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APPENDIX A: PROOFS OF MAIN THEOREMS

This section is devoted to proofs of main results presented in Sections 2-3 of [4].

A.1. Proof of Lemma 2.6. We shall prove (2.3) in [4] for {ξt}r
t=1 ⊂ Cd and {ηt}r

t=1 ⊂ C.
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In the third line, we used the fact that P (n) = o(1). Let us denote the terms corresponding to
k1 + · · · + kr ≥ 3 by
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Since limn→∞ P (n) = 0, the operators P (n) are uniformly bounded. As a consequence, limn→∞ n |rn| =
0, so that rn = o
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)
. Thus we conclude that
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The last equation is due to (2.2) in [4] with h = 0.
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Before proceeding to the proof of (ii) and (iii) in Definition 2.8, we give some preliminary con-
sideration. Let the quantum log-likelihood ratio Lh := L (ρθ0+h|ρθ0) be expanded into

Lh = hiAi + Bijh
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is infinitesimal relative to the convergence
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completes the proof.

A.4. Proof of Corollary 2.11. That ρ⊗n
θ ∼ ρ⊗n
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was proven in the proof of Theorem 2.10.
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A.5. Proof of Theorem 3.1. Let D := Dρθ0
be the commutation operator with respect to

the state ρθ0 (see Section B.1), and let T be the minimal D invariant extension of the SLD tangent
space spanR {Li}d

i=1 of the model {ρθ} at θ = θ0, i.e., the smallest D invariant real linear subspace
of Hermitian operators on H containing all the SLDs {Li}d

i=1 of ρθ at θ0. The minimality ensures
that Tr ρθ0A = 0 for all A ∈ T because T ′ = {A ∈ T ; Tr ρθ0A = 0} is also D invariant.

Let {Dj}r
j=1 be a basis of T , thus d ≤ r. Let Σ be an r × r matrix whose (i, j)th entry is given

by Σij = Tr ρθ0DjDi, and let τ be an r×d matrix whose (i, j)th entry is given by τij = Tr ρθ0LjDi.
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It can be shown (see Theorem B.1) that the Holevo bound for a weight G > 0 is expressed as
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where X̃i := F k
i Xk (1 ≤ i ≤ d) are canonical observables with X1, . . . , Xr being the basic canonical

observables of CCR (ImΣ) and (X,φh) ∼ N((Re τ)h,Σ), and Y1, . . . , Yd are the basic canonical
observables of CCR

(
Im Ẑ

)
with (Y, ψ) ∼ N(0, Ẑ). In the last line in (A.7), we used (A.5) as
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well as the quantum central limit theorem for Y (n). By using the explicit form (2.2) of the quasi-
characteristic function for the quantum Gaussian state, (A.7) is rewritten as
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h [M (n,m(n),ℓ(n),q(n),p(n))] = h,

and
lim

n→∞
V

(n)
h [M (n,m(n),ℓ(n),q(n),p(n))] = Ṽ + V̂ .

This implies that the POVM M (n) on H⊗n that is uniquely defined by the requirement

Tr ρ(n)M (n)
ω = Tr

(
ρ(n) ⊗ σ⊗n

)
M (n,m(n),ℓ(n),q(n),p(n))

ω

for all density operator ρ(n) on H⊗n and ω ∈ Ω(n,m(n),l(n),p(n),q(n)) enjoys

lim
n→∞

E
(n)
h [M (n)] = h,

lim
n→∞

V
(n)
h [M (n)] = Ṽ + V̂ .

for all h ∈ D. Recalling that TrG(Ṽ + V̂ ) = Cθ0 (ρθ, G), the proof is complete.

Lemma A.1. Given a sequence H(n) of finite dimensional Hilbert spaces, let X(n) =
(
X

(n)
1 , . . . , X

(n)
d

)
be a list of observables on H(n), and let

{
ρ
(n)
h

}
h

be a family of density operators on H(n) parametrized

by h ∈ Rd. If there is a real d × d positive definite matrix V such that

(A.8)
(
X(n), ρ

(n)
h

)
Ã
q

N(h, V )
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holds for all h ∈ Rd, then there exist a quintuple sequence
{
M (n,m,ℓ,q,p); (n,m, ℓ, q, p) ∈ N5

}
of

POVMs on H(n) that enjoy the properties

lim
p→∞

lim
q→∞

lim
ℓ→∞

lim
m→∞

lim
n→∞

E
(n)
h [M (n,m,ℓ,q,p)] = h,

and
lim

p→∞
lim

q→∞
lim
ℓ→∞

lim
m→∞

lim
n→∞

V
(n)
h [M (n,m,ℓ,q,p)] = V.

Proof. Let
Ω(m,ℓ) :=

{
ℓ

m

−→
k +

ℓ

2m
(1, . . . , 1) ;

−→
k ∈ Zd

}
∩ [−l, l]d

be a finite subset of Rd, comprising (2m)d lattice points in the hypercube [−l, l]d, and let Ω(m,ℓ,p) :=
Ω(m,ℓ) ∩ [−p, p]d and Ω(m,ℓ,p)

0 := Ω(m,ℓ,p) ∪{0}. We introduce a Gaussian density function f
(q)
ω (x) on

Rd centered at ω = (ω1, . . . , ωd) ∈ Rd by

f (q)
ω (x) :=

{
d∏

i=1

g(q)
ωd+1−i

(xd+1−i)

} {
d∏

i=1

g(q)
ωi

(xi)

}
,

where x = (x1, . . . , xd) ∈ Rd and

g(q)
s (t) :=

(
q

2π

) 1
4

exp
(
−q

4
(t − s)2

)
, (s, t ∈ R).

By using this function, we define a POVM M (n,m,l,q,p) =
{
M

(n,m,l,q,p)
ω ; ω ∈ Ω(m,ℓ,p)

0

}
on H(n) that

takes values in the finite subset Ω(m,ℓ,p)
0 by

M (n,m,ℓ,q,p)
ω := R(m,ℓ,q)(X(n))

[
f (q)

ω (X(n)) +
I(n)

(2m)d

]
R(m,ℓ,q)(X(n))

for ω ∈ Ω(m,ℓ,p), and

M
(n,m,ℓ,q,p)
0 :=

∑
ω∈Ω(m,ℓ)\Ω(m,ℓ,p)

{
R(m,ℓ,q)(X(n))

[(
f (q)

ω (X(n)) +
I(n)

(2m)d

)]
R(m,ℓ,q)(X(n))

}
.

Here

R(m,ℓ,q)(x) := g

 ∑
ω∈Ω(m,ℓ)

f (q)
ω (x)


is the normalization with

g(t) :=
1√

t + 1
.

Intuitively speaking, the difference set Ω(m,ℓ) \ Ω(m,ℓ,p) works as a “buffer” zone that gives the
default outcome ω = 0. This device is meaningful only when p < ℓ.

We shall prove that

(A.9) lim
p→∞

lim
q→∞

lim
ℓ→∞

lim
m→∞

lim
n→∞

∑
ω∈Ω

(m,ℓ,p)
0

P (ω)Tr ρ
(n)
h M (n,m,ℓ,q,p)

ω =
∫

Rd
P (ω)ph(ω)dω,
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where P (ω) is an arbitrary polynomial of ω such that P (0) = 0 and ph(ω) is a probability density
function of the classical normal distribution N(h, V ). Once (A.9) has been proved, we can verify

lim
p→∞

lim
q→∞

lim
ℓ→∞

lim
m→∞

lim
n→∞

E
(n)
h [M (n,m,ℓ,q,p)] = h

and
lim

p→∞
lim

q→∞
lim
ℓ→∞

lim
m→∞

lim
n→∞

V
(n)
h [M (n,m,ℓ,q,p)] = V

just by letting P (ω) = ωi or P (ω) = ωiωj (1 ≤ i, j ≤ d) in (A.9).
The first limit n → ∞ in (A.9) yields

lim
n→∞

∑
ω∈Ω

(m,ℓ,p)
0

P (ω)Tr ρ
(n)
h M (n,m,ℓ,q,p)

ω

= lim
n→∞

∑
ω∈Ω(m,ℓ,p)

P (ω)Tr ρ
(n)
h M (n,m,ℓ,q,p)

ω

= lim
n→∞

∑
ω∈Ω(m,ℓ,p)

P (ω)Tr ρ
(n)
h R(m,ℓ,q)(X(n))

[
f (q)

ω (X(n)) +
I(n)

(2m)d

]
R(m,ℓ,q)(X(n))

=
∑

ω∈Ω(m,ℓ,p)

P (ω)Eh

[
R(m,ℓ,q)(X)2

(
f (q)

ω (X) +
I

(2m)d

)]

=
∫

Rd

∑
ω∈Ω(m,ℓ,p) P (ω)

(
f

(q)
ω (x) + 1

(2m)d

)
∑

ω∈Ω(m,ℓ)

(
f

(q)
ω (x) + 1

(2m)d

) ph(x)dx.(A.10)

In the fourth line, we used the assumption (A.8) and Corollary A.4 in Section A.6, as well as the
fact that functions g

(q)
s (t) on R and g(t) on t ≥ 0 are both bounded and continuous. Further,

X = (X1, . . . , Xd) is a classical random vector that follow the normal distribution N(h, V ), and
Eh[ · ] denotes the expectation with respect to N(h, V ). As for the second limit m → ∞, due to∣∣∣∣∣∣

∑
ω∈Ω(m,ℓ,p) P (ω)

(
f

(q)
ω (x) + 1

(2m)d

)
∑

ω∈Ω(m,ℓ)

(
f

(q)
ω (x) + 1

(2m)d

)
∣∣∣∣∣∣ ≤ max

ω∈[−p,p]d
|P (ω)| < ∞,

the bounded convergence theorem yields

lim
m→∞

(A.10) =
∫

Rd
lim

m→∞

(
ℓ
m

)d ∑
ω∈Ω(m,ℓ,p) P (ω)

(
f

(q)
ω (x) + 1

(2m)d

)
(

ℓ
m

)d ∑
ω∈Ω(m,ℓ)

(
f

(q)
ω (x) + 1

(2m)d

) ph(x)dx

=
∫

Rd

∫
ω∈[−p,p]d P (ω)p(q)(ω, x)dω∫

ω∈[−ℓ,ℓ]d p(q)(ω, x)dω
ph(x)dx,(A.11)

where p(q)(ω, x) =
( q

2π

) d
2 exp

(
− q

2

∑d
i=1(xi − ωi)2

)
, and Darboux’s theorem for the Riemann inte-

gral was used in the second line. Finally, the dominated convergence theorem and Fubini’s theorem
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yield

lim
p→∞

lim
q→∞

lim
ℓ→∞

(A.11) = lim
p→∞

lim
q→∞

∫
Rd

∫
ω∈[−p,p]d P (ω)p(q)(ω, x)dω∫

Rd p(q)(ω, x)dω
ph(x)dx

= lim
p→∞

lim
q→∞

∫
Rd

(∫
ω∈[−p,p]d

P (ω)p(q)(ω, x)dω

)
ph(x)dx

= lim
p→∞

lim
q→∞

∫
ω∈[−p,p]d

(∫
Rd

p(q)(ω, x)ph(x)dx

)
P (ω)dω

= lim
p→∞

lim
q→∞

∫
ω∈[−p,p]d

p
(q)
h (ω)P (ω)dω

= lim
p→∞

∫
ω∈[−p,p]d

ph(ω)P (ω)dω

=
∫

Rd
ph(ω)P (ω)dω,(A.12)

where p
(q)
h (ω) is the density function of N(h, V + 1

q I). This completes the proof.

Lemma A.2. For each i ∈ N, let
{
ai

n1n2···nrn; (n1, n2, . . . , nr, n) ∈ N(r+1)
}

be an (r + 1)-tuple
sequence on a normed space V . If, for each i ∈ N, there exists an αi ∈ V such that

lim
n1→∞

lim
n2→∞

· · · lim
nr→∞

lim
n→∞

ai
n1n2···nrn = αi,

then there exist a subsequence {(n1(n), n2(n), . . . , nr(n), n)}n∈N that satisfies

lim
n→∞

ai
n1(n)n2(n)···nr(n)n = αi

for all i ∈ N.

Proof. We first prove the case when r = 1. Let ai
n1

:= limn→∞ ai
n1n. We construct a subsequence

{(n1(k), n(k))}k∈N in a recursive manner as follows. We set n1(1) = n(1) = 1. For k ≥ 2, it follows
from limn1→∞ ai

n1
= αi that there exist an N1(k) ∈ N such that n1 ≥ N1(k) implies

max
1≤i≤k

∣∣∣ai
n1

− αi
∣∣∣ <

1
k
.

Thus the number n1(k) := max {N1(k), n1(k − 1) + 1} satisfies

(A.13) max
1≤i≤k

∣∣∣ai
n1(k) − αi

∣∣∣ <
1
k
.

For this n1(k), it follows from limn→∞ ai
n1(k)n = ai

n1(k) that there exist an N(k) ∈ N such that
n ≥ N(k) implies

(A.14) max
1≤i≤k

∣∣∣ai
n1(k)n − ai

n1(k)

∣∣∣ <
1
k
.

Thus we set n(k) := max {N(k), n(k − 1) + 1}.
Now let k(n) := max {k; n(k) ≤ n}, which is non-decreasing in n and limn→∞ k(n) = ∞. We

show that the subsequence {n1(k(n)), n); n ∈ N} enjoys the required property: for all i ∈ N,

lim
n→∞

ai
n1(k(n))n = αi.
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Given i ∈ N and ε > 0 arbitrarily, there exist an N ∈ N such that n ≥ N implies k(n) ≥
max

{
i,

⌈
2
ε

⌉}
. Then for all n ≥ N , we have∣∣∣ai
n1(k(n))n − αi

∣∣∣ ≤
∣∣∣ai

n1(k(n))n − ai
n1(k(n))

∣∣∣ +
∣∣∣ai

n1(k(n)) − αi
∣∣∣

≤ max
1≤j≤k(n)

∣∣∣aj
n1(k(n))n − aj

n1(k(n))

∣∣∣ + max
1≤j≤k(n)

∣∣∣aj
n1(k(n)) − αj

∣∣∣
<

2
k(n)

≤ ε.

In the third inequality, we used (A.13) and (A.14), as well as its premise n ≥ n(k(n)) ≥ N(k(n)).
The proof for a generic r is similar.

A.6. Quantum central limit theorem. Jakšić, Pautrat, and Pillet [3] proved the following
strong version of a quantum central limit theorem.

Proposition A.3. Given a sequence H(n) of Hilbert space, let ρ(n) and A(n) = (A(n)
1 , . . . , A

(n)
d )

be a state and a list of observables on H(n) that enjoy the quantum central limit theorem in the
sense of convergence of the quasi-characteristic function:(

A(n), ρ(n)
)

Ã
q

N(h, J) ∼ (X,φ),

where J is a d×d positive semidefinite matrix. Then for any bounded continuous functions f1, . . . , fm

and a noncommutative polynomial P , it follows that

lim
n→∞

Tr ρ(n)P

(−−−−−→
f(A(n))

)
= φ

(
P

(−−−→
f(X)

))
,

where
−−−→
f(B) := (f1(B1), . . . , f1(Bd), . . . , fm(B1), . . . , fm(Bd)) for a given list B = (B1, . . . , Bd)

of observables, and P
(−−−→
f(B)

)
:= P (f1(B1), . . . , f1(Bd), . . . , fm(B1), . . . , fm(Bd)).

Proposition A.3 is strong enough to prove the following, which is essential in constructing a
sequence of POVMs that asymptotically achieves the Holevo bound (Section 3 in [4]).

Corollary A.4. Under the same assumption as in Proposition A.3, for any bounded con-
tinuous functions g, f1, . . . , fm, and noncommutative polynomials P,Q, with P being Hermitian
operator-valued, it follows that

lim
n→∞

Tr ρ(n)g

(
P

(−−−−−→
f(A(n))

))
Q

(−−−−−→
f(A(n))

)
g

(
P

(−−−−−→
f(A(n))

))
= φ

(
g

(
P

(−−−→
f(X)

))
Q

(−−−→
f(X)

)
g

(
P

(−−−→
f(X)

)))
.

Proof. Let l := max1≤i≤m supx |fi(x)|. There exist lP > 0 and lQ > 0 such that lP >
∥∥∥P (

−→
B )

∥∥∥
and lQ >

∥∥∥Q(
−→
B )

∥∥∥ for any list
−→
B = (B1, . . . , Bdm) of observables such that ∥Bi∥ ≤ l. Let lg :=

sup {|g(x)| ; x ∈ [−lP , lP ]}. There exist a sequence R(k)(x) of polynomials that uniformly converges
to g(x) on [−lP , lP ].

Let
akn := Tr ρ(n)R(k)

(
P

(−−−−−→
f(A(n))

))
Q

(−−−−−→
f(A(n))

)
R(k)

(
P

(−−−−−→
f(A(n))

))
,
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and let
an := Tr ρ(n)g

(
P

(−−−−−→
f(A(n))

))
Q

(−−−−−→
f(A(n))

)
g

(
P

(−−−−−→
f(A(n))

))
.

We show that akn uniformly converges to an as k → ∞. In fact, letting lR := sup{R(k)(x) ; k ∈
N, x ∈ [−lP , lP ]},

sup
n∈N

|an − akn|

= sup
n∈N

∣∣∣∣ Tr ρ(n)g

(
P

(−−−−−→
f(A(n))

))
Q

(−−−−−→
f(A(n))

)
g

(
P

(−−−−−→
f(A(n))

))
= −Tr ρ(n)R(k)

(
P

(−−−−−→
f(A(n))

))
Q

(−−−−−→
f(A(n))

)
R(k)

(
P

(−−−−−→
f(A(n))

)) ∣∣∣∣
≤ sup

n∈N

∣∣∣∣Tr ρ(n)g

(
P

(−−−−−→
f(A(n))

))
Q

(−−−−−→
f(A(n))

) [
g

(
P

(−−−−−→
f(A(n))

))
− R(k)

(
P

(−−−−−→
f(A(n))

))]∣∣∣∣
+ sup

n∈N

∣∣∣∣Tr ρ(n)
[
g

(
P

(−−−−−→
f(A(n))

))
− R(k)

(
P

(−−−−−→
f(A(n))

))]
Q

(−−−−−→
f(A(n))

)
R(k)

(
P

(−−−−−→
f(A(n))

))∣∣∣∣
≤ lglQ sup

n∈N

∥∥∥∥g

(
P

(−−−−−→
f(A(n))

))
− R(k)

(
P

(−−−−−→
f(A(n))

))∥∥∥∥
+lQlR sup

n∈N

∥∥∥∥g

(
P

(−−−−−→
f(A(n))

))
− R(k)

(
P

(−−−−−→
f(A(n))

))∥∥∥∥
≤ lQ(lg + lR) sup

x∈[−lP ,lP ]

∣∣∣g(x) − R(k)(x)
∣∣∣ ,

which converges to zero as k → ∞.
The uniform convergence akn ⇒ an as well as the existence of limk→∞ limn→∞ akn, which follows

from Proposition A.3, ensure that

lim
n→∞

Tr ρ(n)g

(
P

(−−−−−→
f(A(n))

))
Q

(−−−−−→
f(A(n))

)
g

(
P

(−−−−−→
f(A(n))

))
= lim

n→∞
lim

k→∞
Tr ρ(n)R(k)

(
P

(−−−−−→
f(A(n))

))
Q

(−−−−−→
f(A(n))

)
R(k)

(
P

(−−−−−→
f(A(n))

))
= lim

n→∞
lim

k→∞
akn

= lim
k→∞

lim
n→∞

akn

= lim
k→∞

φ
(
R(k)

(
P

(−−−→
f(X)

))
Q

(−−−→
f(X)

)
R(k)

(
P

(−−−→
f(X)

)))
= φ

(
g

(
P

(−−−→
f(X)

))
Q

(−−−→
f(X)

)
g

(
P

(−−−→
f(X)

)))
.

This proves the claim.

APPENDIX B: ELEMENTS OF QUANTUM ESTIMATION THEORY

This section is devoted to a brief account of quantum estimation theory.

B.1. Commutation operator and the Holevo bound. In the study of quantum statistics,
Holevo [2] introduced useful mathematical tools called the square summable operators and the
commutation operators associated with quantum states. Let H be a separable Hilbert space and let
ρ be a density operator. We define a real Hilbert space L2

h(ρ) associated with ρ by the completion
of the set Bh(H) of bounded Hermitian operators with respect to the pre-inner product 〈X,Y 〉ρ :=
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ReTr ρXY . Letting ρ =
∑

j sj |ψj〉〈ψj | be the spectral representation, an element X ∈ L2
h(ρ) can

be regarded as an equivalence class of those Hermitian operators, called the square summable
operators, which satisfy

∑
j sj∥Xψj∥2 < ∞ (so that ψj ∈ Dom(X) if sj ̸= 0) under the identification

X1 ∼ X2 if X1ψj = X2ψj for sj ̸= 0. The space L2
h(ρ) thus provides a convenient tool to cope with

unbounded observables. Note that when H is finite dimensional, the setup is considerably simplified
to be L2

h(ρ) = Bh(H)/ ker ρ.
Let L2(ρ) be the complexification of L2

h(ρ), which is also regarded as the completion of B(H)
with respect to the pre-inner product

〈X,Y 〉ρ :=
1
2
Tr ρ(Y X∗ + X∗Y ).

Thus L2(ρ) is a complex Hilbert space with this inner product. Let us further introduce two
sesquilinear forms on B(H) by

(X,Y )ρ := Tr ρY X∗, [X,Y ]ρ :=
1

2
√
−1

Tr ρ(Y X∗ − X∗Y ).

and extend them to L2(ρ) by continuity. (Note that (X,X)ρ ≤ 2 〈X,X〉ρ and (X,Y )ρ = 〈X,Y 〉ρ +√
−1[X,Y ]ρ.)
The commutation operator Dρ : L2(ρ) → L2(ρ) with respect to ρ is defined by

[X,Y ]ρ = 〈X,DρY 〉ρ ,

which is formally represented by the operator equation

Dρ(X)ρ + ρDρ(X) =
√
−1 (Xρ − ρX).

(To be precise, Holevo’s original definition is different from the above one by a factor of 2.) The
operator Dρ is a C-linear bounded skew-adjoint operator. Moreover, since the forms [ · , · ]ρ and
〈 · , · 〉ρ are real on the real subspace L2

h(ρ), this subspace is invariant under the operation of Dρ.
Thus Dρ can be regarded as an R-linear bounded skew-adjoint operator when restricted to L2

h(ρ)
as Dρ : L2

h(ρ) → L2
h(ρ). When no confusion is likely to arise, we drop the subscript ρ of Dρ and

simply denote it as D.
Let S = {ρθ ; θ ∈ Θ ∈ Rd} be a quantum statistical model satisfying the conditions: 1) the

parametrization θ 7→ ρθ is smooth and nondegenerate so that the derivatives {∂ρθ/∂θi}1≤i≤d exist
in trace class and form a linearly independent set at each point θ ∈ Θ, and 2) there exists a constant
c such that ∣∣∣∣ ∂

∂θi
Tr ρθX

∣∣∣∣2 ≤ c 〈X,X〉ρθ

for all X ∈ B(H) and i. The second condition assures that the linear functionals X 7→ (∂/∂θi)Tr ρθX
can be extended to continuous linear functionals on L2(ρθ). Given a quantum statistical model
satisfying the above conditions, the symmetric logarithmic derivative (SLD) Lθ,i in the ith direction
is defined as the operator in L2(ρρθ

) satisfying

∂

∂θi
Tr ρθX = 〈Lθ,i, X〉ρθ

.

It is easily verified that Lθ,i ∈ L2
h(ρθ); so the definition is formally written as

(B.1)
∂ρθ

∂θi
=

1
2
(Lθ,i ρθ + ρθ Lθ,i).
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When no confusion occurs, we simply denote Lθ,i as Li. Since Li is a faithful operator representation
of the tangent vector ∂/∂θi, we shall call the R-linear space spanR{Li}d

i=1 the SLD tangent space
of the model ρθ at θ. Incidentally the d × d real symmetric matrix Jθ := [ReTr ρθLiLj ]1≤i,j≤d is
called the SLD Fisher information matrix of the model S at θ.

An estimator M̂ for the parameter θ of the model S is called unbiased if

(B.2) Eθ[M̂ ] = θ

for all θ ∈ Θ, where Eθ[ · ] denotes the expectation with respect to ρθ. An estimator M̂ is called
locally unbiased at θ0 ∈ Θ if the condition (B.2) is satisfied around θ = θ0 up to the first order of
the Taylor expansion. It is well known that an estimator M̂ that is locally unbiased at θ0 satisfies
the quantum (SLD) Cramér-Rao inequality, Vθ0 [M̂ ] ≥ J−1

θ0
, where Vθ0 [ · ] denotes the covariance

matrix with respect to ρθ0 . The lower bound J−1
θ0

cannot be attained in general due to the non-
commutativity of the SLDs. Because of this fact, we often switch the problem to minimizing the
weighted sum of covariances, TrGVθ0 [M̂ ], given a d× d real positive definite matrix G. It is known
that this quantity also has a variety of Cramér-Rao type lower bounds [2]:

TrGVθ0 [M̂ ] ≥ Cθ0 (ρθ, G) .

Among others, we concentrate our attention to the Holevo bound [2]:

Cθ0 (ρθ, G) := min
V,B

{TrGV ; V is a real matrix such that V ≥ Z(B), Zij(B) = Tr ρθ0BjBi,

B1, . . . , Bd are Hermitian operators on H such that ReTr ρθ0LiBj = δij}.(B.3)

The minimization problem over V is explicitly solved, to obtain

Cθ0 (ρθ, G) = min
B

{TrGZ(B) + Tr
∣∣∣√G Im Z(B)

√
G

∣∣∣ ; Zij(B) = Tr ρθ0BjBi,

B1, . . . , Bd are Hermitian operators on H such that ReTr ρθ0LiBj = δij}.

Our aim here is to derive a further concise expression for it in terms of a D invariant extension
of the SLD tangent space, a subspace of {X ∈ L2

h(ρθ0); Tr ρθ0X = 0} including the SLD tangent
space such that D(T ) ⊂ T .

Theorem B.1. Suppose that a quantum statistical model S =
{
ρθ ; θ ∈ Θ ⊂ Rd

}
on H has

a finite dimensional D invariant extension T of the SLD tangent space of S at θ = θ0. Letting
{Dj}r

j=1 be a basis of T , the Holevo bound defined by (B.3) is rewritten as

Cθ0 (ρθ, G) = min
F

{TrGZ + Tr
∣∣∣√G Im Z

√
G

∣∣∣ ; Z = tFΣF,

F is an r × d real matrix satisfying tF Re (τ) = I},(B.4)

where Σ and τ are r × r and r × d complex matrices whose (i, j)th entries are given by Σij =
Tr ρθ0DjDi and τij = Tr ρθ0LjDi.

Proof. Let T ⊥ be the orthogonal complement of T in L2
h(ρθ0) with respect to the inner product

〈·, ·〉ρθ0
, and let P : L2

h(ρθ0) → T and P⊥ : L2
h(ρθ0) → T ⊥ be the projections associated with the

decomposition L2
h(ρθ0) = T ⊕ T ⊥. Note that if X ∈ T ⊥ and Y ∈ T , then

(X,Y )ρθ0
= 〈X,Y 〉ρθ0

+
√
−1 〈X,DY 〉ρθ0

= 0.
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We show that the operators {Bj}d
j=1 that achieve the minimum in (B.3) can be taken from T .

Let {Bj}d
j=1 ⊂ L2

h(ρθ0) satisfies the local unbiasedness condition ReTr ρθ0LiBj = δij , which is
rewritten as

〈Li, Bj〉ρθ0
= δij .

Then {P(Bj)}d
j=1 also satisfies the local unbiasedness

〈Li,P(Bj)〉ρθ0
= 〈Li, Bj〉ρθ0

= δij .

Further,

Zij(B) = (Bi, Bj)ρθ0
=

(
P(Bi) + P⊥(Bi),P(Bj) + P⊥(Bj)

)
ρθ0

= (P(Bi),P(Bj))ρθ0
+

(
P⊥(Bi),P⊥(Bj)

)
ρθ0

= Zij(P(B)) + Zij(P⊥(B)).

Since Z( · ) is a Gram matrix and is positive semidefinite, this decomposition implies that Z(B) ≥
Z(P(B)). Thus the observables B that minimize (B.3) can be taken from T .

Let Bj ∈ T be expanded as Bj = F k
j Dk, where F is an r × d real matrix. Then the local

unbiasedness condition is rewritten as

〈Li, Bj〉ρθ0
= F k

j 〈Li, Dk〉ρθ0
= δij ,

or in a matrix form,
tF (Re τ) = I.

Further, the Gram matrix Z(B) is rewritten as

Zij(B) = (Bi, Bj)ρθ0
= F k

i F ℓ
j (Dk, Dℓ)ρθ0

,

or,
Z(B) = tFΣF.

This proves the claim.

When the SLD tangent space itself is D invariant, the Holevo bound can be represented in terms
of the RLD Fisher information matrix as follows.

Corollary B.2. Let
{
ρθ ; θ ∈ Θ ⊂ Rd

}
be a quantum statistical model, and let Li (1 ≤ i ≤ d)

be the SLDs at θ0. If the SLD tangent space spanR {Li}d
i=1 at θ0 is D invariant, then

Cθ0 (ρθ, G) = Tr G(J (R))−1 + Tr
∣∣∣√G Im (J (R))−1

√
G

∣∣∣ ,
where (J (R))−1 := (Re J)−1 J (Re J)−1 with Jij = Tr ρθ0LjLi.

Proof. Let us set Di := Li for 1 ≤ i ≤ d in Theorem B.1. Then Σ = τ , and the lo-
cal unbiasedness condition tF (Re τ) = I has a unique solution F = (ReΣ)−1, whereby Z =
(Re J)−1 J (Re J)−1.

Note that RLDs may not exist if the model is degenerate (i.e., non-faithful). This means that
J (R) may not be well-defined for such a model. Nevertheless we use the notation (J (R))−1 even for
a degenerate model, and call it the inverse of the RLD Fisher information matrix, as long as the
SLD tangent space is D invariant. For an idea behind this nomenclature, consult [1].

Finally, we show that the Holevo bound for the nth i.i.d. extension model is precisely 1
n times

that for the base model.
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Corollary B.3. Given a quantum statistical model S =
{
ρθ ; θ ∈ Θ ⊂ Rd

}
that has a finite

dimensional D invariant extension of the SLD tangent space, let S(n) =
{
ρ⊗n

θ ; θ ∈ Θ ⊂ Rd
}

be the
nth i.i.d. extension model. Then

Cθ0

(
ρ⊗n

θ , G
)

=
1
n

Cθ0 (ρθ, G) .

Proof. Let us distinguish quantities that belong to models of different extension by specifying
the degree n of extension in the superscript. Letting {Li}d

i=1 and {Dj}r
j=1 be SLDs and a basis of

T in Theorem B.1, the corresponding quantities for S(n) are given by

L
(n)
i =

n∑
k=1

I⊗k−1 ⊗ Li ⊗ I⊗n−k

and

D
(n)
j =

n∑
k=1

I⊗k−1 ⊗ Dj ⊗ I⊗n−k.

Thus
Σ(n) = nΣ(1), τ (n) = nτ (1), F (n) =

1
n

F (1),

so that
Z(n) = tF (n)Σ(n)F (n) =

1
n

Z(1),

and
Cθ0

(
ρ⊗n

θ , G
)

=
1
n

Cθ0 (ρθ, G)

doe to Theorem B.1.

B.2. Estimation of quantum Gaussian shift model. In this section, we briefly overview
the estimation theory for a quantum Gaussian shift model. For a mathematically rigorous treatment,
consult [2].

Lemma B.4. Let (X,φh) ∼ N(h, J), where J is a d × d positive semidefinite complex matrix.
Then

(B.5) φh(Xi) = hi

and

(B.6) φh((Xj − hj)(Xi − hi)) = Jij

hold.

Proof. Letting U(ξ) := e
√
−1ξiXi ,

φh(U(ξ)) = 1 +
√
−1φh(ξiXi) −

1
2
φh(

(
ξiXi

)2
) + o(ξ2)

= 1 +
√
−1φh(Xi)ξi − 1

2
φh(XiXj)ξiξj + o(ξ2)

= 1 +
√
−1φh(Xi)ξi − 1

2
φh(Xi ◦ Xj)ξiξj + o(ξ2),
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where Xi ◦ Xj = 1
2 (XiXj + XJXi). Further, letting V = Re J and S = Im J ,

e
√
−1ξihi− 1

2
Vijξiξj

= 1 +
(√

−1ξihi −
1
2
Vijξ

iξj
)

+
1
2

(√
−1ξihi −

1
2
Vijξ

iξj
)2

+ o(ξ2)

= 1 +
√
−1ξihi −

1
2

(Vij + hihj) ξiξj + o(ξ2).

A comparison immediately leads to (B.5) and the identity φh(Xi ◦ Xj) = Vij + hihj . Thus

φh((Xj − hj)(Xi − hi)) = φh(XjXi − hjXi − hiXj + hihj)
= φh(XjXi) − hihj

= φh

(
Xi ◦ Xj −

1
2
[Xi, Xj ]

)
− hihj = Jij .

In what follows, we treat the quantum Gaussian shift model
{
N(τh, Σ) ; h ∈ Rd

}
on CCR (ImΣ),

where Σ is an r × r complex matrix such that Σ ≥ 0 and ReΣ > 0, and τ is an r × d real matrix
with d ≤ r such that rank τ = d. Let X = (X1, . . . , Xr) be the basic canonical observables of
CCR (ImΣ), and (X,φh) ∼ N(τh, Σ).

Lemma B.5. Let U(ξ) := e
√
−1ξiXi. The SLD Li (1 ≤ i ≤ d) at h defined by

(B.7)
∂

∂hk
φh(U(ξ)) =

1
2
φh (U(ξ)Lk + LkU(ξ))

is given by

(B.8) Lk =
r∑

ℓ=1

[
(ReΣ)−1 τ

]
ℓk

(Xℓ − (τh)ℓI).

Proof. In this proof we lift Einstein’s summation convention. Let V = ReΣ and S = ImΣ,
and fix a k ∈ {1, . . . , d} arbitrarily. Due to the Baker-Hausdorff formula,

U(ξ) = e
√
−1

∑r

i=1
ξiXi = exp

(
−
√
−1

r∑
i=1

Skiξ
kξi

)
exp

(√
−1ξkXk

)
exp

√
−1

∑
i ̸=k

ξiXi

 .

By differentiating in ξk, we have

∂

∂ξk
U(ξ) = −

√
−1

(
r∑

i=1

Skiξ
i − Xk

)
U(ξ).
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Thus

φh((Xk − (τh)kI)U(ξ)) = φh

((
r∑

i=1

Skiξ
i −

√
−1

∂

∂ξk
− (τh)kI

)
U(ξ)

)

=

(
r∑

i=1

Skiξ
i −

√
−1

∂

∂ξk
− (τh)k

)
φh(U(ξ))

=

(
r∑

i=1

Skiξ
i −

√
−1

∂

∂ξk
− (τh)k

)
e
√
−1 tξτh− 1

2
tξV ξ

=

(
r∑

i=1

Skiξ
i − (τh)k

)
φh(U(ξ)) −

√
−1

(√
−1(τh)k − (V ξ)k

)
φh(U(ξ))

=
(
Sξ +

√
−1V ξ

)
k
φh(U(ξ))

=
√
−1

(
J̄ξ

)
k φh(U(ξ)).(B.9)

Similarly, we obtain

(B.10) φh(U(ξ)(Xk − (τh)kI)) =
√
−1 (Jξ)k φh(U(ξ)).

By combining (B.9) and (B.10),

(B.11) φh ( (Xk − (τh)kI)U(ξ) + U(ξ)(Xk − (τh)kI) ) = 2
√
−1 (V ξ)k φh(U(ξ)).

On the other hand, by a direct calculation

(B.12)
∂

∂hk
φh(U(ξ)) =

∂

∂hk
e
√
−1 tξτh− 1

2
tξV ξ =

√
−1(tξτ)kφh(U(ξ)).

A comparison between (B.11) and (B.12) yields

Lk =
r∑

ℓ=1

[
V −1τ

]
ℓk

(Xℓ − (τh)ℓI).

Let L̃k := Xk−(τh)kI. It follows from (B.9) and (B.10) that Dφh
(L̃i) =

∑r
i=1(V

−1S)kiL̃k, where
Dφh

is the commutation operator with respect to φh defined by

φh (U(ξ)Dφh
(X) + Dφh

(X)U(ξ)) =
√
−1φh (U(ξ)X − XU(ξ)) .

This means T = span
{
L̃k

}r

k=1
is Dφh

invariant. Further, we can check from (B.8) that span {Li}d
i=1 ⊂

T and

(B.13) φh(L̃jL̃i) = Σij

and

(B.14) Re φh(LjL̃i) = τij .

These relations play a fundamental role in connecting a general quantum statistical model S ={
ρθ ; θ ∈ Θ ⊂ Rd

}
on H with a quantum Gaussian shift model G =

{
N(τh, Σ) ; h ∈ Rd

}
as follows.
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Let {LS
i }d

i=1 be the SLDs of the model S at θ = θ0, and let T S be a DS invariant extension of the
SLD tangent space span{LS

i }d
i=1. Further let {DS

j }r
j=1 be a basis of T S and let Σ and τ are r×r and

r× d matrices whose (i, j)th entries are given by Σij = Tr ρθ0DjDi and τij = ReTr ρθ0LjDi. Based
on those information, we introduce a quantum Gaussian shift model G =

{
N(τh, Σ) ; h ∈ Rd

}
on

CCR (ImΣ), which exhibits relations (B.13) and (B.14). Recall that the Holevo bound of a quantum
statistical model is completely determined by the information Σ and τ (Theorem B.1). We thus
obtain the following important consequence.

Corollary B.6. The Holevo bound Cθ0 (ρθ, G) for the model S at θ = θ0 is identical to the
Holevo bound Ch (N(τh, Σ), G) for the Gaussian shift model G.

As to the achievability of the Holevo bound Ch (N(τh, Σ), G) for the Gaussian shift model G,
we have the following.

Theorem B.7. Given a weight G > 0, there exist an unbiased estimator M̂ that achieves the
Holevo bound for the model {N(τh, Σ) ; h ∈ Rd}, i.e.,

TrGVh[M̂ ] = Ch (N(τh, Σ), G) .

Proof. Let F be the matrix that achieve the minimum of (B.4) for the model {N(τh, Σ)}h,
and let Z = tFΣF . Further, let Ṽ = Re Z, S̃ = Im Z. V̂ =

√
G−1

∣∣∣√G Im Z
√

G
∣∣∣√G−1, and

Ẑ = V̂ −
√
−1S̃. We introduce an ancillary quantum Gaussian state (Y, ψ) ∼ N(0, Ẑ) on another

CCR
(
−S̃

)
, and a set of canonical observables

X i := X̃i ⊗ I + I ⊗ Yi (1 ≤ i ≤ d),

on CCR
(
S̃

)
⊗ CCR

(
−S̃

)
, where X̃i = F k

i Xk. It is important to notice that the CCR subalgebra

A[X] generated by {X i}1≤i≤d is a commutative one because
√
−1
2

[Xi, Xj ] = S̃ij − S̃ij = 0

for 1 ≤ i, j ≤ d. Moreover

(φh ⊗ ψ)(e
√
−1ξiXi) =

[
φh

(
e
√
−1ξiX̃i

)] [
ψ

(
e
√
−1ξiYi

)]
= e

√
−1ξihi− 1

2
ξiξj(Ṽ +V̂ )ij .

This means that the observables Xi (1 ≤ i ≤ d) follow the classical Gaussian distribution N(h, Ṽ +
V̂ ). In particular,

Eh[X] = h

for all h ∈ Rd, and
TrGVh[X] = Tr G(Ṽ + V̂ ) = Ch (N(τh, Σ), G) .

The claim was verified.
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B.3. Estimation theory for pure state models.

Lemma B.8. Let ρ be a pure state and A1, . . . , Ad observables on a finite dimensional Hilbert
space H. If Jij := Tr ρAjAi are all real for 1 ≤ i, j ≤ d, there exist observables K1, . . . , Kd such
that

[Ai + Ki, Aj + Kj ] = 0,

for 1 ≤ i, j ≤ d and
Kiρ = 0

for 1 ≤ i ≤ d.

Proof. Let ρ := |ψ〉 〈ψ|, and let |li〉 := Ai |ψ〉 for 1 ≤ i ≤ d. Because 〈ψ|li〉 and 〈li|lj〉 (= Jji)
are all real, there exist a CONS {|ek〉}dimH

k=1 of H such that 〈ek|ψ〉 and 〈ek|li〉 are all real, and that
〈ek|ψ〉 ̸= 0 for all k. Let

Ãi :=
dimH∑
k=1

〈ek|li〉
〈ek|ψ〉

|ek〉 〈ek| ,

and Ki := Ãi − Ai. Obviously [Ai + Ki, Aj + Kj ] = [Ãi, Ãj ] = 0, and

Ki |ψ〉 =
(
Ãi − Ai

)
|ψ〉 = |li〉 − |li〉 = 0.

This means Kiρ = 0.

Lemma B.9. Given a d×d positive semidefinite Hermitian matrix J , there exist a finite dimen-
sional Hilbert space H and a pure state ρ and observables Ai (1 ≤ i ≤ d) on H such that Tr ρAi = 0
and Tr ρAjAi = Jij.

Proof. Let H = Cd+1, and let {|i〉}d
i=0 be a CONS of H. We set |ψ〉 := |0〉 and |ℓi〉 :=∑d

k=1

[√
J

]
ik
|k〉 for i = 1, . . . , d. Then ρ := |ψ〉 〈ψ| and Ai := |ℓi〉 〈ψ| + |ψ〉 〈ℓi| satisfy Tr ρAi = 0

and Tr ρAjAi = Jij .

Theorem B.10. Let
{
ρθ ; θ ∈ Θ ⊂ Rd

}
be a quantum statistical model comprising pure states

on a finite dimensional Hilbert space H, and let Cθ0 (ρθ, G) be the Holevo bound at θ0 ∈ Θ for a
given weight G > 0. There exist a locally unbiased estimator M̂ at θ0 ∈ Θ such that TrGV [M̂ ] =
Cθ0 (ρθ, G).

Proof. Let T be a D invariant extension of the SLD tangent space span {Li}d
i=1 of the model

{ρθ} at θ = θ0, i.e., containing all the SLDs {Li}d
i=1 of {ρθ} at θ0, let {Dj}r

j=1 be a basis of T . Let
Σ, τ be r × r, r × d complex matrices defined by Σij = Tr ρθ0DjDi, τij = Tr ρθ0LjDi. According to
Theorem B.1, the Holevo bound for a weight G > 0 can be expressed

Cθ0 (ρθ, G) = min
F

{TrGZ + Tr
∣∣∣√G Im Z

√
G

∣∣∣ ; Z = tFΣF,

F is an r × d real matrix satisfying tF Re (τ) = I}.(B.15)

Let F be the matrix that attains the minimum in (B.15), and let Z := tFΣF , Ṽ := Re Z, S̃ := Im Z,
V̂ =

√
G−1

∣∣∣√G ImZ
√

G
∣∣∣√G−1, and Ẑ = V̂ −

√
−1S̃. Lemma B.9 assures that there exist a Hilbert
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space Ĥ and a pure state σ and observables Bi (1 ≤ i ≤ d) on Ĥ such that Tr σBi = 0 and
TrσBjBi = Ẑij . Further, let

X i := X̃i ⊗ Î + I ⊗ Bi (1 ≤ i ≤ d),

where X̃i := F k
i Dk (1 ≤ i ≤ d), and Î is the identity matrix on Ĥ. It then follows that

(B.16) Tr (ρθ0 ⊗ σ) XjXi =
(
Ṽ + V̂

)
ij

.

According to Lemma B.8, there exist observables K1, . . . , Kd on H⊗ Ĥ such that [X i + Ki, Xj +
Kj ] = 0 and Ki (ρθ0 ⊗ σ) = 0. Let T̂i := θi

0I ⊗ Î +
(
X i + Ki

)
. Then T̂1, . . . , T̂d are simultaneously

measurable, and satisfy the local unbiasedness condition:

Tr (ρθ0 ⊗ σ) T̂j = θj
0

and

Tr (∂iρθ0 ⊗ σ) T̂j = Tr ∂iρθ0X̃j

= F k
j Tr ∂iρθ0Dk

= F k
j ReTr ρθ0LiDk

= {F (Re τ)}ji = δij .

Further

Vθ0 [T̂ ]ij = Tr (ρθ0 ⊗ σ)
(
X i + Ki

) (
X i + Ki

)
=

(
Ṽ + V̂

)
ij

.

This completes the proof.
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