extension of L(∞) =

(L
(∞)
1 , . . . ,L

(∞)
d ) such that D(∞)

i = L
(∞)
i for i= 1, . . . , d. Accordingly, we define, for each

k ∈N, a set of observables D(k) = (D
(k)
1 , . . . ,D

(k)
r ) by

D
(k)
i =

{
L
(k)
i (1≤ i≤ d)

D
(∞)
i − (Trσ

(k)
θ0
D

(∞)
i )I (d+ 1≤ i≤ r)

.

It then follows from (C.3) and (C.4) that

Σ
(k)
ij := Trσ

(k)
θ0
D

(k)
j D

(k)
i , A

(k)
ij =: Tr

√
σ
(k)
θ0
D

(k)
j

√
σ
(k)
θ0
D

(k)
i

for k ∈N∪ {∞} satisfy

lim
k→∞

Σ(k) =Σ(∞), lim
k→∞

A(k) =A(∞).
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Moreover, sinceD(∞) isDσ(∞) -invariant, we see from Lemma C.4 thatA(∞) =Σ(∞)#Σ(∞)⊤ .
Let X(n) = (X

(n)
1 , . . . ,X

(n)
r ), where

X
(n)
i =

1√
n

n∑
k=1

I⊗(k−1) ⊗D(k)
i ⊗ I

⊗(n−k).

In order to prove the D-extendibility, it suffices to verify the following:

(i) There is an r× d matrix F satisfying ∆
(n)
k = F ikX

(n)
i for all n.

(ii) X(n)
ρ
(n)
θ0⇝ N(0,Σ(∞)).

(iii) For all ξ, η ∈ Rr ,

lim
n→∞

Tr

√
ρ
(n)
θ0
e
√
−1ξiX

(n)
i

√
ρ
(n)
θ0
e
√
−1ηiX

(n)
i = e

− 1

2

ξ
η

⊤ Σ(∞) Σ(∞)#Σ(∞)⊤

Σ(∞)#Σ(∞)⊤ Σ(∞)⊤

ξ
η

.

Firstly, by definition of D(k), (i) is satisfied by the following matrix

F =

(
I
O

)
,

where I is the d× d identity matrix and O is the (r− d)× d zero matrix. We next show (ii)
and (iii) simultaneously by modifying the proof of Theorem C.1. Let us regard Ĥ := B(H) as
a Hilbert space endowed with the Hilbert-Schmidt inner product 〈A,B〉HS := TrA∗B, and
let us introduce, for each X ∈B(H), linear operators LX and RX (1≤ i≤ r) on Ĥ by

LXZ =XZ, RXZ = ZX, (Z ∈B(Ĥ)).

Further, let ψ(k)
0 :=

√
σ
(k)
θ0
∈ Ĥ and introduce operators on Ĥ⊗n by

L(n)Xi
:=

1√
n

n∑
k=1

I⊗(k−1) ⊗LX(k)
i
⊗ I⊗(n−k),

R(n)
Xi

:=
1√
n

n∑
k=1

I⊗(k−1) ⊗RX(k)
i
⊗ I⊗(n−k).

Then, applying the quantum central limit theorem (Lemma C.6) to the product states

ρ̂
(n)
0 :=

n⊗
k=1

∣∣∣ψ(k)
0

〉〈
ψ
(k)
0

∣∣∣ ,
we obtain (

L(n)
X(n) ,R

(n)
X(n)

)
ρ̂
(n)
0⇝ N

(
0,

(
Σ(∞) Σ(∞)#Σ(∞)⊤

Σ(∞)#Σ(∞)⊤ Σ(∞)⊤

))
.

This proves (ii) and (iii).
We next prove that, with additional assumptions (C.5) and (C.6), the model ρ(n)θ is q-LAN

at θ0. Let J (k)
ij := Trσ

(k)
θ0
L
(k)
j L

(k)
i for k ∈N∪ {∞}. Since

∆(n)
ρ
(n)
θ0⇝ N(0, J (∞))
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has been shown in (ii) of the proof of D-extendibility, it suffices to prove that

(C.7) lim
n→∞

Trρ
(n)
θ0

{
e

1

2(h
i∆

(n)
i − 1

2
h⊤J(∞)h) − R̄(n)

h

}2
= 0

for R̄(n)
h := R(ρ(n)

θ0+h/
√
n
| ρ(n)θ0

). The sequence appeared in the left-hand side of (C.7) is
rewritten as

Trρ
(n)
θ0
eh

i∆
(n)
i − 1

2
h⊤J(∞)h +Trρ

(n)
θ0
R̄

(n)2

h − 2ReTrρ
(n)
θ0
R̄

(n)
h e

1

2(h
i∆

(n)
i − 1

2
h⊤J(∞)h).(C.8)

In order to prove (C.7), therefore, it suffices to verify the following:

(iv) lim
n→∞

Trρ
(n)
θ0
eh

i∆
(n)
i − 1

2
h⊤J(∞)h = 1.

(v) lim
n→∞

Trρ
(n)
θ0
R̄

(n)2

h = 1.

(vi) lim
n→∞

Trρ
(n)
θ0
R̄

(n)
h e

1

2(h
i∆

(n)
i − 1

2
h⊤J(∞)h) = 1.

Firstly, because of (C.4), the SLDs {L(k)
i }k∈N,1≤i≤d are uniformly bounded, and thus

Trρ
(n)
θ0
eh

i∆
(n)
i =

n∏
k=1

Trσ
(k)
θ0
e

1√
n
hiL

(k)
i

=

n∏
k=1

(
1 +

1

2n
h⊤J (k)h+O

(
1

n
√
n

))
.

In the second line, Trσ(k)θ0
L
(k)
i = 0 was used, and the remainder term O(1/n

√
n) is uniform

in k. Consequently,

lim
n→∞

logTrρ
(n)
θ0
eh

i∆
(n)
i = lim

n→∞

n∑
k=1

log

(
1 +

1

2n
h⊤J (k)h+O

(
1

n
√
n

))

= lim
n→∞

n∑
k=1

(
1

2n
h⊤J (k)h+O

(
1

n
√
n

))

=
1

2
h⊤J (∞)h,

proving (iv).
Secondly, taking the logarithm of

Trρ
(n)
θ0
R̄

(n)2

h =

n∏
k=1

Trσ
(k)
θ0
R

(k)2

h/
√
n
,

we have

logTrρ
(n)
θ0
R̄

(n)2

h =

n∑
k=1

logTrσ
(k)
θ0
R

(k)2

h/
√
n

=

n∑
k=1

log
{
1−

(
1−Trσ

(k)
θ0
R

(k)2

h/
√
n

)}

=

n∑
k=1

log

{
1− o

(
1

n

)}
.
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In the last equality, we used (C.6). Since the last line converges to 0 as n→∞, we have (v).
In order to prove (vi), we need to show that

B(k)(h) := I +
1

2
hiL

(k)
i −R

(k)
h

satisfies

(C.9) Trσ
(k)
θ0
B(k)(h/

√
n) =

1

8n
h⊤J (k)h+ o

(
1

n

)
,

where the remainder term o(1/n) is uniform in k. This is shown by observing the identity

1−Trσ
(k)
θ0
R

(k)2

h/
√
n
= 1−Trσ

(k)
θ0

(
I +

1

2
√
n
hiL

(k)
i −B

(k)(h/
√
n)

)2

=− 1

4n
h⊤J (k)h−Trσ

(k)
θ0
B(k)(h/

√
n)

2

+ 2Trσ
(k)
θ0
B(k)(h/

√
n) +

hi√
n
ReTrσ

(k)
θ0
L
(k)
i B(k)(h/

√
n)

=− 1

4n
h⊤J (k)h+ 2Trσ

(k)
θ0
B(k)(h/

√
n) + o

(
1

n

)
.

Here, (C.5) was used in the last equality. Since the above quantity is of order o(1/n) due to
(C.6), the equality (C.9) is proved.

Now we are ready to prove (vi), i.e.,

Trρ
(n)
θ0
R̄

(n)
h e

1

2(h
i∆

(n)
i − 1

2
h⊤J(∞)h) = e−

1

4
h⊤J(∞)h

n∏
k=1

Trσ
(k)
θ0
R

(k)

h/
√
n
e

1

2
√

n
hiL

(k)
i → 1 (n→∞).

We have from (C.5) and (C.9) that

Trσ
(k)
θ0
R

(k)

h/
√
n
e

1

2
√

n
hiL

(k)
i

=Trσ
(k)
θ0

(
I +

1

2
√
n
hiL

(k)
i −B

(k)(h/
√
n)

)
×
(
I +

1

2
√
n
hiL

(k)
i +

1

8n

(
hiL

(k)
i

)2
+ o

(
1

n

))
= 1+

1

8n
h⊤J (k)h+

1

4n
h⊤J (k)h−Trσ

(k)
θ0
B(k)(h/

√
n) + o

(
1

n

)
= 1+

1

4n
h⊤J (k)h+ o

(
1

n

)
.

Therefore,

lim
n→∞

log

n∏
k=1

Trσ
(k)
θ0
R

(k)

h/
√
n
e

1

2
√

n
hiL

(k)
i = lim

n→∞

n∑
k=1

log

(
1 +

1

4n
h⊤J (k)h+ o

(
1

n

))

= lim
n→∞

n∑
k=1

(
1

4n
h⊤J (k)h+ o

(
1

n

))

=
1

4
h⊤J (∞)h
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or equivalently,

lim
n→∞

Trρ
(n)
θ0
R̄

(n)
h e

1

2
hi∆

(n)
i = e

1

4
h⊤J(∞)h.

This proves (vi), and the proof of (C.7) is complete.

APPENDIX D: PROOFS OF LEMMAS IN SECTION 3

In this section, we give detailed proofs of lemmas presented in Section 3.

D.1. Proof of Lemma 3.1.

PROOF. Let ρ be the density operator of N(0, J) on the irreducible representation Hilbert
spaceH. Then ρ is pure if and only if Trρ2 = 1. On the other hand, due to the noncommuta-
tive Parseval identity [2],

Trρ2 =

√
detS

πd

∫
Rd

dξ |Fξ[ρ]|2 =
√

detS

πd

∫
Rd

dξe−ξ
⊤V ξ =

√
detS

πd

√
πd

detV
=

√
detS

detV
.

As a consequence, ρ is pure if and only if detV = detS.

D.2. Proof of Corollary 3.2.

PROOF. We first remark that the dimension d of the matrix J is even because the skew-
symmetric matrix S = ImJ is invertible. Now we set

Ĵ :=

(
J J#J⊤

J#J⊤ J⊤

)
.

Then

det(Im Ĵ) = det

(
S 0
0 S⊤

)
= (detS)2.

On the other hand, Ĵ is rewritten as

Ĵ =
1

2

(
I I
I −I

)(
V + J#J⊤ √

−1S√
−1S V − J#J⊤

)(
I I
I −I

)
.

Therefore, setting SV := V −1/2SV −1/2, we have

det(Re Ĵ) = det

(
V + J#J⊤ 0

0 V − J#J⊤

)
= det(V + J#J⊤)det(V − J#J⊤)

= (detV )2 det

(
I +

√
I + S2

V

)
det

(
I −

√
I + S2

V

)
= (detV )2 det(−S2

V )

= (detS)2.

Here we used Lemma C.3 in the third equality. It then follows from Lemma 3.1 that N(0, Ĵ)
is a pure state.
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D.3. Proof of Lemma 3.3.

PROOF. We first verify that the subspace H̊ := SpanC{ψ(ξ)}ξ∈D is dense in H. Since ψ
is a cyclic vector, the subspace SpanC{ψ(ξ)}ξ∈Rd is dense in H. Further, given ξ ∈ Rd, take
an arbitrary sequence ξ(n) ∈D that is convergent to ξ. Then

lim
n→∞

∥∥∥ψ(ξ)−ψ(ξ(n))∥∥∥2 = 2− 2 lim
n→∞

Re 〈ψ(ξ),ψ(ξ(n))〉

= 2− 2 lim
n→∞

Re
{
e−

√
−1ξ⊤Sξ(n)

〈
ψ,e−

√
−1(ξ−ξ(n))

i
Xiψ

〉}
= 0.

This proves that H̊ is dense in H.
We next introduce a sesquilinear functional F : H̊ × H̊→ C by

F

 n∑
i=1

aiψ(ξ
(i)),

m∑
j=1

bj ψ(η
(j))

 :=

n∑
i=1

m∑
j=1

āibj φ(ξ
(i);η(j)).

We need to verify that F is well-defined. Let
n∑
i=1

aiψ(ξ
(i)) =

n′∑
i=1

a′iψ(ξ
′(i)) and

m∑
j=1

bj ψ(η
(j)) =

m′∑
j=1

b′j ψ(η
′(j)).

be different representations of the same vectors in H̊. The well-definedness of F is proved
by showing the following series of equalities:

(D.1)
n∑
i=1

m∑
j=1

āibj φ(ξ
(i);η(j)) =

n∑
i=1

m′∑
j=1

āib
′
j φ(ξ

(i);η′(j)) =

n′∑
i=1

m′∑
j=1

ā′ib
′
j φ(ξ

′(i);η′(j)).

The first equality in (D.1) is equivalent to
m∑
j=1

bj φ(ξ
(i);η(j))−

m′∑
j=1

b′j φ(ξ
(i);η′(j)) = 0, (∀ξ(i) ∈D),

which is further equivalent to the following proposition:

(D.2)
r∑

k=1

ck ψ(ξ
(k)) = 0 =⇒

r∑
k=1

ck φ(ξ
(0); ξ(k)) = 0, (∀ξ(0) ∈D).

Since 0≺ φ≺ φI , the antecedent of the above proposition (D.2) implies that for any r ∈ N,
{ξ(i)}0≤i≤r ⊂D, and {ci}0≤i≤r ⊂ C with c0 = 0,

0≤
r∑
i=0

r∑
j=0

c̄icj φ(ξ
(i); ξ(j))≤

r∑
i=0

r∑
j=0

c̄icj φI(ξ
(i); ξ(j)) =

∥∥∥∥∥
r∑

k=0

ck ψ(ξ
(k))

∥∥∥∥∥
2

= 0.

This shows that the vector (c0, c1, . . . , cr)⊤ belongs to the kernel of the positive-semidefinite
matrix [

φ(ξ(i); ξ(j))
]
0≤i,j≤r

.

As a consequence,
r∑

k=1

ck φ(ξ
(0); ξ(k)) =

r∑
k=0

ck φ(ξ
(0); ξ(k)) = 0,
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proving the proposition (D.2). The second equality in (D.1) is proved in the same way.
Now, fix an element ϕ0 ∈ H̊ arbitrarily. Then the map ϕ1 7→ F (ϕ1, ϕ0) is a bounded

conjugate-linear functional on a dense subset H̊ of H, so that it is continuously extended
to the totality of H, and there is a vector ϕF0 ∈H such that〈

ϕ1, ϕ
F
0

〉
= F (ϕ1, ϕ0).

Since the map ϕ0 7→ ϕF0 is a bounded linear transformation on H̊, it is continuously extended
to H, and there is a bounded operator A satisfying ϕF0 =Aϕ0 for all ϕ0 ∈H. In summary,

F (ϕ1, ϕ0) = 〈ϕ1,Aϕ0〉.

Since F (ϕ1, ϕ0) = F (ϕ0, ϕ1), the operator A is selfadjoint. Further, since 0 ≺ φ ≺ φI , we
see that 0≤A≤ I . Finally, since

φ(ξ;η) = F (ψ(ξ),ψ(η)) = 〈ψ(ξ),Aψ(η)〉

on D×D, it is continuously extended to Rd × Rd.

D.4. Proof of Lemma 3.4.

PROOF. In view of (8), it suffices to show that V (φ) and e
√
−1(ζicX̂c,i+ζjaX̂a,j) commute for

any ζc ∈ Rdc and ζa ∈ Rda . For any ξc, ηc ∈ Rdc , ξq, ηq ∈ Rdq , and ξa, ηa ∈ Rda ,〈
ψ(ξc, ξq, ξa), e

−
√
−1(ζicX̂c,i+ζjaX̂a,j)V (φ)e

√
−1(ζicX̂c,i+ζjaX̂a,j)ψ(ηc, ηq, ηa)

〉
= e

√
−1(−ζ⊤a Saξa+ζ⊤a Saηa) 〈ψ(ξc + ζc, ξq, ξa + ζa), V (φ)ψ(ηc + ζc, ηq, ηa + ζa)〉

= e
√
−1(−ζ⊤a Saξa+ζ⊤a Saηa)φ(ξc + ζc, ξq, ξa + ζa;ηc + ζc, ηq, ηa + ζa)

= e
√
−1(−ζ⊤a Saξa+ζ⊤a Saηa)e−

√
−1(ξa+ζa)⊤Sa(ηa+ζa)φ(ξc − ηc, ξq, ξa − ηa; 0, ηq,0)

= e−
√
−1ξ⊤a Saηaφ(ξc − ηc, ξq, ξa − ηa; 0, ηq,0)

Since the last line is independent of ζc and ζa, the proof is complete.

D.5. Proof of Lemma 3.5.

PROOF. Let L∞
c.a.e.(R) denote the set of real-valued bounded Borel functions on R that are

continuous almost everywhere. To prove Lemma 3.5, it suffices to verify that

lim
n→∞

Trρ(n)e
√
−1ξiX

(n)
i f(ζiX

(n)
i )A(n)e

√
−1ηiX

(n)
i(D.3)

=Trρ(∞)e
√
−1ξiX

(∞)
i f(ζiX

(∞)
i )A(∞)e

√
−1ηiX

(∞)
i

for all ξ, η, ζ ∈ Rd and f ∈ L∞
c.a.e.(R). In fact, since f(ζiX

(n)
i )A(n) are also uniformly

bounded, (11) can be derived by applying (D.3) and its complex conjugate recursively.
We first show that (10) can be extended to all ξ ∈ Rd. For any ε > 0 and ξ ∈ Rd, there

exists a ξ̃ ∈ Qd such that

Trρ(∞)
∣∣∣(e√−1ξiX

(∞)
i − e

√
−1ξ̃iX

(∞)
i

)∗∣∣∣2 < ε
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Then, by using the Schwarz inequality,

limsup
n→∞

∣∣∣Trρ(n) (e√−1ξiX
(n)
i − e

√
−1ξ̃iX

(n)
i

)
A(n)e

√
−1ηiX

(n)
i

∣∣∣2
≤ limsup

n→∞
Trρ(n)

∣∣∣(e√−1ξiX
(n)
i − e

√
−1ξ̃iX

(n)
i

)∗∣∣∣2 ×Trρ(n)
∣∣∣A(n)e

√
−1ηiX

(n)
i

∣∣∣2
≤M2 Trρ(∞)

∣∣∣(e√−1ξiX
(∞)
i − e

√
−1ξ̃iX

(∞)
i

)∗∣∣∣2
<M2ε,

where M := supn ‖A(n)‖. Similarly, we have∣∣∣Trρ(∞)
(
e
√
−1ξiX

(∞)
i − e

√
−1ξ̃iX

(∞)
i

)
A(∞)e

√
−1ηiX

(∞)
i

∣∣∣2 <M2ε.

It then follows from Lemma E.1 that (10) holds for all ξ ∈ Rd and η ∈ Qd. By applying a
similar argument to η, we see that (10) holds for all ξ, η ∈ Rd.

We next show that

lim
n→∞

Trρ(n)e
√
−1ξiX

(n)
i e

√
−1ζiX

(n)
i A(n)e

√
−1ηiX

(n)
i(D.4)

=Trρ(∞)e
√
−1ξiX

(∞)
i e

√
−1ζiX

(∞)
i A(∞)e

√
−1ηiX

(∞)
i

for all ξ, η, ζ ∈ Rd. In fact, letting S = ImJ ,

limsup
n→∞

∣∣∣Trρ(n) (e√−1ξiX
(n)
i e

√
−1ζiX

(n)
i − e

√
−1ξ⊤Sζe

√
−1(ξ+ζ)iX

(n)
i

)
A(n)e

√
−1ηiX

(n)
i

∣∣∣2
≤ limsup

n→∞
Trρ(n)

∣∣∣(e√−1ζiX
(n)
i e

√
−1ξiX

(n)
i − e

√
−1ξ⊤Sζe

√
−1(ξ+ζ)iX

(n)
i

)∗∣∣∣2
×Trρ(n)

∣∣∣A(n)e
√
−1ηiX

(n)
i

∣∣∣2
≤M2 Trρ(∞)

∣∣∣(e√−1ζiX
(∞)
i e

√
−1ξiX

(∞)
i − e

√
−1ξ⊤Sζe

√
−1(ξ+ζ)iX

(∞)
i

)∗∣∣∣2
= 0.

By using this, (D.4) is proved as follows.

lim
n→∞

Trρ(n)e
√
−1ξiX

(n)
i e

√
−1ζiX

(n)
i A(n)e

√
−1ηiX

(n)
i

= e
√
−1ξ⊤Sζ lim

n→∞
Trρ(n)e

√
−1(ξ+ζ)iX

(n)
i A(n)e

√
−1ηiX

(n)
i

= e
√
−1ξ⊤Sζ Trρ(∞)e

√
−1(ξ+ζ)iX

(∞)
i A(∞)e

√
−1ηiX

(∞)
i

=Trρ(∞)e
√
−1ξiX

(∞)
i e

√
−1ζiX

(∞)
i A(∞)e

√
−1ηiX

(∞)
i .

In the second equality, (10) is used.
Now we are ready to prove (D.3). Let Z(n) := ζiX

(n)
i for each n ∈ N ∪ {∞} and ζ ∈ Rd.

According to (D.4), for any f ∈ SpanC{e
√
−1tx}t∈R, we have

lim
n→∞

Trρ(n)e
√
−1ξiX

(n)
i f(Z(n))A(n)e

√
−1ηiX

(n)
i(D.5)

=Trρ(∞)e
√
−1ξiX

(∞)
i f(Z(∞))A(∞)e

√
−1ηiX

(∞)
i .



22

Our goal is to prove this identity for all f ∈ L∞
c.a.e.(R).

Let

ρ
(n)
ξ := e−

√
−1ξiX

(n)
i ρ(n)e

√
−1ξiX

(n)
i ,

and let µ(n)ξ be the classical probability measure on R that has the characteristic function

φ
(n)
ξ (t) := Trρ

(n)
ξ e

√
−1tZ(n)

.

It then follows from (9) that, for all t ∈ R,

lim
n→∞

φ
(n)
ξ (t) = lim

n→∞
Trρ(n)e

√
−1ξiX

(n)
i e

√
−1t ζiX

(n)
i e−

√
−1ξiX

(n)
i

=Trρ(∞)e
√
−1ξiX

(∞)
i e

√
−1t ζiX

(∞)
i e−

√
−1ξiX

(∞)
i

= e−2
√
−1t ζ⊤Sξ Trρ(∞)e

√
−1t ζiX

(∞)
i

= exp

[√
−1t

(
ζ⊤h− 2ζ⊤Sξ

)
− t2

2
ζ⊤Jζ

]
.

This shows that that

µ
(n)
ξ ⇝N

(
ζ⊤h− 2ζ⊤Sξ, ζ⊤Jζ

)
.

Let pξ be the density function of the classical Gaussian distributionN(ζ⊤h−2ζ⊤Sξ, ζ⊤Jζ),
and let ψξ :=

√
pξ ∈ L2(R). Then, the portmanteau lemma shows that, for all f ∈ L(∞)

c.a.e.(R),

lim
n→∞

Trρ
(n)
ξ f(Z(n)) = lim

n→∞

∫
R
f(z)µ

(n)
ξ (dz) =

∫
R
f(z)pξ(z)dz,= 〈ψξ, fψξ〉

where

〈ψ1,ψ2〉 :=
∫

R
ψ1(z)ψ2(z)dz (ψ1,ψ2 ∈ L2(R)).

Now recall that

Span
SOT
C

{
e
√
−1tx

}
t∈R

= L∞(R).

Thus, for all ε > 0 and f ∈ L(∞)
c.a.e.(R), there exists a real-valued function f̃ ∈ SpanC{e

√
−1tx}t∈R

such that

‖(f − f̃)ψξ‖2 = 〈ψξ, (f − f̃)2ψξ〉< ε.

Then by using the Schwarz inequality,

limsup
n→∞

∣∣∣Trρ(n)e√−1ξiX
(n)
i

{
f(Z(n))− f̃(Z(n))

}
A(n)e

√
−1ηiX

(n)
i

∣∣∣2(D.6)

≤ limsup
n→∞

Trρ
(n)
ξ

{
f(Z(n))− f̃(Z(n))

}2
×Trρ(n)

∣∣∣A(n)e
√
−1ηiX

(n)
i

∣∣∣2
≤M2〈ψξ, (f − f̃)2ψξ〉

<M2ε.

Likewise,

(D.7)
∣∣∣Trρ(∞)e

√
−1ξiX

(∞)
i

{
f(Z(∞))− f̃(Z(∞))

}
A(∞)e

√
−1ηiX

(∞)
i

∣∣∣2 <M2ε.

Now that (D.5) (D.6) (D.7) have been verified, the identity (D.3) is an immediate consequence
of Lemma E.1.
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D.6. Proof of Lemma 3.6. We begin with a brief review of the uniform integrability.
Given sequences of quantum states {ρ(n)}n∈N and observables {B(n)}n∈N on Hilbert spaces
{H(n)}n∈N, we say that B(n) is uniformly integrable with respect to ρ(n) if for all ε > 0,
there exists L> 0 that satisfies

(D.8) Trρ(n)
∣∣∣B(n) − hL(B(n))

∣∣∣< ε

for all n. Here, the function hL is defined by

(D.9) hL(x) =

{
x (|x| ≤ L)
0 (|x|>L)

.

When Trρ(n)|B(n)|<∞ for all n ∈N, the uniform integrability is equivalent to saying that

limsup
n→∞

Trρ(n)
∣∣∣B(n) − hL(B(n))

∣∣∣< ε.

Note that (D.8) implies Trρ(n)|B(n)|<L+ ε for all n. In other words, uniform integrability
entails uniform boundedness of Trρ(n)|B(n)|.

PROOF OF LEMMA 3.6. Set

Ã(n) :=

{
r1∏
s=2

fs(ξ
i
sX

(n)
i )

}
A(n)

{
r2∏
t=2

gt(η
i
tX

(n)
i )

}∗

.

Then Ã(n) is uniformly bounded, i.e., there is an M̃ > 0 such that ‖Ã(n)‖ < M̃ for all n ∈
N∪ {∞}. Further, set

Y (n) := ξi1X
(n)
i , Z(n) := ηi1X

(n)
i , Ỹ (n) := Y (n) + o

(n)
1 , Z̃(n) := Z(n) + o

(n)
2 .

It then follows from the proof of Lemma 3.5 that, for any s, t ∈ R,

lim
n→∞

Trρ(n)e
√
−1sY (n)

Ã(n)e
√
−1tZ(n)

=Trρ(∞)e
√
−1sY (∞)

Ã(∞)e
√
−1tZ(∞)

.

and therefore

lim
n→∞

Trρ(n)e
√
−1sỸ (n)

Ã(n)e
√
−1tZ̃(n)

=Trρ(∞)e
√
−1sY (∞)

Ã(∞)e
√
−1tZ(∞)

.

We can further deduce from Lemma 3.5 that, for any L> 0,

(D.10) lim
n→∞

Trρ(n)fL(Ỹ
(n))Ã(n)gL(Z̃

(n)) = Trρ(∞)fL(Y
(∞))Ã(∞)gL(Z

(∞)),

where fL := hL◦f1 and gL := hL◦g1 are bounded functions. Our goal is to prove that fL and
gL in (D.10) can be replaced with f1 and g1 if both f1(Ỹ (n))2 and g1(Z̃(n))2 are uniformly
integrable under ρ(n).

As stated in the preliminary remark of this subsection, there exists a K > 0 that fulfills

(D.11) max
{
Trρ(n)f1(Ỹ

(n))2, Trρ(n)g1(Z̃
(n))2

}
≤K

for all n ∈N∪ {∞}. In addition, for any ε > 0, there exists an L> 0 such that

(D.12) max

{
Trρ(n)

(
f1(Ỹ

(n))− fL(Ỹ (n))
)2
, Trρ(n)

(
g1(Z̃

(n))− gL(Z̃(n))
)2}

< ε
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for all n ∈N∪ {∞}. Observe that, for all n ∈N,∣∣∣Trρ(n)f1(Ỹ (n))Ã(n)g1(Z̃
(n))−Trρ(∞)f1(Y

(∞))Ã(∞)g1(Z
(∞))

∣∣∣(D.13)

≤
∣∣∣Trρ(n)f1(Ỹ (n))Ã(n)g1(Z̃

(n))−Trρ(n)fL(Ỹ
(n))Ã(n)gL(Z̃

(n))
∣∣∣

+
∣∣∣Trρ(n)fL(Ỹ (n))Ã(n)gL(Z̃

(n))−Trρ(∞)fL(Y
(∞))Ã(∞)gL(Z

(∞))
∣∣∣

+
∣∣∣Trρ(∞)fL(Y

(∞))Ã(∞)gL(Z
(∞))−Trρ(∞)f1(Y

(∞))Ã(∞)g1(Z
(∞))

∣∣∣ .
The second line in (D.13) is evaluated as follows. For any ε > 0, take L> 0 satisfying (D.12).
Then by using (D.11),∣∣∣Trρ(n)f1(Ỹ (n))Ã(n)g1(Z̃

(n))−Trρ(n)fL(Ỹ
(n))Ã(n)gL(Z̃

(n))
∣∣∣(D.14)

≤
∣∣∣Trρ(n){f1(Ỹ (n))− fL(Ỹ (n))

}
Ã(n)g1(Z̃

(n))
∣∣∣

+
∣∣∣Trρ(n)fL(Ỹ (n))Ã(n)

{
g1(Z̃

(n))− gL(Z̃(n))
}∣∣∣

≤
√

Trρ(n)
{
f1(Ỹ (n))− fL(Ỹ (n))

}2
×Trρ(n)

∣∣∣Ã(n)g1(Z̃(n))
∣∣∣2

+

√
Trρ(n)

∣∣∣(fL(Ỹ (n))Ã(n)
)∗∣∣∣2 ×Trρ(n)

{
g1(Z̃(n))− gL(Z̃(n))

}2

< 2M̃
√
εK.

The last line in (D.13) is evaluated just by setting n=∞ in (D.14). Finally, the third line in
(D.13) is evaluated as follows: because of (D.10), for any ε > 0, there is an N ∈N such that
n≥N implies∣∣∣Trρ(n)fL(Ỹ (n))Ã(n)gL(Z̃

(n))−Trρ(∞)fL(Y
(∞))Ã(∞)gL(Z

(∞))
∣∣∣< ε.

Putting these evaluations together, we have∣∣∣Trρ(n)f1(Ỹ (n))Ã(n)g1(Z̃
(n))−Trρ(∞)f1(Y

(∞))Ã(∞)g1(Z
(∞))

∣∣∣< 4M̃
√
εK + ε.

Since ε > 0 is arbitrary, the proof is complete.

D.7. Proof of Corollary 3.7.

PROOF. The first assertion (12) immediately follows from the conventional quantum Le
Cam third lemma [5, Corollary 7.5]. We focus our attention on the proof of (13) and (14).

The basic observation for the proof of (13) is that the square-root likelihood ratio R(n)
h is

an (unbounded) function of X(n). Therefore, in order to invoke the extended version of the
sandwiched Lévy-Cramér continuity theorem (Lemma 3.6), we need to show the uniform
integrability. As a matter of fact, uniform integrability of (R(n)

h + oL2(ρ
(n)
θ0

))2 under ρ(n)θ0
has

been shown in [5, Theorem 6.2]. For the sake of the reader’s convenience, however, we give
a simplified proof.

Let σ(∞) be the density operator of N(0, J) and let {∆(∞)
i }di=1 be the corresponding

canonical observables. Since the model ρ(n)θ is q-LAN at θ0, for any ε > 0, there exists an
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L> 0 such that

limsup
n→∞

Trρ
(n)
θ0

{(
R

(n)
h + oL2(ρ

(n)
θ0

)
)2
− hL

({
R

(n)
h + oL2(ρ

(n)
θ0

)
}2
)}

≤ limsup
n→∞

{
1−Trρ

(n)
θ0
hL

({
R

(n)
h + oL2(ρ

(n)
θ0

)
}2
)}

= limsup
n→∞

{
1−Trρ

(n)
θ0
hL

(
eh

i∆
(n)
i − 1

2
h⊤Jh+oD(hi∆

(n)
i , ρ

(n)
θ0

)
)}

= 1−Trσ(∞)hL

(
eh

i∆
(∞)
i − 1

2
h⊤Jh

)
< ε.

Here, the function hL is defined by (D.9), and the last equality is guaranteed by the quantum
Lévy-Cramér continuity theorem (cf., Lemma 3.5 withA(n) = I(n)). This proves that (R(n)

h +

oL2(ρ
(n)
θ0

))2 is uniformly integrable.

Now we prove (13). Since {X(n)
k }1≤k≤r is a D-extension of {∆(n)

i }1≤i≤d,

∆
(n)
i = F ki X

(n)
k .

It then follows from the definition of q-LAN that, for all h ∈ Rd,

R
(n)
h = exp

{
1

2

(
(Fh)iX

(n)
i − 1

2
h⊤Jh+ o

(n)
h

)}
− oL2(ρ

(n)
θ0

),

where o(n)h = oD((Fh)
iX

(n)
i , ρ

(n)
θ0

), and J = F⊤ΣF . Since (R(n)
h + oL2(ρ

(n)
θ0

))2 is uniformly

integrable for all h under ρ(n)θ0
, we can conclude from the extended version of the sandwiched

Lévy-Cramér continuity theorem (Lemma 3.6) that

lim
n→∞

Trρ
(n)
θ0
R

(n)
h1
A(n)R

(n)
h2

= lim
n→∞

Trρ
(n)
θ0
e

1

2((Fh1)iX
(n)
i − 1

2
h⊤
1 Jh1+o

(n)
h1
)A(n)e

1

2((Fh2)iX
(n)
i − 1

2
h⊤
2 Jh2+o

(n)
h2
)

= Trρ
(∞)
0 e

1

2((Fh1)iX
(∞)
i − 1

2
h⊤
1 Jh1)A(∞)e

1

2((Fh2)iX
(∞)
i − 1

2
h⊤
2 Jh2)

= Trρ
(∞)
0 R

(∞)
h1

A(∞)R
(∞)
h2

.

Finally, (14) immediately follows from (13) and the fact that the singular parts asymptoti-
cally vanish [5, Corollary 7.5], in that,

lim
n→∞

Tr
∣∣∣ρ(n)θ0+h/

√
n
−R(n)

h ρ
(n)
θ0
R

(n)
h

∣∣∣= lim
n→∞

{
1−Trρ

(n)
θ0
R

(n)2

h

}
= 0.

The proof is complete.

D.8. Proof of Lemma 3.8.

PROOF. The Hilbert-Schmidt norm under consideration is calculated as∥∥∥∥W (n)(ξ)W (n)(η)

√
ρ(n) − e

√
−1ξ⊤SηW (n)(ξ + η)

√
ρ(n)

∥∥∥∥2
HS

=Tr

√
ρ(n)W (n)(η)∗W (n)(ξ)∗W (n)(ξ)W (n)(η)

√
ρ(n)
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+Tr

√
ρ(n)W (n)(ξ + η)∗W (n)(ξ + η)

√
ρ(n)

− 2Re

{
e
√
−1ξ⊤Sη ·Tr

√
ρ(n)W (n)(η)∗W (n)(ξ)∗W (n)(ξ + η)

√
ρ(n)

}
= 2− 2Re

{
e
√
−1ξ⊤Sη ·Trρ(n)W (n)(−η)W (n)(−ξ)W (n)(ξ + η)

}
.

Letting W (ξ) := e
√
−1ξiXi , we see from the assumption (X(n), ρ(n))⇝N(0, J) that

lim
n→∞

Trρ(n)W (n)(−η)W (n)(−ξ)W (n)(ξ + η)

= Trρ(∞)W (−η)W (−ξ)W (ξ + η)

= e
√
−1(−η)i(−ξ)jSij Trρ(∞)W (−η− ξ)W (ξ + η)

= e
√
−1η⊤Sξ,

where ρ(∞) is the density operator of N(0, J). Since S is real skew-symmetric,

lim
n→∞

∥∥∥∥W (n)(ξ)W (n)(η)

√
ρ(n) − e

√
−1ξ⊤SηW (n)(ξ + η)

√
ρ(n)

∥∥∥∥2
HS

= 2− 2Re
{
e
√
−1ξ⊤Sη · e

√
−1η⊤Sξ

}
= 0.

This proves the claim.

APPENDIX E: PROOFS OF THEOREMS IN SECTION 5

In this section, we give detailed proofs of theorems presented in Section 5.

E.1. Chain of convergence. We begin with the following Lemma, which is elementary
but is useful in later applications.

LEMMA E.1 (Chain of convergence). Let X and Y be sets and 〈Z,d〉 be a metric space.
Suppose that sequences of functions Fn :X → Z and Gn : Y → Z for n ∈ N ∪ {∞} satisfy
the following conditions:

lim
n→∞

Fn(x) = F∞(x), (∀x ∈X),

and for all ε > 0 and y ∈ Y , there exists x ∈X satisfying

limsup
n→∞

d (Gn(y),Fn(x))< ε and d (G∞(y),F∞(x))< ε.

Then

lim
n→∞

Gn(y) =G∞(y), (∀y ∈ Y ).

PROOF. Take ε > 0 and y ∈ Y arbitrarily. Then, there exist x ∈X and N ∈N such that

d (Fn(x),F∞(x))< ε and d (Gn(y),Fn(x))< 2ε

for all n≥N , and

d (G∞(y),F∞(x))< ε.

Thus

d (Gn(y),G∞(y))≤ d (Gn(y),Fn(x)) + d (Fn(x),F∞(x)) + d (F∞(x),G∞(y))< 4ε,

proving the claim.



SUPPLEMENTARY MATERIAL TO EFFICIENCY OF ESTIMATORS FOR Q-LAN MODELS 27

E.2. Proof of Lemma 5.1.

PROOF. Let L be the classical distribution obtained by applying the shifted POVMM −h
to ϕh, that is, L(B) := ϕh((M − h)(B)), which is independent of h by assumption. Let m
be the first moment of L. Then, for each i= 1, . . . , d,∫

Rd

(z − h)iϕh((M −m)(dz)) =

∫
Rd+m

(x−m− h)i ϕh(M(dx))

=

∫
Rd+m−h

(y−m)iϕh((M − h)(dy))

=

∫
Rd

(y−m)iL(dy) = 0.

This implies that M −m is an unbiased estimator for the parameter h of ϕh. It then follows
from the quantum Cramér-Rao type inequality [2] that

c
(H)
G ≤Gij

∫
Rd

(z − h)i(z − h)jϕh((M −m)(dz))

=Gij

∫
Rd+m−h

(y−m)i(y−m)jϕh((M − h)(dy))

=Gij

{∫
Rd

yiyjL(dy)−mimj

}
.

As a consequence,

Gij

∫
Rd

(x− h)i (x− h)j ϕh(M(dx)) =Gij

∫
Rd−h

yiyjϕh((M − h)(dy))≥ c
(H)
G ,

proving the claim.

Note that this result is closely related to what Holevo established in [2] within the frame-
work of group covariant measurement, where the achievability of the lower bound was also
discussed.

E.3. Proof of Theorem 5.2.

PROOF. By applying the representation Theorem 2.4 to the sequence
N (n) :=M (n)h + h=

√
n(M (n) − θ0)

of POVMs that is independent of h ∈ Rd, we see that there exists a POVM N on ϕh ∼
N((Re τ)h,Σ) such that(

N (n), ρ
(n)

θ0+h/
√
n

)
h⇝ (N,ϕh) (∀h ∈ Rd).

Let Lh denote the classical probability distribution of outcomes of N applied to ϕh. Then,
by construction, for any B ∈ B(Rd) that satisfies Lh(∂B) = 0,

Lh(B) = ϕh(N(B))

= lim
n→∞

Trρ
(n)

θ0+h/
√
n
N (n)(B)

= lim
n→∞

Trρ
(n)

θ0+h/
√
n
(M (n)h + h)(B)

= lim
n→∞

Trρ
(n)

θ0+h/
√
n
M (n)h(B − h)

= L(B − h).
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Here, L is the limit distribution of M (n)h under ρ(n)
θ0+h/

√
n

, which is independent of h by
regularity. As a consequence,

ϕh((N − h)(B)) = ϕh(N(B + h)) = Lh(B + h) = L(B).

Since the last side is independent of h, N is equivalent in law. Thus, Lemma 5.1 yields∫
Rd

Gij(x− h)i(x− h)jϕh(N(dx))≥ c(rep)G ,

which implies (25), and the portmanteau lemma proves (26).

E.4. Proof of Theorem 5.3.

PROOF. Let {Xi}ri=1 be the canonical observables of ϕh ∼N((Re τ)h,Σ), and let

(E.1) Y⋆ i := (K⋆)
j
iXj ,

where K⋆ is the r × d matrix K that achieves the minimum in the definition (7) of c(rep)G .
Thus,

c
(rep)
G =TrGReZ⋆ +Tr

∣∣∣√G ImZ⋆
√
G
∣∣∣=TrGV⋆,

where

Z⋆ =K⊤
⋆ ΣK⋆

is the complex d× d matrix whose (i, j)th entry is ϕ0(Y⋆ jY⋆ i), and

V⋆ := ReZ⋆ +
√
G

−1
∣∣∣√G ImZ⋆

√
G
∣∣∣√G−1

,

is a real d× d matrix. Note that V⋆ ≥ Z⋆, since

V⋆ ≥ReZ⋆ +
√
−1
√
G

−1√
G ImZ⋆

√
G
√
G

−1
= Z⋆.

By analogy to (E.1), we introduce a sequence of transformed observables

Y
(n)
⋆ i := (K⋆)

j
iX

(n)
j

on H(n).
Let us consider another quantum Gaussian state ϕ̃ ∼ N(0, Z̃⋆) with Z̃⋆ := V⋆ − Z⋆ and

canonical observables Ỹ = (Ỹ1, . . . , Ỹd) on an ancillary Hilbert space H̃. Accordingly, for

each n ∈N, we introduce a quantum state σ(n)⋆ and observables Ỹ⋆
(n)

= (Ỹ
(n)
⋆1 , . . . , Ỹ

(n)
⋆d ) on

an ancillary Hilbert space H̃(n) satisfying

(E.2) (Ỹ
(n)
⋆ , σ

(n)
⋆ )⇝N(0, Z̃⋆).

A key observation is that the series of observables2

Ȳ
(n)
⋆ i := Y

(n)
⋆ i ⊗ I + I ⊗ Ỹ (n)

⋆ i (1≤ i≤ d)

on the enlarged Hilbert spaces H(n) ⊗ H̃(n) exhibits

(E.3) (Ȳ
(n)
⋆ , ρ

(n)

θ0+h/
√
n
⊗ σ(n)⋆ )

h⇝N(h,V⋆).

2This construction was inspired by the optical heterodyne measurement [2].
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This can be verified by calculating the limit of the quasi-characteristic function

Tr
(
ρ
(n)

θ0+h/
√
n
⊗ σ(n)⋆

) T∏
t=1

e
√
−1ξitȲ

(n)
⋆ i(E.4)

=

{
Trρ

(n)

θ0+h/
√
n

T∏
t=1

e
√
−1ξit(K⋆)

j
iX

(n)
j

}
×

{
Trσ

(n)
⋆

T∏
t=1

e
√
−1ξitỸ

(n)
⋆ i

}
,

where {ξt}Tt=1 ⊂ Rd. In fact, since

(X(n), ρ
(n)

θ0+h/
√
n
)
h⇝N((Re τ)h,Σ),

which follows from the quantum Le Cam third lemma (Corollary 3.7), the first factor in the
second line of (E.4) has the limit

exp

[
T∑
t=1

{√
−1 ξit(K⋆)

j
i (Re τ)jkh

k − 1

2
ξit(K⋆)

k
i · ξ

j
t (K⋆)

ℓ
j Σℓk

}
(E.5)

−
T∑
t=1

T∑
u=r+1

ξit(K⋆)
k
i · ξju(K⋆)

ℓ
j Σℓk

]

= exp

[
T∑
t=1

{√
−1 ξitδijhj −

1

2
ξitξ

j
t (Z⋆)ji

}
−

T∑
t=1

T∑
u=r+1

ξitξ
j
u(Z⋆)ji

]
.

Here, the equalities K⊤
⋆ (Re τ) = I and K⊤

⋆ ΣK⋆ = Z⋆ have been used. On the other hand,
due to the assumption (E.2), the second factor in the second line of (E.4) has the limit

exp

[
T∑
t=1

{
−1

2
ξitξ

j
t (Z̃⋆)ji

}
−

T∑
t=1

T∑
u=r+1

ξitξ
j
u(Z̃⋆)ji

]
.(E.6)

Since Z⋆ + Z̃⋆ = V⋆, (E.4), (E.5), and (E.6) yield

lim
n→∞

Tr
(
ρ
(n)

θ0+h/
√
n
⊗ σ(n)⋆

) T∏
t=1

e
√
−1ξitȲ

(n)
⋆ i

= exp

[
T∑
t=1

{√
−1 ξitδijhj −

1

2
ξitξ

j
t (V⋆)ji

}
−

T∑
t=1

T∑
u=r+1

ξitξ
j
u(V⋆)ji

]
.

This is nothing but the quasi-characteristic function of the classical Gaussian shift model
N(h,V⋆), proving (E.3).

We next construct a sequence M (n)
⋆ of POVMs by means of functional calculus for Ȳ (n)

⋆ .
Since {Ȳ (n)

⋆ i }di=1 do not in general commute, we need some elaboration. For each positive
integer m ∈N, define an indicator function S(m) : R→{0,1} by

S(m)(x) := 1(− 1

2m
, 1

2m
](x) =

{
1, if x ∈ (− 1

2m ,
1
2m ]

0, if x 6∈ (− 1
2m ,

1
2m ]

.

Then, for each x ∈ R and n ∈N, the map enjoys the identity

(E.7)
∑
k∈Z

S(m)

(
x− k

m

)
= 1.
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For each pair (n,m) of positive integers, define

M
(n,m)
⋆ (ω) :=

(
d∏
i=1

S(m)
(
Ȳ

(n)
⋆ i − ωi

))( d∏
i=1

S(m)
(
Ȳ

(n)
⋆ i − ωi

))∗

,

where

ω = (ω1, . . . , ωd) ∈Ω(m) :=
{(z1

m
, . . . ,

zd
m

)
| z1, . . . , zd ∈ Z

}
.

It then follows from (E.7) that M (n,m)
⋆ is a POVM onH(n)⊗H̃ whose outcomes take values

on Ω(m).
Note that, due to (E.3) and the quantum Lévy-Cramér continuity theorem (cf., Lemma 3.5

withA(n) = I(n)), as well as the fact that the set of discontinuity points of S(m) has Lebesgue
measure zero, the following equality holds:

lim
n→∞

Tr
(
ρ
(n)

θ0+h/
√
n
⊗ σ(n)⋆

)
M

(n,m)
⋆ (ω) =

∫
Rd

ph(x)

d∏
i=1

S(m)(xi − ωi)dx,

where ph(x) denotes the probability density function of N(h,V⋆). Note also that for each
t= (ti) ∈ Rd, the indicator function χt(x) := 1(−∞,t](x) fulfills the following equality

lim
m→∞

∑
ω∈Ω(m)

χt(ω)

d∏
i=1

S(m)(xi − ωi) = χt(x)

for all x ∈ Rd but x= t. Combining these equalities, we have

lim
m→∞

lim
n→∞

∑
ω∈Ω(m)

χt(ω)Tr
(
ρ
(n)

θ0+h/
√
n
⊗ σ(n)⋆

)
M

(n,m)
⋆ (ω) =

∫
Rd

χt(x)ph(x)dx

for all h ∈ Rd and t ∈ Rd.
As a consequence, the diagonal sequence trick shows that there exists a subsequence

{m(n)}n∈N such that

lim
n→∞

∑
ω∈Ω(m(n))

χt(ω)Tr
(
ρ
(n)

θ0+h/
√
n
⊗ σ(n)⋆

)
M

(n,m(n))
⋆ (ω) =

∫
Rd

χt(x)ph(x)dx

for all h ∈ Qd and t ∈ Qd. Setting M̄ (n)
⋆ :=M

(n,m(n))
⋆ and Ω̄(n) := Ω(m(n)), we get

(E.8) lim
n→∞

∑
ω∈Ω̄(n)

χt(ω)Tr
(
ρ
(n)

θ0+h/
√
n
⊗ σ(n)⋆

)
M̄

(n)
⋆ (ω) =

∫
Rd

χt(x)ph(x)dx

for all h ∈ Qd and t ∈ Qd. Moreover, since both sides of (E.8) are monotone increasing in t,
and the right-hand side is continuous in t, (E.8) holds for all t ∈ Rd and all h ∈ Qd.

Now let, for each t ∈ Rd,

M
(n)
⋆ t := Tr H̃(n)

 ∑
ω∈Ω̄(n)

χt(ω)M̄
(n)
⋆ (ω)

(I(n) ⊗ σ(n)⋆

)
,

where Tr H̃(n) denotes the partial trace on H̃(n). Then, M (n)
⋆ t is a resolution of identity on

H(n) satisfying

lim
n→∞

Trρ
(n)

θ0+h/
√
n
M

(n)
⋆ t = lim

n→∞

∑
ω∈Ω̄(n)

χt(ω)Tr
(
ρ
(n)

θ0+h/
√
n
⊗ σ(n)⋆

)
M̄

(n)
⋆ (ω)(E.9)

=

∫
Rd

χt(x)ph(x)dx
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for all t ∈ Rd and all h ∈ Qd.
Finally, we extend the identity (E.9) to all h ∈ Rd. Let

R
(n)
h :=R

(
ρ
(n)

θ0+h/
√
n

∣∣∣ ρ(n)θ0

)
and R

(∞)
h := e

1

2((Fh)
iX

(∞)
i − 1

2
h⊤F⊤ΣFh)

and fix h ∈ Rd and t ∈ Rd arbitrarily. Then for all ε > 0, there exists an h̃ ∈ Qd that satisfies

ϕ0

((
R

(∞)
h −R(∞)

h̃

)2)
< ε.

On the other hand,

limsup
n→∞

∣∣∣Tr (ρ(n)θ0+h/
√
n
− ρ(n)

θ0+h̃/
√
n

)
M

(n)
⋆ t

∣∣∣(E.10)

= limsup
n→∞

∣∣∣Tr (R(n)
h ρ

(n)
θ0
R

(n)
h −R

(n)

h̃
ρ
(n)
θ0
R

(n)

h̃

)
M

(n)
⋆ t

∣∣∣
≤ limsup

n→∞

{∣∣∣Tr (R(n)
h −R

(n)

h̃

)
ρ
(n)
θ0
R

(n)
h M

(n)
⋆ t

∣∣∣
+
∣∣∣TrR(n)

h̃
ρ
(n)
θ0

(
R

(n)
h −R

(n)

h̃

)
M

(n)
⋆ t

∣∣∣} .
Here, the second line follows from (14) in Corollary 3.7, which tells us that the contribution
of the singular parts of ρ(n)

θ0+h/
√
n

are asymptotically negligible. By using Corollary 3.7, the
third line of (E.10) is evaluated as follows:

limsup
n→∞

∣∣∣Tr (R(n)
h −R

(n)

h̃

)
ρ
(n)
θ0
R

(n)
h M

(n)
⋆ t

∣∣∣2
≤ limsup

n→∞
Trρ

(n)
θ0

(
R

(n)
h −R

(n)

h̃

)2
×Trρ

(n)
θ0

∣∣∣(R(n)
h M

(n)
⋆ t

)∗∣∣∣2
≤ limsup

n→∞
Trρ

(n)
θ0

(
R

(n)
h −R

(n)

h̃

)2
= ϕ0

((
R

(∞)
h −R(∞)

h̃

)2)
< ε.

Since the fourth line of (E.10) is evaluated similarly, we can conclude that

(E.11) limsup
n→∞

∣∣∣Tr (ρ(n)θ0+h/
√
n
− ρ(n)

θ0+h̃/
√
n

)
M

(n)
⋆ t

∣∣∣< 2
√
ε

In a quite similar way, we can prove that

(E.12)
∣∣∣ϕh (M (∞)

t

)
− ϕh̃

(
M

(∞)
⋆ t

)∣∣∣< 2
√
ε

Now that we have established (E.9) (E.11) (E.12), Lemma E.1 leads us to

lim
n→∞

Trρ
(n)

θ0+h/
√
n
M

(n)
⋆ t = ϕh

(
M

(∞)
⋆ t

)
=

∫
Rd

χt(x)ph(x)dx

for all t ∈ Rd and h ∈ Rd. To put it differently, letting M (n)
⋆ be the POVM that corresponds

to the resolution of identity M (n)
⋆ t , we have(

M
(n)
⋆ , ρ

(n)

θ0+h/
√
n

)
h⇝N(h,V⋆) (∀h ∈ Rd).

This completes the proof.



32

E.5. Proof of Theorem 5.5.

PROOF. For the quantum Gaussian shift model ϕh ∼ N((Re τ)h,Σ), take a family of
unitary operators {U(k)}k∈Rd on H that satisfy

ϕh(U(k)∗AU(k)) = ϕh+k(A) (∀A ∈CCR(ImΣ)).

Given a POVM M , let Mt :=M(−∞, t] be the corresponding resolution of identity, and let
us define, for each t ∈ Rd and L ∈N, a bounded operator

N̂
(L)
t :=

1

(2L)d

∫
[−L,L]d

U(k)∗Mt+kU(k)dk,

where the integration is taken in the weak operator topology (WOT). It is not difficult to show
that {N̂ (L)

t }t∈Rd is a resolution of identity for all L ∈N. From this resolution of identity, we
shall construct a POVM N that is equivalent in law and surpasses the original M . Here we
follow the method used in Step 2 of the proof of Theorem 2.4.

Take a cyclic vector ψ on the Hilbert spaceH, and consider the sandwiched coherent state
representation

φ
(L)
t (ξ;η) :=

〈
e
√
−1ξiXiψ, N̂

(L)
t e

√
−1ηiXiψ

〉
.

Since
∣∣∣φ(L)
t (ξ;η)

∣∣∣≤ 1 for all L ∈N, t ∈ Rd, and ξ, η ∈ Rr , the diagonal sequence trick shows

that there is a subsequence {Lm} ⊂ {L} through which φ
(Lm)
α (ξ;η) is convergent for all

α ∈ Qd and ξ, η ∈ Qr , yielding a limiting function φα(ξ;η). Due to Lemma 3.3, this limiting
function uniquely determines an operator N̂α that satisfies

φα(ξ;η) =
〈
e
√
−1ξiXiψ, N̂αe

√
−1ηiXiψ

〉
.

In this way, we obtain the WOT-limit

(E.13) N̂α := lim
m→∞

N̂ (Lm)
α

for all α ∈ Qd. Further, for each t ∈ Rd, let

(E.14) N̄t := inf
α>t,α∈Qd

N̂α.

Then {N̄t}t∈Rd determines a POVM N̄ over R̄d, and by transferring the measure at infinity
N̄(R̄d \ Rd) to the origin, we have a POVM N over Rd defined by

N(B) := N̄(B) + δ0(B)N̄(R̄d \ Rd) (B ∈ B(Rd)).

Let us prove that ϕh(N̄(B)) = ϕh(N(B)) for all B ∈ B(Rd). For each m ∈ N, let N̂ (Lm)

be the POVM that corresponds to the resolution of identity N̂ (Lm)
t , and let

µ
(m)
h (B) := ϕh

(
N̂ (Lm)(B)

)
=

1

(2Lm)d

∫
[−Lm,Lm]d

ϕh (U(k)∗M(B + k)U(k))dk

=
1

(2Lm)d

∫
[−Lm,Lm]d

ϕh+k (M(B + k))dk.
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Then, letting y := x+ k,∫
Rd

Gij(x− h)i(x− h)jµ(m)
h (dx)(E.15)

=
1

(2Lm)d

∫
[−Lm,Lm]d

dk

∫
Rd+k

Gij(y− h− k)i(y− h− k)jϕh+k (M(dy))

≤ sup
ℓ∈Rd

∫
Rd

Gij(y− ℓ)i(y− ℓ)jϕℓ (M(dy)) .

This shows that the second moments of {µ(m)
h }m∈N are uniformly bounded. As a conse-

quence, {µ(m)
h }m∈N is uniformly tight, and by Prohorov’s lemma, there exists a subsequence

{ms} ⊂ {m} and a probability measure µ̌h that satisfy µ(ms)
h ⇝ µ̌h. We show that

(E.16) µ̌h(B) = ϕh(N̄(B)) = ϕh(N(B))

for all B ∈ B(Rd). Actually, since µ̌h is a probability measure on Rd, having no positive
mass at infinity, it suffices to prove that µ̌h(−∞, t] = ϕh(N̄t) for all continuity point t ∈ Rd

of t 7→ µ̌h(−∞, t]. For any α ∈ Qd satisfying α> t,

µ̌h(−∞, t] = lim
s→∞

ϕh

(
N̂

(ms)
t

)
≤ lim
s→∞

ϕh

(
N̂ (ms)
α

)
≤ µ̌h(−∞, α].

In the last inequality, the portmanteau lemma is used. Taking the limit α ↓ t, and recalling the
definition (E.14) as well as

lim
s→∞

ϕh

(
N̂ (ms)
α

)
= ϕh

(
N̂α

)
,

which follows from (E.13), we have µ̌h(−∞, t] = ϕh(N̄t).
Now we proceed to the proof Theorem 5.5. To this end, it suffices to show the following

(i) and (ii):

(i) N is equivalent in law.
(ii) N satisfies the following inequality:

sup
h∈Rd

∫
Rd

Gij(x− h)i(x− h)jϕh (N(dx))

≤ sup
h∈Rd

∫
Rd

Gij(x− h)i(x− h)jϕh(M(dx)).

In fact, suppose that (i) is true. Then Lemma 5.1 tells us that the first line of the inequality in
(ii) is further bounded from below by the Holevo bound c(H)

G . This is nothing but the desired
minimax theorem.

Let us prove (ii) first. From (E.15), we have

sup
h∈Rd

∫
Rd

Gij(x− h)i(x− h)jϕh(M(dx))

≥ lim inf
s→∞

∫
Rd

Gij(x− h)i(x− h)jµ(ms)
h (dx)

≥
∫

Rd

Gij(x− h)i(x− h)jµ̌h(dx)

=

∫
Rd

Gij(x− h)i(x− h)jϕh (N(dx)) .
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Here, the second inequality follows from the portmanteau lemma, and the last equality from
(E.16). Since the first line is independent of h, we have (ii).

We next prove (i), that is,

(E.17) ϕh (Nt+h) = ϕ0 (Nt)

for all t ∈ Rd and h ∈ Rd. Since

ϕh (Nt+h) = ϕh
(
N̄t+h

)
= inf
α>t,α∈Qd

ϕh

(
N̂α+h

)
,

it suffice to prove

(E.18) ϕh

(
N̂α+h

)
= ϕ0

(
N̂α

)
for all α ∈ Qd and h ∈ Rd. The left-hand side is rewritten as

ϕh

(
N̂α+h

)
= lim
m→∞

ϕh

(
N̂

(Lm)
α+h

)
= lim
m→∞

1

(2Lm)d

∫
[−Lm,Lm]d

ϕh (U(k)∗Mα+h+kU(k))dk

= lim
m→∞

1

(2Lm)d

∫
[−Lm,Lm]d

ϕh+k (Mα+h+k)dk

= lim
m→∞

1

(2Lm)d

∫
[−Lm,Lm]d+h

ϕℓ (Mα+ℓ)dℓ.

Since |hi|< 2Lm (i= 1, . . . , d) for sufficiently large m,∣∣∣ϕh (N̂α+h

)
− ϕ0

(
N̂α

)∣∣∣≤ lim
m→∞

1

(2Lm)d

∫
Rd

1([−Lm,Lm]d+h)△([−Lm,Lm]d)(k)dk

= lim
m→∞

1

(2Lm)d
× 2

{
(2Lm)

d −
d∏
i=1

(2Lm − |hi|)

}

= lim
m→∞

2

{
1−

d∏
i=1

(1− |h
i|

2Lm
)

}
= 0.

Here,4 denotes the symmetric difference. This proves (E.18).

E.6. Proof of Theorem 5.6.

PROOF. For notational simplicity, we denote by µ(n)h the probability measure of outcomes
of POVM M (n) applied to ρ(n)

θ0+h/
√
n

. The first inequality immediately follows from the fact

that for any δ > 0 and finite subset H of Rd, there exist N ∈N so that n≥N implies

sup
∥h∥≤δ

√
n

∫
Rd

Gij(x− h)i(x− h)jµ(n)h (dx)≥ sup
h∈H

∫
Rd

Gij(x− h)i(x− h)jµ(n)h (dx).

The second inequality is obvious. We prove the last inequality.
Following the proof of [1, Theorem 8.11], place the elements of Qd in an arbitrary order,

and let Hk consist of the first k elements in this sequence. Let

cnk := sup
h∈Hk

∫
Rd

k ∧
{
Gij(x− h)i(x− h)j

}
µ
(n)
h (dx),
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and let

ck := lim inf
n→∞

cnk and c := lim
k→∞

ck.

Since c is not greater than the third line of (27), it suffices to show that c≥ c(rep)θ0
. Since the

inequality is trivial when c=∞, we assume that c <∞.
Take a subsequence {nk} ⊂ {n} that satisfies

lim
k→∞

cnk

k = c.

In fact, just choose nk so that nk > nk−1 and∣∣cnk

k − ck
∣∣< 1/k

hold for all k ∈N. Let us prove that {µ(nk)
h }k is uniformly tight for all h ∈ Qd.

Suppose that {µ(nk)
h }k is not uniformly tight for some h ∈ Qd. For this h, let

KL :=
{
x ∈ Rd :Gij(x− h)i(x− h)j ≤ L

}
, (L> 0).

Then there exists an ε > 0 such that

limsup
k→∞

µ(nk)(Kc
L)≥ ε

for all L> 0. Since h ∈Hk for sufficiently large k, it holds that

c= lim
k→∞

cnk

k

≥ limsup
k→∞

∫
Rd

k ∧
{
Gij(x− h)i(x− h)j

}
µ
(nk)
h (dx)

≥ L · limsup
k→∞

µ
(nk)
h (Kc

L)

≥ L · ε.

Since L> 0 is arbitrary, this contradicts the assumption that c <∞.
Now that {µ(nk)

h }k is proved uniformly tight for all h ∈ Qd, by the Prohorov lemma and
the diagonal sequence trick, we can take a further subsequence {ks} ⊂ {k} that satisfies

µ
(nks )
h ⇝ ∃µh

for all h ∈ Qd. It then follows from the asymptotic representation theorem for h ∈ Qd that
there is a POVM M (∞) on N((Re τ)h,Σ)∼ (X,ϕh) such that

ϕh

(
M (∞)(B)

)
= µh(B), (∀B ∈ B(Rd), ∀h ∈ Qd).

Now, for any h ∈ Qd and L> 0,

c= lim
s→∞

c
nks

ks

≥ lim inf
s→∞

∫
Rd

L∧
{
Gij(x− h)i(x− h)j

}
µ
(nks )
h (dx)

=

∫
Rd

L∧
{
Gij(x− h)i(x− h)j

}
µh(dx).
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In the last equality, we used the portmanteau lemma. Thus

c≥ sup
L>0

sup
h∈Qd

∫
Rd

L∧
{
Gij(x− h)i(x− h)j

}
ϕh

(
M (∞)(dx)

)
= sup
L>0

sup
h∈Rd

∫
Rd

L∧
{
Gij(x− h)i(x− h)j

}
ϕh

(
M (∞)(dx)

)
= sup
h∈Rd

∫
Rd

Gij(x− h)i(x− h)jϕh
(
M (∞)(dx)

)
≥ c(rep)G .

Here, the second line follows from the fact that h 7→ ϕh(A) is continuous for all A ∈
CCR(ImΣ) satisfying ‖A‖ ≤ 1, the third line is due to the monotone convergence theo-
rem, and the last line follows from the minimax Theorem 5.5 for a quantum Gaussian shift
model, as well as the fact that the asymptotic representation bound c(rep)G is nothing but the
Holevo bound for the quantum Gaussian shift model {N((Re τ)h,Σ) : h ∈ Rd}.

Finally, we prove that the last inequality of (27) is tight. Recall that the sequence M (n)
⋆ of

POVMs constructed in the proof of Theorem 5.3 satisfies(
M

(n)
⋆ , ρ

(n)

θ0+h/
√
n

)
⇝N(h,V⋆) (∀h ∈ Rd)

and

TrGV⋆ = c
(rep)
G .

We show that this sequence M (n)
⋆ saturates the last inequality in (27). Let ph be the probabil-

ity density of the classical Gaussian shift model N(h,V⋆). Then

sup
L>0

sup
H

lim inf
n→∞

sup
h∈H

∫
Rd

L∧
{
Gij(x− h)i(x− h)j

}
Trρ

(n)

θ0+h/
√
n
M

(n)
⋆ (dx)

= sup
L>0

sup
H

sup
h∈H

∫
Rd

L∧
{
Gij(x− h)i(x− h)j

}
ph(x)dx

=TrGV⋆.

Here, the first equality follows from the portmanteau lemma and the fact that H is a finite
set. The proof is complete.
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