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APPENDIX A: PROOFS OF MAIN THEOREMS

This section is devoted to proofs of main results presented in Sections 2-3 of [4].
A.1. Proof of Lemma 2.6. We shall prove (2.3) in [4] for {&}7_, ¢ C% and {n:}/_, C C.
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In the third line, we used the fact that P(n) = o(1). Let us denote the terms corresponding to
ki+--+k->3by

— (k1+-tkr) ,
Tn::Trp{ Z ({/g) H k,1| (ftA +n:P(n ))k}

ky ke >3

Then
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(jﬁ)(mm%)f[ ,j, (614, + nP(m) " H
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— an exp |[€14i + mP(n)
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Since lim,, .~ P(n) = 0, the operators P(n) are uniformly bounded. As a consequence, lim,,_,o 1 |1, | =
0, so that r, = o ( ) Thus we conclude that
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The last equation is due to (2.2) in [4] with h = 0.

A.2. Proof of Theorem 2.9. Let X1, ..., X, A1, ..., Ay be the basic canonical observables

of CCR (Im (i ;)), and <z~5 the quantum Gaussian state N <<8) , (Tzi ;)) on that CCR.

Assumption (2.6) in [4] guarantees that the quantities

R =M — {hZAE ) — 2Jijhzh31(”)}
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(n)
enjoy R,(ln) =0 ((i(”)> ,pé?) for each h € R?. Consequently, for a finite subset {&;}7_; of C4,
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Since Rgn) is infinitesimal relative to the convergence (2.5) in [4], we see from (2.3) in [4] that
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where ¥ := (i ;) and (50, &, & é:r+1) = (—*/leh, &1, o0y &, —@h), and (2.2) of [4]

was used at the second equation. This is the quasi-characteristic function of N((ReT)h, X).
A.3. Proof of Theorem 2.10. Since

P = (eéﬁ(peIpeo)peoeéﬁ(/)olpeo))®n
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we see that

(A1) £(pgm o) = D215 D @ £ (pglpg,) @ 1907,
k=1

This proves pg"™ ~ P.9 " for all # € © and n € N.
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Before proceeding to the proof of (ii) and (iii) in Definition 2.8, we give some preliminary con-
sideration. Let the quantum log-likelihood ratio Ly, := L (pg,+n|pe,) be expanded into

Ly, = hZAz + Bl]hzhj + 0(h2),

where A; (1 <14 <d) and By; (1 <i,j < d) are Hermitian operators on H. Observe that A; is the
SLD in the ith direction. In fact,

Pogrh = €Xp {2 <h A + o(h))} PO, €XP {2 (h A + o(h))}
1.
Po, + §hz (poy Ai + Aipe,y) + o(h),

so that

1
0ipo, = = (payAi + Aipay) -
2

This observation also shows that Tr pg,A; = 0 for all . On the other hand,
Trpg,on = Trpg, exp (hiAi + Bijh'h? + o(h2)>
i ipj L iri\2 2
= Trpg, (I+ (W A;+ Byh'h?) + 3 (h'Ai + Bish'hT)” + o(h?)
) o 1
= 1+h (Tl" pgoAi) + h*W Tr Poo <Bij + 2A¢A]’> =+ O(hQ)
o 1
= 14+ hZhJTI'pQO (BZJ + 2A1AJ) + O(hg).
Since Tr pg,4+n, = 1 for all h, the above equation leads to
1
(A.2) Tr py, <Bij + 2AiAj) =0.
Now we prove (ii). Let J;; := Tr pg, A;A;, and let

Az('n) — \} Zn: 19¢k-1) o 4. @ [ONn—k)
"=

It then follows from the quantum central limit theorem (Proposition 2.5) that (A(”),p?%”) ~

q
N(0,J).
Finally, we prove (iii). It follows from (A.1) that

L =312V gL, m o 20h),
k=1
Let us show that )
Rgln) — [:;Ln) _ (hiAl(n) _ 5 (Jijhihj) [®n>
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is infinitesimal relative to the convergence (A(”), pg%") ~» N(0,J). It is rewritten as
q

Rgln) _ ZI®(I<:—1) ® £h/\f th + (thlh]) :| ®I®(n—kz)
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where ) . 1
_ Yin 1o Naipi oL
P(n) = v (n <BU + 2J1J1> hh +0(n)> .
Note that lim,,—,o, P(n) = 0, and that
nhrgo VnTrpg,P(n) = Trpy, < ij + J1JI> h'h
= ’I‘I‘pgo < ij + JJZI> ]’Lzh]

=0

because of (A.2). It then follows from Lemma 2.6 that R,(Ln) = o(A("),p9 ) for each h € R?. This
completes the proof.

A.4. Proof of Corollary 2.11. That p? ~ p?” was proven in the proof of Theorem 2.10.

Let Agn), cee AEZ") be as in the proof of Theorem 2.10. It then follows from the quantum central
limit theorem that

(55)) (0 3)

(n)

Further, because of Lemma 2.6, the sequence R~ of observables given in the proof of Theorem
2.10 is also infinitesimal relative to the convergence (A.3). Now that (p(;@", X™)) are jointly QLAN

at 6y, the property (X (n) p(;@;ih y \/ﬁ) o N((ReT)h,X) is an immediate consequence of Theorem
2.9. This completes the proof.

A.5. Proof of Theorem 3.1. Let D := DP% be the commutation operator with respect to
the state pyg, (see Section B.1), and let 7" be the minimal D invariant extension of the SLD tangent
space spang {L; }l , of the model {pg} at 6§ = 6y, i.e., the smallest D invariant real linear subspace
of Hermitian operators on H containing all the SLDs {L; } 1 of pg at 6p. The minimality ensures
that Tr pg,A = 0 for all A € T because 7' = {A € T ; Tr pg,A = 0} is also D invariant.

Let {Dj}j:1 be a basis of 7, thus d < r. Let ¥ be an 7 x r matrix whose (i, j)th entry is given
by ¥;; = Tr pg,D;D;, and let 7 be an r x d matrix whose (i, j)th entry is given by 7;; = Tr pg, L; D;.
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It can be shown (see Theorem B.1) that the Holevo bound for a weight G > 0 is expressed as

Coo (po, G) = mFin{Tr GZ+Tr = 'FYF,
(A4) F is an r x d real matrix satisfying *F' Re (1) = I}.
Letting
xM" = ZI®’“®D R I®F) (1 <i<y),

’ fkl

Corollary 2.11 asserts that ({ p?"} , X (”)) is jointly QLAN at 0y, and that

(A.5) N((ReT)h,%).

(X" prenrm)

Let F be the matrix that attains the minimum in (A.4), and let Z := 'FYF, V := ReZ,
S:=ImZ, V= @‘@ImZ\/a‘ VG, and Z = V — /=15. Tt is shown (see Corollary B.6
and Theorem B.7) that

Coy (o, G) = Tr G (V + V).

Further, Lemma B.9 assures that there exist a finite dimensional Hilbert space H and a state o
and observables B; (1 < i < d) on H such that TroB; =0 and TroB;B; = Z;;. Let

Yz(n) — Xz(n) ®j®n —|—I®n ®Yi(n) (1 <i< d)’

where X(™ := FFX(™ (1 <i < d),

1

ARNS \FZI@”“ Ve Bol®rh (1<i<d),

and I is the identity on H. A crucial observation is that <Y(n) , ﬁgn)), where ﬁgn) = pg@;’l hn® o®mn,
converges to a classical Gaussian state:

(A.6) (X7 5") = N(h,V + 1),

for all h € R?. In fact,
(") n) S i (n)
lim Trph (H oVIEX; ) — hm Trp {(H oV IEX, X! ) 2 ( ﬁgtY_( )}
" t=1 t=1 =1
= lim

n 5 1 2)2'("0 zy(n)
p [P (o7 ) [ (7).
t—
(A.7) = ¢ (H eﬁ&iffi) " (H eﬁ&fﬁ) :
t=1

t=1

where X’i = FikX (1 <i < d) are canonical observables with X1, ..., X, being the basic canonical
observables of CCR (ImX) and (X, ¢n) ~ N((ReT)h,X), and Y7, ..., Yy are the basic canonical

observables of CCR (Im 2) with (Y,4) ~ N(0,Z). In the last line in (A.7), we used (A.5) as
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well as the quantum central limit theorem for Y™, By using the explicit form (2.2) of the quasi-
characteristic function for the quantum Gaussian state, (A.7) is rewritten as

P (Z (\/—71§§h1— ;ézé’zzﬂ) Z Z §t§s JZ> exXp (_thgzjz Z Z §§§§Z]z>
t=1

t=1 s=t+1 t=1 s=t+1

:exp(Z(rﬁth—ftftV—i—V ) ZZ§t§JV+V )

t=1 t=1s=t+1

This proves (A.6).
Now according to Lemma A.1 below, there exist a quintuple sequence

M(”fm,zyq,l’) — {Mu(jn:ml#]:p) ; w E Q(n7m7l7p’q)}

A\ ®
of POVMs on ('H ® 'H) n, taking values in a certain finite subset Q(%7:tP:4) of R? that enjoys the
properties
lim lim lim lim lim E(n) [M ("’m’g’q’p)] = h,

P—00 q—00 f— 00 M—00 N—00

and o
lim lim lim lim lim V(n)[M("vmvg’q»P)] =V+V,

P—00 q— 00 f— 00 M—00 N—00

for all h € R?, where E;Ln)[] and V;ln)[ | denote the expectation and the covariance with respect

to pﬁl ") Tt then follows from Lemma A.2 below that for any countable dense subset D of R¢ and

any h € D, there exist a subsequence {(n, m(n),f(n),q(n),p(n)},cy such that

hm Eé )[M(n,m(n),é(n),q(n),p(n))] — h

Y
n—oo

and

lim 77 [ (rm(m) €atm o)) — 7 4 7,

n—oo

This implies that the POVM M ™ on H®" that is uniquely defined by the requirement

Tr p™ )M( n) — Ty ( (n )®U®n) Mt(unym(n)vf(n)ﬂ(n),p(n))
for all density operator p(™ on H®" and w € QU(M:H)p(n):4(n) enjoys

lim E(n)[ (] = p,

n—oo

lim th)[ M =y 4V,

n—oo

for all h € D. Recalling that Tr G(V + V) = Cy, (po, G), the proof is complete.

LEMMA A.1.  Given a sequence H\™ of finite dimensional Hilbert spaces, let X = (X{"), ey Xé”))

be a list of observables on H™ | and let {pgn)}h be a family of density operators on H™ parametrized
by h € R2. If there is a real d x d positive definite matriz V such that

(a9 (X0, - N0, 7)
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holds for all h € R?, then there exist a quintuple sequence {M(”’m’é’q’p);(n,m,ﬁ, q,p) € N5} of
POVMs on H™ that enjoy the properties

lim lim lim lim lim E( )[M(”’m’f’qvp)] =h,

P—00 q—00 f— 00 M—00 N—00

and
lim lim lim lim lim Vh( )[M("’m’g’q’p)] =V

P—00 q— 00 f—r 00 M—00 N—00

PRrROOF. Let , /
Qmb) ._ {? 1,1 ?ezd}m[—l,l]d

m 2m

be a finite subset of RY, comprising (2m)? lattice points in the hypercube [—1,1]%, and let Q("6P) .=
QMO N [—p, p]¢ and Q(()m’e’p) = QU6P) {0}, We introduce a Gaussian density function féq) (z) on
RY centered at w = (w1, ..., wq) € RY by

fogq)(x {ngd+l i (Tdt1-i }{ngl i }7
=1

where z = (1, ..., z4) € R? and

gl (t) = <2q7r>iexp (—Z(t - 3)2) . (s,teR).

By using this function, we define a POVM M (mm:ba:p) — {M(E”’m’l’q’p); w € Q(()m’g’p)} on H™ that

takes values in the finite subset Q(()m’e’p ) by

7(™)
2m)d

—

Mmbar) .— pimta) xn) [ff,q)(X(”)) + 1 R(m:ba) (x (7))

for w € QMEP) and

Mén,m,é,q,p) — Z {R(m,&q)(X(n)) [(fé,q)(X(n)) 4 I(n)d>] R(m%q)(X(n))}‘

WEQMO\Q(m,L.p)

Rm44) (g ( 3 f@ )
we(m,e)

g(t) :== T

Intuitively speaking, the difference set Q™% \ QUmLp) works as a “buffer” zone that gives the
default outcome w = 0. This device is meaningful only when p < /.
We shall prove that

Here

is the normalization with

—_

(A.9) pli_g)lo qli_)rglo elirgo Jim lim > Pw)Tr p(")MLgn,m,E,q,p) = /]Rd P(w)pp(w)dw,
weQém’Z‘p)
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where P(w) is an arbitrary polynomial of w such that P(0) = 0 and pp(w) is a probability density
function of the classical normal distribution N (h,V’). Once (A.9) has been proved, we can verify

lim lim lim lim lim BV [Mber)] —
P—00 q—00 f— 00 M—00 N—00

and
lim lim lim lim lim V" [Mmber)] = v

P—00 q—00 f— 00 M—00 N—00

just by letting P(w) = w; or P(w) = wiw; (1 <14,j < d) in (A.9).
The first limit n — oo in (A.9) yields

lim Z P(W)TI‘ pgn) Mu(j”:m:&q,p)
" ey
= lim Z P(W)TI' pgn) Mu(}",m,é,q,p)

n—oo
wEQ(mazvp)

= lim > P(w)Trpy RO (x M)
" Ooweﬂ(mv“’)

= Y PWE, [zwﬂm%q)(x)2 (fff”(X )+ (2,;)51)}

weﬂ(mvevp)

floxmy 4 —

Cweaomen P@) (£ (@) + oy

_ )
(410 N /Rd > weq(mo) (fo(f]) (z) + W) oz

In the fourth line, we used the assumption (A.8) and Corollary A.4 in Section A.6, as well as the

fact that functions ggq) (t) on R and g¢(t) on t > 0 are both bounded and continuous. Further,
X = (X1, ..., Xy) is a classical random vector that follow the normal distribution N(h,V'), and

En[-] denotes the expectation with respect to N(h, V). As for the second limit m — oo, due to

Y weamen P@) (£ (@) + o
o (q(> 1(2m)d) < max |P(w)] < oo,
ZwGQ(mvl) (fw (z) + (2m)d) we[—p,p]?

the bounded convergence theorem yields

e \? (q) 1
) Cweqmmen Pw) (fo' (x) +
lim (A.10) = / lim (1) Faenen ( (2m)d)ph(x)dx
R

i 4 m—00 (%)d > we(m.) (fu(zq) (z) + (2711)‘1)

(A.11) _ / Joelpprt PP (w, z)dw
| Re wa[—Z,Z]dp(q)(W,iU)dw

pr(x)dz,

d
where p(@(w,z) = (L) 2 exp (—% S (@ — wi)Q), and Darboux’s theorem for the Riemann inte-

gral was used in the second line. Finally, the dominated convergence theorem and Fubini’s theorem
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yield
_ P(w)p'?(w, z)dw
lim lim lim (A.11) = lim lim fwe[ pyt PP, 7) pr(x)dz
P—00 ¢—00 f—00 p—00q—00 Jpd Jga P9 (w, x)dw
= lim lim / P(w)p'?(w, z)dw x)dx
p—00 ¢—0 J|pd ( we[—p,p]d ( )p ( ) )ph( )
= lim lim </ p(Q)(w,x)ph(:B)daz) P(w)dw
pP—00 —00 we[*p,p]d Rd
_ : (9)
) R
= lim pp(w)P(w)dw
P00 Jwel—p,p]?
(A.12) _ /Jmmpwm%
R
where pgq) (w) is the density function of N(h,V + %I ). This completes the proof. O

LEMMA A.2. For each i € N, let {af1 (n1,n2,...,np,n) € N(T‘H)} be an (r + 1)-tuple

sequence on a normed space V. If, for each i € N, there exists an o' € V such that

1N2 " Npn?

n}linoo nllinoo nllinoo nh—{go Anyng-nen @,
then there exist a subsequence {(ni(n),na2(n),...,n.(n),n)}nen that satisfies
S ar s () g (. = @
for all i € N.

PROOF. We first prove the case when r = 1. Let a, L= im0 al, 1n- We construct a subsequence
{(n1(k),n(k))}ren in a recursive manner as follows. We set n1(1) = n(1) = 1. For k > 2, it follows
from limy,, o af,, = o' that there exist an Ny (k) € N such that n; > Ny (k) implies

i i 1
max |ap, — <
Thus the number n; (k) := max {Ny(k),ni(k — 1) + 1} satisfies
(A.13) 0AX |, (k) — @ < T

For this nj(k), it follows from lim, aill (k)
n > N (k) implies

= aﬁu(k) that there exist an N(k) € N such that

n

i i 1
(A14) 11’218,5(]c ‘anl(k)n — anl(k)‘ < E
Thus we set n(k) := max {N(k),n(k—1) + 1}.
Now let k(n) := max {k; n(k) < n}, which is non-decreasing in n and lim, . k(n) = co. We
show that the subsequence {ni(k(n)),n); n € N} enjoys the required property: for all i € N,

Jim af, (kg = @
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Given i € N and € > 0 arbitrarily, there exist an N € N such that n > N implies k(n) >
max {i, E—‘ } Then for all n > N, we have

[Thachmn = @] < @b = Ghacen| + |t — |
< 1;;25%”) ‘anl(k(n))n Clm(k(n))‘ + 1;;?}5%”) ’am(k(n)) o ‘
< =<
B S €.

In the third inequality, we used (A.13) and (A.14), as well as its premise n > n(k(n)) > N(k(n)).
The proof for a generic r is similar. O

A.6. Quantum central limit theorem. Jaksi¢, Pautrat, and Pillet [3] proved the following
strong version of a quantum central limit theorem.

PROPOSITION A.3.  Given a sequence H™ of Hilbert space, let p™ and A™ = (Agn), e Agn))
be a state and a list of observables on H™ that enjoy the quantum central limit theorem in the
sense of convergence of the quasi-characteristic function:

(A, o) = N(h, J) ~ (X, 9),

where J is a dXd positive semidefinite matriz. Then for any bounded continuous functions f1, ..., fm
and a noncommutative polynomial P, it follows that

iy P (A7) = o (p (7).

where m = (fl(Bl);.., fi(Ba), -y fm(B1), -, fm(Ba)) for a given list B = (By, ..., By)
of observables, and P (f(B)) = P(fi(B1), ..., fi(Ba), .., fm(B1), ..., fm(Ba)).

Proposition A.3 is strong enough to prove the following, which is essential in constructing a
sequence of POVMs that asymptotically achieves the Holevo bound (Section 3 in [4]).

COROLLARY A.4. Under the same assumption as in Proposition A.3, for any bounded con-
tinuous functions g, f1, ..., fm, and noncommutative polynomials P,Q, with P being Hermitian
operator-valued, it follows that

s 1 o () (7)o (757
=0 (s (P (F0)) @ (X)) ¢ (P (F(X)))).

PROOF. Let [ := maxj<j<m sup, | fi(x)|. There exist {p > 0 and lg > 0 such that [p > HP(E)H
and lg > HQ(ﬁ)H for any list B = (Bi, ..., Bam) of observables such that || B;|| < I. Let [, :=

sup {|g(z)| ; = € [~1p,lp]}. There exist a sequence R*)(z) of polynomials that uniformly converges
to g(z) on [~Lp, lp].

T o (p (7)) 0 () 10 (r ().
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o ¢ (1057)) 0 () (o (57

We show that ag, uniformly converges to a, as k — oo. In fact, letting Ig := sup{R(k) (x); k €
N,z € [—lp,lp]},

and let

sup |ay, — agp|
neN

= s | 100 (P (74)) @ (104)) o (P (704) )

=R (P (140) ) @ (5% ) R (P (50477)) )

<o |1y (P (5047)) ) @ (44) [o (1 (54%) )~ 0 (P (54) )]
g 10 [ (P (704 ) = 1 (P (504%7)) )| @ (564 1 (P (74) )

<ttosue o (P (147)) =1 (p (147) )|

+lglg sup
neN

<lo(ly+1r) sup |g() — R¥)(x)

xe[*lp,lp]

which converges to zero as k — oo.
The uniform convergence ay, = a,, as well as the existence of limy_, o lim,, .o @y, which follows
from Proposition A.3, ensure that

nlgrgoﬁp(”)g (P (f(A—(”))>>) Q (f(A—(”))>> g (P (f(A—(”);))
o o o () 0555 - (75

n—oo k—oo

= lim lim ag,
n—00 k—o00

= lim lim ag,
k—o00 N—00

= tim o (89 (P (7(X))) @ (FOX)) £ (P (7))
:¢(g(( X)) @ (F09) ¢ (P (7(X7))).

This proves the claim. O

APPENDIX B: ELEMENTS OF QUANTUM ESTIMATION THEORY

This section is devoted to a brief account of quantum estimation theory.

B.1. Commutation operator and the Holevo bound. In the study of quantum statistics,
Holevo [2] introduced useful mathematical tools called the square summable operators and the
commutation operators associated with quantum states. Let H be a separable Hilbert space and let
p be a density operator. We define a real Hilbert space L’%(p) associated with p by the completion
of the set By (H) of bounded Hermitian operators with respect to the pre-inner product (X,Y") o=
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ReTr pXY. Letting p = 37 s;[1;) (1| be the spectral representation, an element X € L3(p) can
be regarded as an equivalence class of those Hermitian operators, called the square summable
operators, which satisfy >, s;]|X1;]|? < oo (so that 1; € Dom(X) if s; # 0) under the identification
X1 ~ Xp if X19p; = Xop; for s; # 0. The space ﬁ% (p) thus provides a convenient tool to cope with
unbounded observables. Note that when H is finite dimensional, the setup is considerably simplified
to be L2(p) = By(H)/ ker p.

Let £2(p) be the complexification of £3(p), which is also regarded as the completion of B(H)
with respect to the pre-inner product

1
(X,Y), = iTrp(YX* + X*Y).

Thus £2%(p) is a complex Hilbert space with this inner product. Let us further introduce two
sesquilinear forms on B(H) by

(X,Y), :=TrpY X*, (X,Y], = Trp(YX* — X'Y).

1
24/—1
and extend them to £2(p) by continuity. (Note that (X, X), < 2 (X, X),and (X,Y), = (X,Y), +
VvV-1[X,Y],.)

The commutation operator D, : L?(p) — L%(p) with respect to p is defined by
X, Y], = (X,DpY)p,
which is formally represented by the operator equation
Dp(X)p + pDy(X) = V=1 (Xp — pX).

(To be precise, Holevo’s original definition is different from the above one by a factor of 2.) The
operator D, is a C-linear bounded skew-adjoint operator. Moreover, since the forms |-, -], and
(-, ), are real on the real subspace L3 (p), this subspace is invariant under the operation of D,.
Thus D, can be regarded as an R-linear bounded skew-adjoint operator when restricted to E%(p)
as D, : L2(p) — L3(p). When no confusion is likely to arise, we drop the subscript p of D, and
simply denote it as D.

Let S = {pg; 0 € © € R} be a quantum statistical model satisfying the conditions: 1) the
parametrization 6 — py is smooth and nondegenerate so that the derivatives {Jpy/ aei}lggd exist
in trace class and form a linearly independent set at each point § € ©, and 2) there exists a constant

¢ such that )

< C<XaX>p9

(Zi Tr pg X

E
for all X € B(H) and i. The second condition assures that the linear functionals X ~ (9/00%)Tr py X
can be extended to continuous linear functionals on £2(py). Given a quantum statistical model
satisfying the above conditions, the symmetric logarithmic derivative (SLD) Lg; in the ith direction
is defined as the operator in £?(p,,) satisfying

0
507 TrpeX = (Lo, X)p,-

It is easily verified that Lg; € £3(pp); so the definition is formally written as

dpg 1
00t 2

(B.1) (Lo, po + po Lg,;)-
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When no confusion occurs, we simply denote Ly ; as L;. Since L; is a faithful operator representation
of the tangent vector 9/060°, we shall call the R-linear space spang{L;}% ; the SLD tangent space
of the model py at . Incidentally the d X d real symmetric matrix Jy := [ReTr ngiLj]1<l.7].<d is
called the SLD Fisher information matriz of the model S at 6.

An estimator M for the parameter 6 of the model S is called unbiased if

(B.2) Eo[M] =0

for all @ € ©, where Ejy[-]| denotes the expectation with respect to py. An estimator M is called
locally unbiased at 6y € © if the condition (B.2) is satisfied around 6 = 6y up to the first order of
the Taylor expansion. It is well known that an estimator M that is locally unbiased at 6y satisfies
the quantum (SLD) Cramér-Rao inequality, Va,[M] > Jo, ! where Vp,[-] denotes the covariance
matrix with respect to pg,. The lower bound Jy 1 cannot be attained in general due to the non-
commutativity of the SLDs. Because of this fact, we often switch the problem to minimizing the
weighted sum of covariances, Tr GVjp, [M |, given a d x d real positive definite matrix G. It is known
that this quantity also has a variety of Cramér-Rao type lower bounds [2]:

Tr GV, [M] > Cg, (ps, G) -
Among others, we concentrate our attention to the Holevo bound [2]:
Cy, (p9, G) = I‘I/l’iél{Tr GV'; V is a real matrix such that V > Z(B), Z;;(B) = Tr pp, BjB;,
(B.3) By, ..., B are Hermitian operators on H such that Re Tr pg, L; Bj = 0;;}.

The minimization problem over V is explicitly solved, to obtain

Co, (p9,G) = H}ii)n{TrGZ(B) + Tr ‘\@ImZ(B)\/a

; ZZ(B) = TI‘ngBjBi,
By, ..., B are Hermitian operators on H such that Re Tr pg, L; Bj = 05}

Our aim here is to derive a further concise expression for it in terms of a D invariant extension
of the SLD tangent space, a subspace of {X € L3 (pg,); Tr pgy, X = 0} including the SLD tangent
space such that D(7) C 7.

THEOREM B.1. Suppose that a quantum statistical model S = {pg; 0eoC Rd} on ‘H has

a finite dimensional D invariant extension T of the SLD tangent space of S at 8 = 0y. Letting
{D;}i_1 be a basis of T, the Holevo bound defined by (B.3) is rewritten as

Cuy (p0,G) = min{TrGZ +Tx ‘\/élm ZVG|: 7 = tFYF,

(B.4) F is an r x d real matriz satisfying 'F Re (1) = I},

where ¥ and T are v x r and v x d complex matrices whose (i,j)th entries are given by ¥;; =
Tr ngDjDi and Tij = Tr ngLjDi.

PROOF. Let 71 be the orthogonal complement of 7 in £2(pg,) with respect to the inner product
(-, ->p60, and let P : L2 (pg,) — T and P+ : L3 (pg,) — T+ be the projections associated with the

decomposition £2(pg,) =T @ T+. Note that if X € 7+ and Y € T, then

(X,Y),, =(X.Y),, +\/?1<X,Dy>p90 =0.

Poy 0
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We show that the operators {B; }?:1 that achieve the minimum in (B.3) can be taken from 7.
Let {Bj}?zl C L3(pg,) satisfies the local unbiasedness condition ReTr pg,L;B; = &;;, which is
rewritten as

<Li,Bj> = 51]

Pog

Then {P(Bj)}4_, also satisfies the local unbiasedness
<Li7 P(B])>p90 = <Ll’ Bj>p90 = 61.7
Further,

Zi(B) = (BiBj),, = (P(B)+PH(B), P(B)) + PX(By)

= (P(B).PBY),, +(PHB)PHB) = Zy(P(B)) + 2(P-(B))

Po,

Since Z(-) is a Gram matrix and is positive semidefinite, this decomposition implies that Z(B) >
Z(P(B)). Thus the observables B that minimize (B.3) can be taken from 7.

Let B; € 7 be expanded as B; = Fka, where F' is an r X d real matrix. Then the local
unbiasedness condition is rewritten as

(Li,Bj), =FF{(L;i,Dy), =0,

p@o p00

or in a matrix form,

'F(Ret) =1I.
Further, the Gram matrix Z(B) is rewritten as

Zij(B) = (B;,B)), = FfFf (Dy, Dy)

Poy Poy ’

or,

Z(B) = 'FYF.
This proves the claim. O

When the SLD tangent space itself is D invariant, the Holevo bound can be represented in terms
of the RLD Fisher information matrix as follows.

COROLLARY B.2. Let {pg; feodC Rd} be a quantum statistical model, and let L; (1 <i<d)
be the SLDs at 0y. If the SLD tangent space spang {Li}?zl at 0y is D invariant, then

)

Coy (po, G) = TrG(II) ™ 4+ Tx VG Im (J0) 7Y@

where (JU) ™1 := (ReJ) "' J (Re J) ™" with Jij = Tr pg, L; L;.

ProOF. Let us set D; := L; for 1 < ¢ < d in Theorem B.1. Then ¥ = 7, and the lo-
cal unbiasedness condition 'F (Re7) = I has a unique solution F = (ReX)™ !, whereby Z =
(ReJ) ' J(ReJ) ™t O

Note that RLDs may not exist if the model is degenerate (i.e., non-faithful). This means that
JE) may not be well-defined for such a model. Nevertheless we use the notation (J))~1 even for
a degenerate model, and call it the inverse of the RLD Fisher information matrix, as long as the
SLD tangent space is D invariant. For an idea behind this nomenclature, consult [1].

Finally, we show that the Holevo bound for the nth i.i.d. extension model is precisely % times
that for the base model.
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COROLLARY B.3. Given a quantum statistical model & = {pg; e C ]Rd} that has a finite

dimensional D invariant extension of the SLD tangent space, let S = {p?"; feBC Rd} be the
nth 1.i.d. extension model. Then

090 (pé®n7 G) = % Ceo (pﬁa G) :

PROOF. Let us distinguish quantities that belong to models of different extension by specifying
the degree n of extension in the superscript. Letting {L;}¢ ; and {D; }i—1 be SLDs and a basis of

T in Theorem B.1, the corresponding quantities for S are given by

n

L — Z 191 @ L. @ 97—k

7

k=1
and "
D =3 1%+ @ D; @ 19" F,
k=1
Thus
S0 —pp®, 0 Z e pe) Z e
n
so that
7 — tpmym pe) L)
n
and ]
C@o (ngm, G) = ﬁ C@o (PO; G)
doe to Theorem B.1. ]

B.2. Estimation of quantum Gaussian shift model. In this section, we briefly overview
the estimation theory for a quantum Gaussian shift model. For a mathematically rigorous treatment,
consult [2].

LEMMA B.4.  Let (X, ¢p) ~ N(h,J), where J is a d x d positive semidefinite complex matriz.
Then

(B.5) on(Xi) = hy

and

(B.6) On((Xj = hy)(Xi — hi)) = Jij
hold.

PROOF. Letting U(¢) := eV~ 16'X:,
U©) = 1+ VTo(EX) — 2on((€X:)") + o€
= 1HVIIRX)E — SOXX)EE +ofe)
= 1 VIIBE — Sn(Xi0 XEE + o(€?),
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where X; 0 X; = 3 (X;X; + X;X;). Further, letting V = ReJ and S = Im J,

i igj . 1 o 1 . 1 o\ 2
VTS 1y (Ve - Vo' ) 3 (VIR - SVt'e )+ o(€?)
. 1 .
= 1+ V-1&hi — 5 (Vig + hily) €7 + o(&?).
A comparison immediately leads to (B.5) and the identity ¢, (X; o X;) = Vij + hih;. Thus
on(Xj — hj)(Xi —hi)) = on(X;Xi — hj Xy — hi X + hihj)

= on(X;Xi) — hih;
1

= Qbh <Xz ¢] X]’ — 2[XZ,X]]) - hlh] = J”

0

In what follows, we treat the quantum Gaussian shift model {N (th,X); h € Rd} on CCR (ImY),
where ¥ is an r X r complex matrix such that > > 0 and ReX > 0, and 7 is an r X d real matrix
with d < r such that rank7 = d. Let X = (Xy, ..., X)) be the basic canonical observables of
CCR (ImX), and (X, ¢p) ~ N(7h,X).

LEMMA B.5. Let U() :=eV=%'Xi_ The SLD L; (1 <i<d) at h defined by

(B.7) S n(U(©) = 30n (UOLL + LUE)
s given by
(B.8) L= [(Rex) 7] . (Xe = (h)el).

/=1

PROOF. In this proof we lift Einstein’s summation convention. Let V' = ReX and S = Im ¥,
and fix a k € {1,...,d} arbitrarily. Due to the Baker-Hausdorff formula,

U = VI i €% = exp (—\/ji Ski§k§i> exp (\/jkak) exp (\/—712512(}> .
i=1 i#k

By differentiating in ¢*, we have

éZkU(ﬁ) =—v-1 (i Skié' — Xk> U(é).
=1



18 K. YAMAGATA ET AL.

Thus
on((Xi — (Th)x U (E)) ((Z Ski& — (Z (Th)kf> U(§)>
(z St — wm) (U (©)
= (Z Ski€' — \/—71(;;, (Th)k> R
=1
_ (z St~ wm) n(U(€) — V=T (V=T(rhi = (VER) 6n(U(€)
=1
(S¢+vV=1v¢) on(U(9))
(B.9) = VEI1(JE), an(U(9)).

Similarly, we obtain

(B.10) $n(U(€)(Xk — (Th)rI)) = V=1 (JE);, (U (€)).

By combining (B.9) and (B.10),

(B.11) én ((Xy, — (Th)e U (&) + U(&)(Xy — (th)I)) = 2V =1 (VE), (U (€))-

On the other hand, by a direct calculation

(B.12) ;ZR%(U(@) (fikrffh_ltfvg V=1(¢r)eon(U(€)).

A comparison between (B.11) and (B.12) yields

T

Ly = Z {VﬁlT}Ek (Xe— (Th)g[).

(=1

O

Let Ly, := Xi— (1h)xI. Tt follows from (B.9) and (B.10) that Dy, (L;) = 71 (V~1S)si Ly, where
Dy, is the commutation operator with respect to ¢ defined by

&n (U(€)Dg, (X) + Dy, (X)U(€)) = V=163, (U(§) X — XU(€)) .-

h

This means 7 = span {ik};—l is Dy, invariant. Further, we can check from (B.8) that span {Li}?zl C
7T and -

(B.13) on(LiLi) = Zij
and
(B.14) Re ¢n(L;Li) = 7ij.

These relations play a fundamental role in connecting a general quantum statistical model S =
{pg ; 0€0C Rd} on H with a quantum Gaussian shift model G = {N(Th, ¥); he ]Rd} as follows.
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Let {L$}% | be the SLDs of the model S at § = 6, and let 7° be a D invariant extension of the
SLD tangent space span{L¢ }¢_,. Further let {D}S}’;Zl be a basis of 7° and let ¥ and 7 are r x r and
r % d matrices whose (7, j)th entries are given by 3;; = Tr pg, D; D; and 7;; = Re Tr pg, L;D;. Based
on those information, we introduce a quantum Gaussian shift model G = {N (th,X); h e ]Rd} on

CCR (Im X), which exhibits relations (B.13) and (B.14). Recall that the Holevo bound of a quantum
statistical model is completely determined by the information ¥ and 7 (Theorem B.1). We thus
obtain the following important consequence.

COROLLARY B.6. The Holevo bound Cpy, (pg, G) for the model S at 8 = 6y is identical to the
Holevo bound Cp, (N(Th, %), G) for the Gaussian shift model G.

As to the achievability of the Holevo bound Cj (N(7h,X), G) for the Gaussian shift model G,
we have the following.

THEOREM B.7. Given a weight G > 0, there exist an unbiased estimator M that achieves the
Holevo bound for the model {N(th,X); h € R%}, i.e.,

Tr GVy[M] = Cy (N(7h, %), G) .

PROOF. Let F' be the matrix that achieve the minimum of (B.4) for the model {N(7h, %)},
and let Z = 'FXF. Further, let V = ReZ, § = ImZ. V = VG-1 ‘\FGImZ\/é‘ VGT, and

Z =V —/=15. We introduce an ancillary quantum Gaussian state (Y,v) ~ N(0, Z) on another
CCR (—5’), and a set of canonical observables

X, =X;0I+1IY; (1<i<d),

on CCR (5) ® CCR (—5), where X; = FFX),. Tt is important to notice that the CCR subalgebra

A[X] generated by {X;}1<i<q is a commutative one because

o—1 __ __ - -
5 X Xj] =5 = 55 =0

for 1 <1,j < d. Moreover

(60 ® 0)(e¥ XY = [on (VTN [ (VTN | = oV THENTREL T,

This means that the observables X; (1 < i< d) follow the classical Gaussian distribution N(h, V +

V). In particular,
E [ X]=h

for all h € R?, and 3
TrGV,[X]|=TrG(V +V) =Cy (N(7h,X), Q).

The claim was verified. O
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B.3. Estimation theory for pure state models.

LEMMA B.8. Let p be a pure state and A1, ..., Ag observables on a finite dimensional Hilbert
space H. If J;j = TrpA; A; are all real for 1 < i,j < d, there exist observables K1, ..., Kq such
that

[Ai + Ki, Ay + K] = 0,

for1<4i,7<d and

for1 <11 <d.
PRrROOF. Let p := [¢) (¢, and let |l;) := A; |[¢) for 1 < i < d. Because (|l;) and (l;|l;) (= Jj)

are all real, there exist a CONS {|e) %i:mlH of H such that (eg|1) and (e|l;) are all real, and that
(er|) # 0 for all k. Let

A= S 1)
= {ekly) ’

and K; := /L — A;. Obviously [Az + K;, Aj + KJ] = [/L, fi]] =0, and
Kilw) = (A = A:) [9) = L) = 1) = 0.
This means K;p = 0. O

LEMMA B.9. Given a d x d positive semidefinite Hermitian matriz J, there exist a finite dimen-
sional Hilbert space H and a pure state p and observables A; (1 <1i < d) on H such that Tr pA; =0
and Tr pA]Al == Jzy

ProOOF. Let H = C%1 and let {]i)}?zo be a CONS of H. We set |¢) := |0) and |{;) =
e, [\/ﬂ N |k) for i = 1, ..., d. Then p := |[¢) (¢| and A; := [£;) (Y| + |¢) (¢;] satisfy TrpA; =0
and Tr pAJA,L = .],Lj ]

THEOREM B.10. Let {pg; feBC Rd} be a quantum statistical model comprising pure states
on a finite dimensional Hilbert space H, and let Cy, (pg, G) be the Holevo bound at Oy € © ]for a
given weight G > 0. There exist a locally unbiased estimator M at 0y € © such that Tr GV M| =
C@o (pea G)

PRrROOF. Let 7 be a D invariant extension of the SLD tangent space span {Li}?zl of the model
{po} at 6 = By, i.e., containing all the SLDs {Li}?zl of {pg} at by, let {Dj}gz1 be a basis of 7. Let
Y, 7 be r xr, r x d complex matrices defined by 3;; = Tr pg,D;D;, 735 = Tr pg,L;D;. According to
Theorem B.1, the Holevo bound for a weight G > 0 can be expressed

Cuy (p0,G) = min{TrGZ +Tx ‘@Imz\/é . 7 = 'FYF,

(B.15) F is an r x d real matrix satisfying 'F Re (1) = I}.

Let F be the matrix that attains the minimum in (B.15), and let Z := 'FYF,V :=Re Z, 5 := Im Z,
V =vG1 ‘\@Im Z\/é‘ VG-, and Z = V —/—18. Lemma B.9 assures that there exist a Hilbert



SUPPLEMENTARY MATERIAL TO QLAN BASED ON A NEW QUANTUM LIKELIHOOD RATIO 21

space H and a pure state o and observables B; (1 < i < d) on ‘H such that TroB; = 0 and
TroB;B; = Z;;. Further, let

where X; := Fika (1 <i<d), and I is the identity matrix on H. Tt then follows that

(B.16) Tr (pg, ® 0) X; X = (V + V)ij

According to Lemma B.8, there exist observables K7, ..., K4 on H ® H such that [X; + K;, X, +

K;] =0 and K; (pg, ® 0) = 0. Let T; = 96[ @I+ (YZ + KZ> Then Tl, cee T, are simultaneously
measurable, and satisfy the local unbiasedness condition:

Tr (pg, ® 0) Tj = 6]

and
Tr (81',0,90 & 0') T] = Tr 8¢p90)~(j
= FJkTI‘ 6ip90Dk
= FfReTr pg,L;Dy,
= {F (Rer)}ji = (5”
Further
Vao[Tlij = Tr (p, @ 0) (X + K) (X + K) = (V + V)ij .
This completes the proof. O

REFERENCES

[1] Fujiwara, A. and Nagaoka, H. (1999). An estimation theoretical characterization of coherent states. J. Math.
Phys., 40, 4227.

[2] Holevo, A. S. (2011). Probabilistic and Statistical Aspects of Quantum Theory (2nd English edition). Edizioni
della Normale, Pisa.

[3] Jaksi¢, V., Pautrat, Y., and Pillet, C.-A. (2010). A quantum central limit theorem for sums of independent
identically distributed random variables. J. Math. Phys., 51, 015208.

[4] Yamagata, K., Fujiwara, A., and Gill, R. D. (2013). Quantum local asymptotic normality based on a new
quantum likelihood ratio. ArXiv: 1210.3749.

DEPARTMENT OF MATHEMATICS, OSAKA UNIVERSITY MATHEMATICAL INSTITUTE, LEIDEN UNIVERSITY,
1-1 MACHIKANEYAMA P.O. Box 9512,

TovyoNAKA, OSAKA 560-0043, JAPAN 2300 RA LEIDEN, THE NETHERLANDS

E-MAIL: k-yamagata@cr.math.sci.osaka-u.ac.jp E-MAIL: gill@math.leidenuniv.nl

fujiwara@math.sci.osaka-u.ac.jp



