Supplementary material to "Noncommutative Lebesgue decomposition and contiguity with applications in quantum statistics"

AKIO FUJIWARA ${ }^{1, *}$ and KOICHI YAMAGATA ${ }^{2, * *}$
${ }^{1}$ Department of Mathematics, Osaka University, Toyonaka, Osaka 560-0043, Japan.
E-mail: ${ }^{*}$ fujiwara@math.sci.osaka-u.ac.jp
${ }^{2}$ Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan. E-mail: ${ }^{* *}$ koichi.yamagata@uec.ac.jp

This supplementary material is devoted to proofs of Remark 3.4, Theorem 4.4, Theorem 4.5, Lemma 5.6, Theorem 6.1, Theorem 7.1, Theorem 7.2, and Theorem 7.6 of [1].

Proof of Remark 3.4. Recall that σ is decomposed as $\sigma=E^{*} \tilde{\sigma} E$, where

$$
E=\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & I & \sigma_{0}^{-1} \alpha \\
0 & 0 & I
\end{array}\right), \quad \tilde{\sigma}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \sigma_{0} & 0 \\
0 & 0 & \beta-\alpha^{*} \sigma_{0}^{-1} \alpha
\end{array}\right)
$$

Then there is a unitary operator U that satisfies

$$
\sqrt{\tilde{\sigma}} E=U \sqrt{\sigma},
$$

and the operator R, modulo the singular part R_{2}, is given by

$$
\begin{aligned}
E^{*}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \sigma_{0} \# \rho_{0}^{-1} & 0 \\
0 & 0 & 0
\end{array}\right) E & =E^{*}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \sqrt{\sigma_{0}}\left(\sqrt{\sqrt{\sigma_{0}} \rho_{0} \sqrt{\sigma_{0}}}\right)^{-1} \sqrt{\sigma_{0}} & 0 \\
0 & 0
\end{array}\right) E \\
& =E^{*} \sqrt{\tilde{\sigma}}(\sqrt{\sqrt{\tilde{\sigma}} \rho \sqrt{\tilde{\sigma}}})^{+} \sqrt{\tilde{\sigma}} E \\
& =E^{*} \sqrt{\tilde{\sigma}}\left(\sqrt{\sqrt{\tilde{\sigma}} E \rho E^{*} \sqrt{\tilde{\sigma}}}\right)^{+} \sqrt{\tilde{\sigma}} E \\
& =\sqrt{\sigma} U^{*}\left(\sqrt{U \sqrt{\sigma} \rho \sqrt{\sigma} U^{*}}\right)^{+} U \sqrt{\sigma} \\
& =\sqrt{\sigma} U^{*}\left(U \sqrt{\sqrt{\sigma} \rho \sqrt{\sigma}} U^{*}\right)^{+} U \sqrt{\sigma} \\
& =\sqrt{\sigma}(\sqrt{\sqrt{\sigma} \rho \sqrt{\sigma}})^{+} \sqrt{\sigma} .
\end{aligned}
$$

This proves the claim (3.14).
Proof of Theorem 4.4. We first prove the 'if' part. Due to Remark 3.4, for each $n \in \mathbb{N} \cup\{\infty\}$, the operator

$$
R^{(n)}:=\sqrt{\sigma^{(n)}} Q^{(n)^{+}} \sqrt{\sigma^{(n)}}
$$

is a version of the square-root likelihood ratio $\mathcal{R}\left(\sigma^{(n)} \mid \rho^{(n)}\right)$, where

$$
Q^{(n)}:=\sqrt{\sqrt{\sigma^{(n)}} \rho^{(n)} \sqrt{\sigma^{(n)}}} .
$$

Let the spectral (Schatten) decomposition of $Q^{(n)}$ be

$$
Q^{(n)}=\sum_{i=1}^{\operatorname{dim} \mathcal{H}} q_{i}^{(n)} E_{i}^{(n)}, \quad\left(\operatorname{rank} E_{i}^{(n)}=1\right)
$$

where the eigenvalues are arranged in the increasing order. Take an arbitrary positive number λ that is smaller than the minimum positive eigenvalue of $Q^{(\infty)}$. Then there is an $N \in \mathbb{N}$ and an index $d,(1 \leq d \leq \operatorname{dim} \mathcal{H})$, such that for all $n \geq N$,

$$
q_{1}^{(n)} \leq q_{2}^{(n)} \leq \cdots \leq q_{d-1}^{(n)}<\lambda<q_{d}^{(n)} \leq \cdots \leq q_{\operatorname{dim} \mathcal{H}}^{(n)}
$$

and, if $d \geq 2$, then $q_{d-1}^{(n)} \rightarrow 0$ as $n \rightarrow \infty$. Consequently, for $n \geq N$,

$$
\mathbb{1}_{\lambda}\left(Q^{(n)}\right)=\sum_{i=1}^{d-1} E_{i}^{(n)} \underset{n \rightarrow \infty}{\longrightarrow} \sum_{i=1}^{d-1} E_{i}^{(\infty)}=\mathbb{1}_{\lambda}\left(Q^{(\infty)}\right)=\mathbb{1}_{0}\left(Q^{(\infty)}\right)
$$

Let us introduce

$$
O^{(n)}:=\sqrt{\sigma^{(n)}} \mathbb{1}_{\lambda}\left(Q^{(n)}\right) Q^{(n)^{+}} \sqrt{\sigma^{(n)}} .
$$

Then it is shown that $O^{(n)}=o_{L^{2}}\left(\rho^{(n)}\right)$. In fact,

$$
\begin{aligned}
\operatorname{Tr} \rho^{(n)} O^{(n)^{2}} & =\operatorname{Tr} \sigma^{(n)} \mathbb{1}_{\lambda}\left(Q^{(n)}\right) Q^{(n)^{+}} Q^{(n)^{2}} Q^{(n)^{+}} \\
& \leq \operatorname{Tr} \sigma^{(n)} \mathbb{1}_{\lambda}\left(Q^{(n)}\right) \\
& \rightarrow \operatorname{Tr} \sigma^{(\infty)} \mathbb{1}_{0}\left(Q^{(\infty)}\right) \\
& =\operatorname{Tr} \sigma^{(\infty) \perp} \\
& =0 .
\end{aligned}
$$

Here, the inequality follows from

$$
Q^{(n)^{+}} Q^{(n)^{2}} Q^{(n)^{+}}=\sum_{i: q_{i}^{(n)}>0} E_{i}^{(n)}=I-\mathbb{1}_{0}\left(Q^{(n)}\right)
$$

the second last equality from

$$
\begin{aligned}
\sigma^{(\infty)^{a c}} & =R^{(\infty)} \rho^{(\infty)} R^{(\infty)} \\
& =\sqrt{\sigma^{(\infty)}} Q^{(\infty)^{+}} Q^{(\infty)^{2}} Q^{(\infty)^{+}} \sqrt{\sigma^{(\infty)}} \\
& =\sqrt{\sigma^{(\infty)}}\left(I-\mathbb{1}_{0}\left(Q^{(\infty)}\right)\right) \sqrt{\sigma^{(\infty)}}
\end{aligned}
$$

and the last equality from $\sigma^{(\infty)} \ll \rho^{(\infty)}$.
We next introduce

$$
\bar{R}^{(n)}:=R^{(n)}-O^{(n)}=\sqrt{\sigma^{(n)}}\left(I-\mathbb{1}_{\lambda}\left(Q^{(n)}\right)\right) Q^{(n)^{+}} \sqrt{\sigma^{(n)}}
$$

Then $\bar{R}^{(n)}$ is positive. Moreover, it is shown that $\operatorname{Tr} \rho^{(n)} \bar{R}^{(n)^{2}} \rightarrow 1$ as $n \rightarrow \infty$. In fact,

$$
\begin{equation*}
\left(I-\mathbb{1}_{\lambda}\left(Q^{(n)}\right)\right) Q^{(n)^{+}}=\left(\sum_{i: q_{i}^{(n)}>\lambda} E_{i}^{(n)}\right)\left(\sum_{i: q_{i}^{(n)}>0} \frac{1}{q_{i}^{(n)}} E_{i}^{(n)}\right)=\sum_{i: q_{i}^{(n)}>\lambda} \frac{1}{q_{i}^{(n)}} E_{i}^{(n)} \tag{S.1}
\end{equation*}
$$

which converges to

$$
\left(I-\mathbb{1}_{\lambda}\left(Q^{(\infty)}\right)\right) Q^{(\infty)^{+}}=\sum_{i: q_{i}^{(\infty)}>\lambda} \frac{1}{q_{i}^{(\infty)}} E_{i}^{(\infty)}
$$

In addition, since

$$
\mathbb{1}_{\lambda}\left(Q^{(\infty)}\right) Q^{(\infty)^{+}}=\left(\sum_{i: q_{i}^{(\infty)}=0} E_{i}^{(\infty)}\right)\left(\sum_{i: q_{i}^{(\infty)}>0} \frac{1}{q_{i}^{(\infty)}} E_{i}^{(\infty)}\right)=0
$$

we have

$$
\begin{equation*}
\left(I-\mathbb{1}_{\lambda}\left(Q^{(n)}\right)\right) Q^{(n)^{+}} \longrightarrow Q^{(\infty)^{+}} \tag{S.2}
\end{equation*}
$$

Thus

$$
\bar{R}^{(n)} \longrightarrow \sqrt{\sigma^{(\infty)}} Q^{(\infty)^{+}} \sqrt{\sigma^{(\infty)}}=R^{(\infty)}
$$

so that

$$
\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} \bar{R}^{(n)^{2}}=\operatorname{Tr} \rho^{(\infty)} R^{(\infty)^{2}}=\operatorname{Tr} \sigma^{(\infty)}=1
$$

Here, the second equality follows from $\sigma^{(\infty)} \ll \rho^{(\infty)}$. This identity is combined with $O^{(n)}=o_{L^{2}}\left(\rho^{(n)}\right)$ to conclude that $\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} R^{(n)^{2}}=1$. Furthermore, due to (S.1), the family $\bar{R}^{(n)}$ is uniformly bounded, in that

$$
\bar{R}^{(n)} \leq \frac{1}{\lambda} \sigma^{(n)} \leq \frac{1}{\lambda}
$$

Thus, the sequence $\bar{R}^{(n)^{2}}$ is uniformly integrable under $\rho^{(n)}$. This proves $\sigma^{(n)} \triangleleft \rho^{(n)}$.
We next prove the 'only if' part. Let $R^{(n)}$ be a version of the square-root likelihood ratio $\mathcal{R}\left(\sigma^{(n)} \mid \rho^{(n)}\right)$. Due to assumption, there is an L^{2}-infinitesimal sequence $O^{(n)}$ of observables such that $\sigma^{(n)} \triangleleft_{O^{(n)}} \rho^{(n)}$. Let

$$
\bar{R}^{(n)}=\sum_{i=1}^{\operatorname{dim} \mathcal{H}} r_{i}^{(n)} E_{i}^{(n)}, \quad\left(\operatorname{rank} E_{i}^{(n)}=1\right)
$$

be the spectral (Schatten) decomposition of $\bar{R}^{(n)}=R^{(n)}+O^{(n)}$, where the eigenvalues are arranged in the increasing order, so that

$$
r_{1}^{(n)} \leq r_{2}^{(n)} \leq \cdots \leq r_{\operatorname{dim} \mathcal{H}}^{(n)}
$$

Let us choose the index $d,(1 \leq d \leq \operatorname{dim} \mathcal{H})$, that satisfies

$$
\sup \left\{r_{d}^{(n)} \mid n \in \mathbb{N}\right\}<\infty \quad \text { and } \quad \sup \left\{r_{d+1}^{(n)} \mid n \in \mathbb{N}\right\}=\infty
$$

and let us define

$$
A^{(n)}:=\sum_{i=1}^{d} r_{i}^{(n)} E_{i}^{(n)} \quad \text { and } \quad B^{(n)}:=\sum_{i=d+1}^{\operatorname{dim} \mathcal{H}} r_{i}^{(n)} E_{i}^{(n)}
$$

Then $A^{(n)}$ is the uniformly bounded part of $\bar{R}^{(n)}$, and $\bar{R}^{(n)}=A^{(n)}+B^{(n)}$.
Take a convergent subsequence $A^{\left(n_{k}\right)}$ of $A^{(n)}$, so that

$$
A_{(\infty)}:=\lim _{k \rightarrow \infty} A^{\left(n_{k}\right)}
$$

Then for any M that is greater than $M_{0}:=\sup \left\{r_{d}^{(n)} \mid n \in \mathbb{N}\right\}$,

$$
\lim _{k \rightarrow \infty} \bar{R}^{\left(n_{k}\right)} \mathbb{1}_{M}\left(\bar{R}^{\left(n_{k}\right)}\right)=A_{(\infty)}
$$

It then follows from the assumption $\sigma^{(n)} \triangleleft_{O^{(n)}} \rho^{(n)}$ that

$$
\begin{equation*}
\operatorname{Tr} \rho^{(\infty)} A_{(\infty)}^{2}=\lim _{M \rightarrow \infty} \lim _{k \rightarrow \infty} \operatorname{Tr} \rho^{\left(n_{k}\right)} \bar{R}^{\left(n_{k}\right)^{2}} \mathbb{1}_{M}\left(\bar{R}^{\left(n_{k}\right)}\right)=1 \tag{S.3}
\end{equation*}
$$

Furthermore, since

$$
\operatorname{Tr} \rho^{(n)} \bar{R}^{(n)^{2}}=\operatorname{Tr} \rho^{(n)}\left(A^{(n)}+B^{(n)}\right)^{2}=\operatorname{Tr} \rho^{(n)} A^{(n)^{2}}+\operatorname{Tr} \rho^{(n)} B^{(n)^{2}}
$$

we see that $B^{\left(n_{k}\right)}=o_{L^{2}}\left(\rho^{\left(n_{k}\right)}\right)$, and so is $C^{\left(n_{k}\right)}:=R^{\left(n_{k}\right)}-A^{\left(n_{k}\right)}=B^{\left(n_{k}\right)}-O^{\left(n_{k}\right)}$. As a consequence, for any unit vector $x \in \mathcal{H}$,

$$
\begin{aligned}
& \left\langle x \mid R^{\left(n_{k}\right)} \rho^{\left(n_{k}\right)} R^{\left(n_{k}\right)} x\right\rangle \\
& \quad=\left\langle x \mid A^{\left(n_{k}\right)} \rho^{\left(n_{k}\right)} A^{\left(n_{k}\right)} x\right\rangle+2 \operatorname{Re}\left\langle x \mid A^{\left(n_{k}\right)} \rho^{\left(n_{k}\right)} C^{\left(n_{k}\right)} x\right\rangle+\left\langle x \mid C^{\left(n_{k}\right)} \rho^{\left(n_{k}\right)} C^{\left(n_{k}\right)} x\right\rangle \\
& \quad \longrightarrow\left\langle x \mid A_{(\infty)} \rho^{(\infty)} A_{(\infty)} x\right\rangle
\end{aligned}
$$

as $k \rightarrow \infty$. In fact

$$
\left|\left\langle x \mid C^{\left(n_{k}\right)} \rho^{\left(n_{k}\right)} C^{\left(n_{k}\right)} x\right\rangle\right| \leq \operatorname{Tr} C^{\left(n_{k}\right)} \rho^{\left(n_{k}\right)} C^{\left(n_{k}\right)} \longrightarrow 0
$$

and, due to the Schwartz inequality,

$$
\left|\left\langle x \mid A^{\left(n_{k}\right)} \rho^{\left(n_{k}\right)} C^{\left(n_{k}\right)} x\right\rangle\right|^{2} \leq\left\langle x \mid A^{\left(n_{k}\right)} \rho^{\left(n_{k}\right)} A^{\left(n_{k}\right)} x\right\rangle\left\langle x \mid C^{\left(n_{k}\right)} \rho^{\left(n_{k}\right)} C^{\left(n_{k}\right)} x\right\rangle \longrightarrow 0
$$

It then follows from the inequality

$$
\sigma^{\left(n_{k}\right)} \geq R^{\left(n_{k}\right)} \rho^{\left(n_{k}\right)} R^{\left(n_{k}\right)}
$$

that

$$
0 \leq\left\langle x \mid\left(\sigma^{\left(n_{k}\right)}-R^{\left(n_{k}\right)} \rho^{\left(n_{k}\right)} R^{\left(n_{k}\right)}\right) x\right\rangle \underset{k \rightarrow \infty}{\longrightarrow}\left\langle x \mid\left(\sigma^{(\infty)}-A_{(\infty)} \rho^{(\infty)} A_{(\infty)}\right) x\right\rangle
$$

Since $x \in \mathcal{H}$ is arbitrary, we have

$$
\sigma^{(\infty)} \geq A_{(\infty)} \rho^{(\infty)} A_{(\infty)}
$$

Combining this inequality with (S.3), we conclude that

$$
\sigma^{(\infty)}=A_{(\infty)} \rho^{(\infty)} A_{(\infty)}
$$

This implies that $\sigma^{(\infty)} \ll \rho^{(\infty)}$.
Proof of Theorem 4.5. We first prove the 'if' part. Let

$$
\bar{R}^{(n)}=R^{(n)}=\sqrt{\sigma^{(n)}} \sqrt{\sqrt{\sigma^{(n)}} \rho^{(n)} \sqrt{\sigma^{(n)}}}+\sqrt{\sigma^{(n)}} .
$$

Due to assumption, there is an $\varepsilon>0$ and $N \in \mathbb{N}$ such that $n \geq N$ implies $\operatorname{Tr} \rho^{(n)} \sigma^{(n)}>\varepsilon$. Since $\rho^{(n)}$ is pure, the operator $\sqrt{\sigma^{(n)}} \rho^{(n)} \sqrt{\sigma^{(n)}}$ is rank-one, and its positive eigenvalue is greater than ε. Thus

$$
\bar{R}^{(n)} \leq \frac{1}{\sqrt{\varepsilon}} \sigma^{(n)} \leq \frac{1}{\sqrt{\varepsilon}}
$$

for all $n \geq N$. This implies that $\bar{R}^{(n)}$ is uniformly bounded, so that $\bar{R}^{(n)^{2}}$ is uniformly integrable.
We next prove the 'only if' part. Due to assumption, there is an L^{2}-infinitesimal sequence $O^{(n)}$ of observables such that $\sigma^{(n)} \triangleleft_{O^{(n)}} \rho^{(n)}$. Let

$$
\bar{R}^{(n)}=\sum_{i} r_{i}^{(n)} E_{i}^{(n)}
$$

be the spectral decomposition of $\bar{R}^{(n)}=R^{(n)}+O^{(n)}$, and let $\rho^{(n)}=\left|\psi^{(n)}\right\rangle\left\langle\psi^{(n)}\right|$ for some unit vector $\psi^{(n)} \in \mathcal{H}^{(n)}$. Since $\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} R^{(n)^{2}}=1$ is equivalent to $\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} \bar{R}^{(n)^{2}}=1$, we have

$$
\lim _{n \rightarrow \infty} \sum_{i} r_{i}^{(n)^{2}} p_{i}^{(n)}=1
$$

where $p_{i}^{(n)}:=\left\langle\psi^{(n)} \mid E_{i}^{(n)} \psi^{(n)}\right\rangle$. Further, since $\bar{R}^{(n)^{2}}$ is uniformly integrable, for any $\varepsilon>0$, there exists an $M>0$ such that

$$
\limsup _{n \rightarrow \infty} \sum_{i: r_{i}^{(n)}>M} r_{i}^{(n)^{2}} p_{i}^{(n)}<\varepsilon
$$

It then follows that

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \sqrt{\operatorname{Tr} \rho^{(n)} \sigma^{(n)}} & \geq \liminf _{n \rightarrow \infty} \sqrt{\operatorname{Tr} \rho^{(n)} R^{(n)} \rho^{(n)} R^{(n)}} \\
& =\liminf _{n \rightarrow \infty}\left\langle\psi^{(n)}\right| R^{(n)}\left|\psi^{(n)}\right\rangle \\
& =\liminf _{n \rightarrow \infty}\left\langle\psi^{(n)}\right| \bar{R}^{(n)}\left|\psi^{(n)}\right\rangle \\
& =\liminf _{n \rightarrow \infty} \sum_{i} r_{i}^{(n)} p_{i}^{(n)} \\
& \geq \liminf _{n \rightarrow \infty} \sum_{i: r_{i}^{(n)} \leq M} r_{i}^{(n)} p_{i}^{(n)} \\
& \geq \liminf _{n \rightarrow \infty} \sum_{i: r_{i}^{(n)} \leq M} \frac{r_{i}^{(n)^{2}}}{M} p_{i}^{(n)} \\
& =\frac{1}{M}\left(1-\limsup _{n \rightarrow \infty} \sum_{i: r_{i}^{(n)}>M} r_{i}^{(n)^{2}} p_{i}^{(n)}\right) \\
& >\frac{1}{M}(1-\varepsilon) .
\end{aligned}
$$

This completes the proof.
Proof of Lemma 5.6. We shall prove the following series of equalities for any $\left\{\xi_{t}\right\}_{t=1}^{r} \subset \mathbb{R}^{d}$ and $\eta_{1}, \eta_{2} \in \mathbb{R}$:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} e^{\sqrt{-1} \eta_{1}\left(Z^{(n)}+O^{(n)}\right)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\} e^{\sqrt{-1} \eta_{2}\left(Z^{(n)}+O^{(n)}\right)} \\
\quad=\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} e^{\sqrt{-1} \eta_{1}\left(Z^{(n)}+O^{(n)}\right)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\} e^{\sqrt{-1} \eta_{2} Z^{(n)}} \\
\quad=\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} e^{\sqrt{-1} \eta_{1} Z^{(n)}}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\} e^{\sqrt{-1} \eta_{2} Z^{(n)}}
\end{aligned}
$$

The first equality follows from the Schwartz inequality and (5.2):

$$
\begin{aligned}
& \mid \operatorname{Tr} \rho^{(n)} e^{\left.\sqrt{-1} \eta_{1}\left(Z^{(n)}+O^{(n)}\right)\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\}\left\{e^{\sqrt{-1} \eta_{2}\left(Z^{(n)}+O^{(n)}\right)}-e^{\sqrt{-1} \eta_{2} Z^{(n)}}\right\}\right|^{2}} \\
& \quad \leq \operatorname{Tr} \rho^{(n)}\left\{e^{\sqrt{-1} \eta_{2}\left(Z^{(n)}+O^{(n)}\right)}-e^{\sqrt{-1} \eta_{2} Z^{(n)}}\right\}^{*}\left\{e^{\sqrt{-1} \eta_{2}\left(Z^{(n)}+O^{(n)}\right)}-e^{\sqrt{-1} \eta_{2} Z^{(n)}}\right\} \\
& \quad=2-2 \operatorname{Re} \operatorname{Tr} \rho^{(n)} e^{-\sqrt{-1} \eta_{2}\left(Z^{(n)}+O^{(n)}\right)} e^{\sqrt{-1} \eta_{2} Z^{(n)}} \\
& \quad \longrightarrow 2-2 \operatorname{Re} \operatorname{Tr} \rho^{(n)} e^{-\sqrt{-1} \eta_{2} Z^{(n)}} e^{\sqrt{-1} \eta_{2} Z^{(n)}}=0 .
\end{aligned}
$$

The proof of the second equality is similar.
Proof of Theorem 6.1. We first prove that ψ is a well-defined normal state. Let $\bar{R}^{(n)}:=R^{(n)}+O^{(n)}$. It then follows from assumption (ii) and the sandwiched version of the quantum Lévy-Cramér theorem (Lemma 5.3) that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} \mathbb{1}_{M}\left(\bar{R}^{(n)}\right) \bar{R}^{(n)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\} \bar{R}^{(n)} \mathbb{1}_{M}\left(\bar{R}^{(n)}\right) \tag{S.4}\\
& =\phi\left(\mathbb{1}_{M}\left(R^{(\infty)}\right) R^{(\infty)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(\infty)}}\right\} R^{(\infty)} \mathbb{1}_{M}\left(R^{(\infty)}\right)\right)
\end{align*}
$$

where M is taken to be a non-atomic point of the probability measure μ having the characteristic function $\varphi_{\mu}(\eta):=\phi\left(e^{\sqrt{-1} \eta R^{(\infty)}}\right)$. Setting $\xi_{t}=0$ for all t, taking the limit $M \rightarrow \infty$, and recalling the uniform integrability of $\bar{R}^{(n)^{2}}$ as well as the identity $\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} \bar{R}^{(n)^{2}}=1$, we have

$$
\begin{equation*}
\lim _{M \rightarrow \infty} \phi\left(\mathbb{1}_{M}\left(R^{(\infty)}\right) R^{(\infty)^{2}}\right)=1 \tag{S.5}
\end{equation*}
$$

Let ρ be the density operator that represents the state ϕ. For notational simplicity, we set $R:=R^{(\infty)}$ and $R_{M}:=\mathbb{1}_{M}(R) R$. Then, for any $A \in \mathcal{B}\left(\mathcal{H}^{(\infty)}\right)$,

$$
\phi\left(R_{M} A R_{M}\right)=\operatorname{Tr} \rho R_{M} A R_{M}=\left(R_{M} \sqrt{\rho}, A R_{M} \sqrt{\rho}\right)_{\mathrm{HS}}
$$

where $(B, C)_{\mathrm{HS}}:=\operatorname{Tr} B^{*} C$ is the Hilbert-Schmidt inner product. To verify the well-definedness of ψ, it suffices to prove that $\phi(R A R)$ exists and

$$
\phi(R A R)=\lim _{M \rightarrow \infty} \phi\left(R_{M} A R_{M}\right)
$$

for any $A \in \mathcal{B}\left(\mathcal{H}^{(\infty)}\right)$. To put it differently, it suffices to prove that $\|R \sqrt{\rho}\|_{\mathrm{HS}}=1$, and that $\left\|R_{M} \sqrt{\rho}-R \sqrt{\rho}\right\|_{\mathrm{HS}} \rightarrow$ 0 as $M \rightarrow \infty$, where $\|\cdot\|_{\mathrm{HS}}:=\sqrt{(\cdot, \cdot)_{\mathrm{HS}}}$. Let

$$
R=\int_{0}^{\infty} \lambda d E_{\lambda}
$$

be the spectral decomposition of R, and let $d \nu(\lambda):=\phi\left(d E_{\lambda}\right)$ be the induced probability measure on \mathbb{R}. It then follows from (S.5) that

$$
\|R \sqrt{\rho}\|_{\mathrm{HS}}^{2}=\operatorname{Tr} \rho R^{2}=\int_{0}^{\infty} \lambda^{2} d \nu(\lambda)=\lim _{M \rightarrow \infty} \int_{0}^{M} \lambda^{2} d \nu(\lambda)=\lim _{M \rightarrow \infty} \phi\left(R_{M}^{2}\right)=1
$$

and that

$$
\left\|R_{M} \sqrt{\rho}-R \sqrt{\rho}\right\|_{\mathrm{HS}}^{2}=\operatorname{Tr} \rho R^{2}-\operatorname{Tr} \rho R_{M}^{2}=1-\phi\left(R_{M}^{2}\right) \longrightarrow 0
$$

as $M \rightarrow \infty$.
We next show that for any $\varepsilon>0$ there is an $M>0$ that satisfies

$$
\begin{align*}
& \sup _{n} \mid \operatorname{Tr} \rho^{(n)} \bar{R}^{(n)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\} \bar{R}^{(n)} \tag{S.6}\\
&-\operatorname{Tr} \rho^{(n)} \mathbb{1}_{M}\left(\bar{R}^{(n)}\right) \bar{R}^{(n)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\} \bar{R}^{(n)} \mathbb{1}_{M}\left(\bar{R}^{(n)}\right) \mid<\varepsilon .
\end{align*}
$$

In fact,

$$
\begin{aligned}
(\mathrm{LHS}) \leq \sup _{n} \mid & \operatorname{Tr} \rho^{(n)} \bar{R}^{(n)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\}\left\{\bar{R}^{(n)}-\bar{R}^{(n)} \mathbb{1}_{M}\left(\bar{R}^{(n)}\right)\right\} \mid \\
& +\sup _{n}\left|\operatorname{Tr} \rho^{(n)}\left\{\bar{R}^{(n)}-\mathbb{1}_{M}\left(\bar{R}^{(n)}\right) \bar{R}^{(n)}\right\}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\} \bar{R}^{(n)} \mathbb{1}_{M}\left(\bar{R}^{(n)}\right)\right|
\end{aligned}
$$

and by using the uniform integrability of $\bar{R}^{(n)^{2}}$, we see that

$$
(\text { first term in RHS }) \leq \sup _{n} \sqrt{\operatorname{Tr} \rho^{(n)} \bar{R}^{(n)^{2}}} \sqrt{\operatorname{Tr} \rho^{(n)}\left(I-\mathbb{1}_{M}\left(\bar{R}^{(n)}\right)\right) \bar{R}^{(n)^{2}}}<\frac{\varepsilon}{2}
$$

and

$$
(\text { second term in RHS }) \leq \sup _{n} \sqrt{\operatorname{Tr} \rho^{(n)}\left(I-\mathbb{1}_{M}\left(\bar{R}^{(n)}\right)\right) \bar{R}^{(n)^{2}}} \sqrt{\operatorname{Tr} \rho^{(n)} \mathbb{1}_{M}\left(\bar{R}^{(n)}\right) \bar{R}^{(n)^{2}}}<\frac{\varepsilon}{2}
$$

An important consequence of (S.6) is the following identity

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} \bar{R}^{(n)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\} \bar{R}^{(n)}=\psi\left(\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(\infty)}}\right\}\right) \tag{S.7}
\end{equation*}
$$

which follows by taking the limit $M \rightarrow \infty$ in (S.4).
We next observe that

$$
\begin{align*}
\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} \bar{R}^{(n)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\} \bar{R}^{(n)} & =\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} R^{(n)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\} \bar{R}^{(n)} \tag{S.8}\\
& =\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} R^{(n)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\} R^{(n)}
\end{align*}
$$

In fact, the first equality follows from

$$
\left|\operatorname{Tr} \rho^{(n)} O^{(n)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\} \bar{R}^{(n)}\right| \leq \sqrt{\operatorname{Tr} \rho^{(n)} O^{(n)^{2}}} \sqrt{\operatorname{Tr} \rho^{(n)} \bar{R}^{(n)^{2}}} \longrightarrow 0
$$

and the second from

$$
\left|\operatorname{Tr} \rho^{(n)} R^{(n)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\} O^{(n)}\right| \leq \sqrt{\operatorname{Tr} \rho^{(n)} R^{(n)^{2}}} \sqrt{\operatorname{Tr} \rho^{(n)} O^{(n)^{2}}} \longrightarrow 0 .
$$

We further observe that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Tr} \sigma^{(n)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\}=\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} R^{(n)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\} R^{(n)} \tag{S.9}
\end{equation*}
$$

In fact,

$$
\begin{aligned}
\left|\operatorname{Tr} \sigma^{(n)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\}-\operatorname{Tr} \rho^{(n)} R^{(n)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\} R^{(n)}\right| & \leq \operatorname{Tr}\left|\sigma^{(n)}-R^{(n)} \rho^{(n)} R^{(n)}\right| \\
& =1-\operatorname{Tr} \rho^{(n)} R^{(n)^{2}} \longrightarrow 0
\end{aligned}
$$

Combining (S.9), (S.8), and (S.7), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Tr} \sigma^{(n)}\left\{\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(n)}}\right\}=\psi\left(\prod_{t=1}^{r} e^{\sqrt{-1} \xi_{t}^{i} X_{i}^{(\infty)}}\right) \tag{S.10}
\end{equation*}
$$

This completes the proof.
Proof of Theorem 7.1. Let

$$
R^{(n)}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & R_{0}^{(n)} & R_{1}^{(n)} \\
0 & R_{1}^{(n)^{*}} & R_{2}^{(n)}
\end{array}\right)
$$

be a version of the square-root likelihood ratio $\mathcal{R}\left(\sigma^{(n)} \mid \rho^{(n)}\right)$ that satisfies

$$
R^{(n)} \rho^{(n)} R^{(n)}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{S.11}\\
0 & R_{0}^{(n)} \rho_{0}^{(n)} R_{0}^{(n)} & R_{0}^{(n)} \rho_{0}^{(n)} R_{1}^{(n)} \\
0 & R_{1}^{(n)^{*}} \rho_{0}^{(n)} R_{0}^{(n)} & R_{1}^{(n)^{*}} \rho_{0}^{(n)} R_{1}^{(n)}
\end{array}\right) \leq \sigma^{(n)}
$$

and

$$
\begin{equation*}
\left(\sigma^{(n)}-R^{(n)} \rho^{(n)} R^{(n)}\right) \perp \rho^{(n)} \tag{S.12}
\end{equation*}
$$

Since $R_{1}^{(n)^{*}} \rho_{0}^{(n)} R_{1}^{(n)} \leq \sigma_{2}^{(n)}$ and $\lim _{n \rightarrow \infty} \operatorname{Tr} \sigma_{2}^{(n)}=0$, we see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Tr} \rho_{0}^{(n)} R_{1}^{(n)} R_{1}^{(n)^{*}}=0 \tag{S.13}
\end{equation*}
$$

Further, let

$$
\tilde{\sigma}_{0}^{(n)}:=\frac{\sigma_{0}^{(n)}}{\operatorname{Tr} \sigma_{0}^{(n)}}, \quad \tilde{\rho}_{0}^{(n)}:=\frac{\rho_{0}^{(n)}}{\operatorname{Tr} \rho_{0}^{(n)}}, \quad \tilde{R}_{0}^{(n)}:=\frac{1}{\kappa^{(n)}} R_{0}^{(n)}
$$

where

$$
\kappa^{(n)}=\sqrt{\frac{\operatorname{Tr} \sigma_{0}^{(n)}}{\operatorname{Tr} \rho_{0}^{(n)}}}
$$

Then it follows from (S.11) and (S.12) that $\tilde{R}_{0}^{(n)} \tilde{\rho}_{0}^{(n)} \tilde{R}_{0}^{(n)} \leq \tilde{\sigma}_{0}^{(n)}$ and $\left(\tilde{\sigma}_{0}^{(n)}-\tilde{R}_{0}^{(n)} \tilde{\rho}_{0}^{(n)} \tilde{R}_{0}^{(n)}\right) \perp \tilde{\rho}_{0}^{(n)}$. This implies that $\tilde{R}_{0}^{(n)}$ is a version of the square-root likelihood ratio $\mathcal{R}\left(\tilde{\sigma}_{0}^{(n)} \mid \tilde{\rho}_{0}^{(n)}\right)$.

The assumption $\tilde{\sigma}_{0}^{(n)} \triangleleft \tilde{\rho}_{0}^{(n)}$ ensures the existence of a sequence $O_{0}^{(n)}=o_{L^{2}}\left(\tilde{\rho}_{0}^{(n)}\right)$ such that $\tilde{\sigma}_{0}^{(n)} \triangleleft_{O_{0}^{(n)}} \tilde{\rho}_{0}^{(n)}$. Let $\bar{R}_{0}^{(n)}:=\tilde{R}_{0}^{(n)}+O_{0}^{(n)}$, and let

$$
\bar{R}^{(n)}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \kappa^{(n)} \bar{R}_{0}^{(n)} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then we see that

$$
O^{(n)}:=\bar{R}^{(n)}-R^{(n)}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \kappa^{(n)} O_{0}^{(n)} & -R_{1}^{(n)} \\
0 & -R_{1}^{(n)^{*}} & -R_{2}^{(n)}
\end{array}\right)
$$

is L^{2}-infinitesimal with respect to $\rho^{(n)}$. In fact, due to (S.13),

$$
\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} O^{(n)^{2}}=\lim _{n \rightarrow \infty} \operatorname{Tr} \rho_{0}^{(n)}\left\{\kappa^{(n)^{2}} O_{0}^{(n)^{2}}+R_{1}^{(n)} R_{1}^{(n)^{*}}\right\}=0
$$

Furthermore,

$$
\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} \bar{R}^{(n)^{2}}=\lim _{n \rightarrow \infty} \kappa^{(n)^{2}} \operatorname{Tr} \rho_{0}^{(n)} \bar{R}_{0}^{(n)^{2}}=\lim _{n \rightarrow \infty}\left(\operatorname{Tr} \sigma_{0}^{(n)}\right) \operatorname{Tr} \tilde{\rho}_{0}^{(n)} \bar{R}_{0}^{(n)^{2}}=1
$$

and

$$
\begin{aligned}
\lim _{M \rightarrow \infty} \liminf _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} \bar{R}^{(n)^{2}} \mathbb{1}_{M}\left(\bar{R}^{(n)}\right) & =\lim _{M \rightarrow \infty} \liminf _{n \rightarrow \infty} \kappa^{(n)^{2}} \operatorname{Tr} \rho_{0}^{(n)} \bar{R}_{0}^{(n)^{2}} \mathbb{1}_{M}\left(\kappa^{(n)} \bar{R}_{0}^{(n)}\right) \\
& =\lim _{M \rightarrow \infty} \liminf _{n \rightarrow \infty}\left(\operatorname{Tr} \sigma_{0}^{(n)}\right) \operatorname{Tr} \tilde{\rho}_{0}^{(n)} \bar{R}_{0}^{(n)^{2}} \mathbb{1}_{M / \kappa^{(n)}}\left(\bar{R}_{0}^{(n)}\right) \\
& \geq \lim _{M \rightarrow \infty} \liminf _{n \rightarrow \infty}\left(\operatorname{Tr} \sigma_{0}^{(n)}\right) \operatorname{Tr} \tilde{\rho}_{0}^{(n)} \bar{R}_{0}^{(n)^{2}} \mathbb{1}_{\lambda M}\left(\bar{R}_{0}^{(n)}\right)=1,
\end{aligned}
$$

where

$$
\lambda:=\liminf _{n \rightarrow \infty} \frac{1}{\kappa^{(n)}}=\liminf _{n \rightarrow \infty} \sqrt{\operatorname{Tr} \rho_{0}^{(n)}}>0
$$

Thus $\sigma^{(n)} \triangleleft_{O^{(n)}} \rho^{(n)}$.
Proof of Theorem 7.2. We first prove the 'only if' part. Due to assumption, there is an L^{2}-infinitesimal sequence $O^{(n)}$ of observables satisfying the condition that for any $\varepsilon>0$, there is an $M>0$ such that

$$
\liminf _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} \mathbb{1}_{M}\left(\bar{R}^{(n)}\right) \bar{R}^{(n)^{2}}>1-\varepsilon
$$

where $\bar{R}^{(n)}:=R^{(n)}+O^{(n)}$ with $R^{(n)}:=\bigotimes_{i=1}^{n} R_{i}$. It then follows that

$$
\begin{aligned}
\prod_{i=1}^{\infty} \operatorname{Tr} \rho_{i} R_{i} & =\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} R^{(n)} \\
& =\lim _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} \bar{R}^{(n)} \\
& \geq \liminf _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} \bar{R}^{(n)} \mathbb{1}_{M}\left(\bar{R}^{(n)}\right) \\
& \geq \liminf _{n \rightarrow \infty} \operatorname{Tr} \rho^{(n)} \frac{\bar{R}^{(n)^{2}}}{M} \mathbb{1}_{M}\left(\bar{R}^{(n)}\right) \\
& >\frac{1}{M}(1-\varepsilon)
\end{aligned}
$$

Further, the equivalence of (7.1) and (7.2) is well known, (see [4, Section 14.12], for example).
We next prove the 'if' part. Since $\sigma^{(n)} \ll \rho^{(n)}$, we have $\operatorname{Tr} \rho^{(n)} R^{(n)^{2}}=1$ for all n. It then suffices to prove that $R^{(n)^{2}}$ is uniformly integrable under $\rho^{(n)}$. For each $i \in \mathbb{N}$, let

$$
R_{i}=\sum_{x \in \mathcal{X}_{i}} r_{i}(x)\left|\psi_{i}(x)\right\rangle\left\langle\psi_{i}(x)\right|
$$

be a Schatten decomposition of R_{i}, where $\mathcal{X}_{i}=\left\{1, \ldots, \operatorname{dim} \mathcal{H}_{i}\right\}$ is a standard reference set that put labels on the eigenvalues $r_{i}(x)$ and eigenvectors $\psi_{i}(x)$. Note that the totality $\left\{\psi_{i}(x)\right\}_{x \in \mathcal{X}}$ of eigenvectors forms an orthonormal basis of \mathcal{H}_{i}. Let

$$
p_{i}(x):=\left\langle\psi_{i}(x) \mid \rho_{i} \psi_{i}(x)\right\rangle, \quad q_{i}(x):=\left\langle\psi_{i}(x) \mid \sigma_{i} \psi_{i}(x)\right\rangle
$$

Then $P_{i}:=\left(p_{i}(x)\right)_{x \in \mathcal{X}_{i}}$ and $Q_{i}:=\left(q_{i}(x)\right)_{x \in \mathcal{X}_{i}}$ are regarded as classical probability distributions on \mathcal{X}_{i}. Due to the identity $\sigma_{i}=R_{i} \rho_{i} R_{i}$, we have

$$
q_{i}(x)=p_{i}(x) r_{i}(x)^{2}, \quad\left(\forall x \in \mathcal{X}_{i}\right)
$$

which implies that $Q_{i} \ll P_{i}$ for all $i \in \mathbb{N}$. Now, since

$$
\operatorname{Tr} \rho_{i} R_{i}=\sum_{x \in \mathcal{X}_{i}} p_{i}(x) r_{i}(x)=\sum_{x \in \mathcal{X}_{i}} \sqrt{p_{i}(x) q_{i}(x)}
$$

assumption (7.1) is equivalent to

$$
\prod_{i=1}^{\infty}\left(\sum_{x \in \mathcal{X}_{i}} \sqrt{p_{i}(x) q_{i}(x)}\right)>0
$$

This is nothing but the celebrated Kakutani criterion for the infinite product measure $\prod_{i} Q_{i}$ to be absolutely continuous to $\prod_{i} P_{i}$, (cf. [3, 4]). As a consequence, the classical likelihood ratio process

$$
L^{(n)}\left(X_{1}, \ldots, X_{n}\right):=\prod_{i=1}^{n} \frac{q_{i}\left(X_{i}\right)}{p_{i}\left(X_{i}\right)}
$$

is uniformly integrable under $\prod_{i} P_{i}$, (cf. [4, Section 14.17]). The uniform integrability of $R^{(n)^{2}}$ under $\rho^{(n)}$ now follows immediately from the identity

$$
\operatorname{Tr} \rho^{(n)} \mathbb{1}_{M}\left(R^{(n)}\right) R^{(n)^{2}}=E_{P^{(n)}}\left[\mathbb{1}_{M^{2}}\left(L^{(n)}\right) L^{(n)}\right]
$$

where $P^{(n)}:=\prod_{i=1}^{n} P_{i}$.

Proof of Theorem 7.6. Since the symmetric logarithmic derivative L_{i} at θ_{0} satisfies $\operatorname{Tr} \rho_{\theta_{0}} L_{i}=0$ for all $i \in\{1, \ldots, d\}$, the property (i) in Definition 7.4 is an immediate consequence of an i.i.d. version of the quantum central limit theorem $[2,5]$.

In order to prove (ii) in Definition 7.4, we first calculate the square-root likelihood ratio $\mathcal{R}\left(\rho_{\theta}^{\otimes n} \mid \rho_{\theta_{0}}^{\otimes n}\right)$ between $\rho_{\theta}^{\otimes n}$ and $\rho_{\theta_{0}}^{\otimes n}$. Let $\rho_{\theta}=\rho_{\theta}^{a c}+\rho_{\theta}^{\perp}$ be the Lebesgue decomposition with respect to $\rho_{\theta_{0}}$. Then

$$
\begin{equation*}
\rho_{\theta}^{\otimes n} \geq\left(\rho_{\theta}^{a c}\right)^{\otimes n}=\left(R_{\theta} \rho_{\theta_{0}} R_{\theta}\right)^{\otimes n}=R_{\theta}^{\otimes n} \rho_{\theta_{0}}^{\otimes n} R_{\theta}^{\otimes n} \tag{S.14}
\end{equation*}
$$

where $R_{\theta}=\mathcal{R}\left(\rho_{\theta} \mid \rho_{\theta_{0}}\right)$. On the other hand,

$$
\operatorname{Tr} \rho_{\theta_{0}} \rho_{\theta}=\operatorname{Tr} \rho_{\theta_{0}} \rho_{\theta}^{a c}+\operatorname{Tr} \rho_{\theta_{0}} \rho_{\theta}^{\perp}=\operatorname{Tr} \rho_{\theta_{0}} \rho_{\theta}^{a c}=\operatorname{Tr} \rho_{\theta_{0}}\left(R_{\theta} \rho_{\theta_{0}} R_{\theta}\right)
$$

Therefore,

$$
\operatorname{Tr} \rho_{\theta_{0}}^{\otimes n}\left[\rho_{\theta}^{\otimes n}-\left(R_{\theta} \rho_{\theta_{0}} R_{\theta}\right)^{\otimes n}\right]=\left(\operatorname{Tr} \rho_{\theta_{0}} \rho_{\theta}\right)^{n}-\left(\operatorname{Tr} \rho_{\theta_{0}}\left(R_{\theta} \rho_{\theta_{0}} R_{\theta}\right)\right)^{n}=0
$$

Due to Lemma 2.1, this implies that

$$
\begin{equation*}
\rho_{\theta_{0}}^{\otimes n} \perp\left[\rho_{\theta}^{\otimes n}-\left(R_{\theta} \rho_{\theta_{0}} R_{\theta}\right)^{\otimes n}\right] . \tag{S.15}
\end{equation*}
$$

From (S.14) and (S.15), we have the quantum Lebesgue decomposition

$$
\rho_{\theta}^{\otimes n}=\left(\rho_{\theta}^{\otimes n}\right)^{a c}+\left(\rho_{\theta}^{\otimes n}\right)^{\perp}
$$

with respect to $\rho_{\theta_{0}}^{\otimes n}$, where

$$
\left(\rho_{\theta}^{\otimes n}\right)^{a c}=R_{\theta}^{\otimes n} \rho_{\theta_{0}}^{\otimes n} R_{\theta}^{\otimes n} \quad \text { and } \quad\left(\rho_{\theta}^{\otimes n}\right)^{\perp}=\rho_{\theta}^{\otimes n}-R_{\theta}^{\otimes n} \rho_{\theta_{0}}^{\otimes n} R_{\theta}^{\otimes n} .
$$

Consequently, $R_{\theta}^{\otimes n}$ gives a version of the square-root likelihood ratio $\mathcal{R}\left(\rho_{\theta}^{\otimes n} \mid \rho_{\theta_{0}}^{\otimes n}\right)$.
Let us proceed to the proof of (ii) in Definition 7.4. Since R_{h} is differentiable at $h=0$ and $R_{0}=I$, it is expanded as

$$
R_{h}=I+\frac{1}{2} A_{i} h^{i}+o(\|h\|) .
$$

Due to assumption (7.7),

$$
\rho_{\theta_{0}+h}=R_{h} \rho_{\theta_{0}} R_{h}+o\left(\|h\|^{2}\right)=\rho_{\theta_{0}}+\frac{1}{2}\left(A_{i} \rho_{\theta_{0}}+\rho_{\theta_{0}} A_{i}\right) h^{i}+o(\|h\|) .
$$

As a consequence, the selfadjoint operator A_{i} is also a version of the i th SLD at θ_{0}. To evaluate the higher order term of R_{h}, let

$$
B(h):=R_{h}-I-\frac{1}{2} A_{i} h^{i} .
$$

Then

$$
\begin{aligned}
\operatorname{Tr} \rho_{\theta_{0}} R_{h}^{2} & =\operatorname{Tr} \rho_{\theta_{0}}\left(I+\frac{1}{2} A_{i} h^{i}+B(h)\right)^{2} \\
& =\operatorname{Tr} \rho_{\theta_{0}}\left(I+\frac{1}{4} A_{i} A_{j} h^{i} h^{j}+2 B(h)+A_{i} h^{i}+B(h)^{2}+\frac{1}{2} A_{i} h^{i} B(h)+\frac{1}{2} B(h) A_{i} h^{i}\right) \\
& =1+\frac{1}{4} J_{j i} h^{i} h^{j}+2 \operatorname{Tr} \rho_{\theta_{0}} B(h)+o\left(\|h\|^{2}\right) .
\end{aligned}
$$

This relation and assumption (7.7) lead to

$$
\begin{equation*}
\operatorname{Tr} \rho_{\theta_{0}} B(h)=-\frac{1}{8} J_{j i} h^{i} h^{j}+o\left(\|h\|^{2}\right) \tag{S.16}
\end{equation*}
$$

In order to prove (ii), it suffices to show that

$$
\begin{aligned}
O_{h}^{(n)} & :=\exp \left[\frac{1}{2}\left(h^{i} \Delta_{i}^{(n)}-\frac{1}{2} J_{j i} h^{i} h^{j}\right)\right]-\left(R_{h / \sqrt{n}}\right)^{\otimes n} \\
& =e^{-\frac{1}{4} J_{j i} h^{i} h^{j}}\left\{e^{\frac{1}{2 \sqrt{n}} h^{i} L_{i}}\right\}^{\otimes n}-\left(R_{h / \sqrt{n}}\right)^{\otimes n}
\end{aligned}
$$

is L^{2}-infinitesimal under $\rho_{\theta_{0}}^{\otimes n}$, setting the D-infinitesimal residual term $o_{D}\left(h^{i} \Delta_{i}^{(n)}, \rho_{\theta_{0}}^{(n)}\right)$ in (ii) to be zero for all n. In fact,

$$
\begin{align*}
\operatorname{Tr} \rho_{\theta_{0}}^{\otimes n} O_{h}^{(n)^{2}}= & e^{-\frac{1}{2} J_{j i} h^{i} h^{j}}\left\{\operatorname{Tr} \rho_{\theta_{0}} e^{\frac{1}{\sqrt{n}} h^{i} L_{i}}\right\}^{n}+\left\{\operatorname{Tr} \rho_{\theta_{0}} R_{h / \sqrt{n}}^{2}\right\}^{n} \tag{S.17}\\
& -2 e^{-\frac{1}{4} J_{j i} h^{i} h^{j}} \operatorname{Re}\left\{\operatorname{Tr} \rho_{\theta_{0}} e^{\frac{1}{2 \sqrt{n}} h^{i} L_{i}} R_{h / \sqrt{n}}\right\}^{n}
\end{align*}
$$

The first term in the right-hand side of (S.17) is evaluated as follows:

$$
\begin{aligned}
e^{-\frac{1}{2} J_{j i} h^{i} h^{j}}\left\{\operatorname{Tr} \rho_{\theta_{0}} e^{\frac{1}{\sqrt{n}} h^{i} L_{i}}\right\}^{n} & =e^{-\frac{1}{2} J_{j i} h^{i} h^{j}}\left\{\operatorname{Tr} \rho_{\theta_{0}}\left(I+\frac{1}{\sqrt{n}} h^{i} L_{i}+\frac{1}{2 n} L_{i} L_{j} h^{i} h^{j}+o\left(\frac{1}{n}\right)\right)\right\}^{n} \\
& =e^{-\frac{1}{2} J_{j i} h^{i} h^{j}}\left(1+\frac{1}{2 n} J_{j i} h^{i} h^{j}+o\left(\frac{1}{n}\right)\right)^{n} \longrightarrow 1
\end{aligned}
$$

The second term is evaluated from (7.7) as

$$
\left\{\operatorname{Tr} \rho_{\theta_{0}} R_{h / \sqrt{n}}^{2}\right\}^{n}=\left(1-o\left(\frac{1}{n}\right)\right)^{n} \longrightarrow 1
$$

Finally, the third term is evaluated from (S.16) as

$$
\begin{aligned}
& e^{-\frac{1}{4} J_{j i} h^{i} h^{j}}\left\{\operatorname{Tr} \rho_{\theta_{0}} e^{\frac{h^{i}}{2 \sqrt{n}} L_{i}} R_{h / \sqrt{n}}\right\}^{n} \\
& \quad=e^{-\frac{1}{4} J_{j i} h^{i} h^{j}}\left\{\operatorname{Tr} \rho_{\theta_{0}}\left(I+\frac{h^{i}}{2 \sqrt{n}} L_{i}+\frac{1}{8 n} L_{i} L_{j} h^{i} h^{j}+o\left(\frac{1}{n}\right)\right)\left(I+\frac{h^{k}}{2 \sqrt{n}} A_{k}+B\left(\frac{h}{\sqrt{n}}\right)\right)\right\}^{n} \\
& \quad=e^{-\frac{1}{4} J_{j i} h^{i} h^{j}}\left\{1+\frac{1}{4 n} J_{k i} h^{i} h^{k}+o\left(\frac{1}{n}\right)\right\}^{n} \longrightarrow 1
\end{aligned}
$$

This proves (ii).
Having established that $\left\{\rho_{\theta}^{\otimes n}\right\}_{n}$ is q-LAN at θ_{0}, the property (7.8) is now an immediate consequence of Corollary 7.5 as well as the quantum central limit theorem

This completes the proof.

References

[1] Fujiwara, A. and Yamagata, K. (2020) Noncommutative Lebesgue decomposition and contiguity with applications in quantum statistics, Bernoulli; arXiv: 1804.03510.
[2] Jakšić, V., Pautrat, Y., and Pillet, C.-A. (2010) A quantum central limit theorem for sums of independent identically distributed random variables, J. Math. Phys., 51, 015208 .
[3] Kakutani, S. (1948) On equivalence of infinite product measures, Ann. Math., 49, 214-224.
[4] Williams, D. (1991) Probability with Martingales, Cambridge University Press, Cambridge.
[5] Yamagata, K., Fujiwara, A., and Gill, R. D. (2013) Quantum local asymptotic normality based on a new quantum likelihood ratio, Ann. Statist., 41, 2197-2217.

