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Abstract

This paper explores asymptotics of randomly generated vectors on extended Hilbert
spaces. In particular, we are interested to know how ‘orthogonal’ these vectors are.
We investigate two types of asymptotic orthogonality, the weak orthogonality and the
strong orthogonality, that are regarded as quantum analogues of the classical birthday
problem and its variant. As regards the weak orthogonality, a new characterization of
the von Neumann entropy is derived, and a mechanism behind the noiseless quantum
channel coding theorem is clarified. As regards the strong orthogonality, on the other
hand, a characterization of the quantum Rényi entropy of degree 2 is derived.

Index Terms: asymptotic orthogonality, birthday problem, quantum channel coding,
quantum information theory, random vector, Rényi entropy, von Neumann entropy

1 Introduction

Let H be a Hilbert space and let p be a probability measure on H the support of which
being a countable set X of unit vectors. We assume that |X | ≥ 2 and that vectors in X
are not parallel with each other. Associated with the probability measure p is the density
operator

ρ :=
∑
φ∈X

p(φ) |φ〉〈φ|, (1)

where, and in what follows, we use the Dirac notation. Let {Xk(i)}ki be X -valued ran-
dom variables i.i.d. with respect to p, and let {Ln}n be an increasing sequence of natural
numbers. For each n ∈ N , we define Ln random vectors {Ψ(n)(i)}1≤i≤Ln on H⊗n by

Ψ(n)(i) := X1(i) ⊗ X2(i) ⊗ · · · ⊗ Xn(i), (i = 1, ..., Ln).
∗email: fujiwara@math.wani.osaka-u.ac.jp
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We denote the inner product of the ith and jth vectors by

g
(n)
ij := 〈Ψ(n)(i)|Ψ(n)(j)〉 =

n∏
k=1

〈Xk(i)|Xk(j)〉. (2)

Note that g
(n)
ii = 1 for all n and 1 ≤ i ≤ Ln, and that, for fixed i and j (i ̸= j), g

(n)
ij

converges to 0 almost surely as n → ∞. Thus it is natural to inquire how ‘orthogonal’
those random vectors are. For later convenience, we denote the ordered list of the Ln

random vectors by C(n).
To motivate our problem, let us consider the special case when X forms an orthonormal

system. In this case, g
(n)
ij = 0 if Xk(i) ̸= Xk(j) for some k, and g

(n)
ij = 1 otherwise. Put

differently, the Gram matrix

G(n) :=


g
(n)
11 · · · g

(n)
1Ln

...
...

g
(n)
Ln1 · · · g

(n)
LnLn


gives an yes/no table indicating whether the ith n-tuple (X1(i), ..., Xn(i)) and the jth
n-tuple (X1(j), ..., Xn(j)) are identical (g(n)

ij = 1) or not (g(n)
ij = 0). As a consequence,

orthogonality problems for the random vectors are reduced to combinatorial ones when X
is orthonormal.

In his paper [1], Rényi posed several combinatorial problems that can be regarded
as asymptotic versions of the classical birthday problem (cf. [2]) and its variants, and
characterized classical entropies. From among them, let us recast two problems in terms of
orthogonalities of random vectors. Let X be orthonormal. We say that C(n) satisfies weak
orthogonality condition with respect to the ith vector if the event

E
(n)
i := {The ith vector Ψ(n)(i) is orthogonal to the other vectors in C(n)}

occurs, and that C(n) satisfies strong orthogonality condition if the event

F (n) := {The vectors in C(n) are mutually orthogonal}

occurs. We are interested to know how fast can Ln be increased under the condition that
the probability P (E(n)

i ) for some (then any) i, or P (F (n)), tends to 1 as n → ∞. Let
Cw(p) [resp. Cs(p)] be the supremum of lim supn→∞ log Ln/n over all sequences {Ln}n

that satisfy P (E(n)
i ) → 1 [resp. P (F (n)) → 1]. We may call Cw(p) [resp. Cs(p)] the

weak [resp. strong] orthogonality capacity of the probability measure p. Since we are now
dealing with a probability measure p that has an orthonormal support X , the problems
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are essentially combinatorial, and it is not too difficult to show that Cw(p) = H(p) and
Cs(p) = H2(p)/2, where H(p) and H2(p) are the Shannon entropy and the Rényi entropy
[1] of degree 2 with respect to the probability measure p.

Let us now return to the general case when X is not necessarily orthonormal. Although
the vectors in C(n) may not be strictly orthogonal in this case, it would be quite possible
that they are ‘almost’ orthogonal for sufficiently large n. It is therefore expected that
quantum entropies might be characterized via asymptotic properties of the set C(n) of
random vectors (as Rényi did for classical entropies via combinatorics). The purpose of
this paper is to extend the notions of weak and strong orthogonality of random vectors to
a general probability measure p, and to determine the corresponding capacities. In fact,
with proper definitions of ‘asymptotic’ orthogonalities, it is shown in Theorems 1 and 4
that the weak orthogonality capacity Cw(p) is given by the von Neumann entropy

H(ρ) := −Tr ρ log ρ,

and the strong orthogonality capacity Cs(p) is given by half the quantum Rényi entropy
of degree 2

H2(ρ) := − log Tr ρ2,

where the probability measure p and the density operator ρ are connected by Eq. (1). Since
these results obviously generalize the above mentioned classical characterizations by Rényi,
our problems may be called quantum birthday problems. It should be emphasized that each
capacity depends only on the density operator ρ, so that, for those probability measures p
and q which give the same density operator, Cw(p) = Cw(q) and Cs(p) = Cs(q) hold.

The orthogonality of vectors in C(n) is closely related to their ‘distinguishability’ in
quantum measurement theory. Let a physical system of interest be represented by the
Hilbert space H⊗n, and let a unit vector in H⊗n correspond to a quantum pure state.
When X is orthonormal, any two vectors in C(n) are either orthogonal or identical, so that
there is a quantum mechanical measurement on H⊗n that distinguishes distinct vectors
in C(n) with probability one. In this sense, strict orthogonality implies strict distinguisha-
bility by a certain measurement. As a matter of fact, this corresponds to the classical
situation: unlimited distinguishability for distinct objects is precisely the central dogma of
the classical theory, and one can restore Rényi’s original problems by replacing the word(s)
‘orthogonal (to)’ with ‘distinct (from)’ in the above definitions of the events E

(n)
i and F (n).

When X is not orthonormal, on the other hand, distinct vectors in C(n) are not necessarily
orthogonal, so that they are not always strictly distinguishable in the sense of quantum
mechanics. We therefore have to deal with, so to say, ‘asymptotic distinguishability’ of ran-
dom vectors. In fact, we will clarify a close connection between asymptotic orthogonality
and the noiseless quantum channel coding problem.
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2 Weak orthogonality

Let us start with a preliminary consideration as to what is the proper extension of the
notion of weak orthogonality to the case when X is not necessarily orthonormal. If the ith
vector in C(n) is ‘almost’ orthogonal to the other vectors in C(n), then the inner products
g
(n)
ij , (j = 1, ..., Ln, j ̸= i), must be all sufficiently small. Thus the proper extension of weak

orthogonality might be such that the random variables g
(n)
ij converge to 0 simultaneously

for all j(̸= i) as n → ∞ in a certain mode of convergence. For example, the condition that

Y
(n)
i :=

Ln∑
j(̸=i)

|g(n)
ij |2 → 0 in probability (3)

might be a candidate. However, in anticiption of a characterization of the von Neumann
entropy as well as a relationship with the quantum channel coding problem, we adopt a
slightly different approach. (In fact, it is shown in Appendix A that the condition (3) does
not characterize the von Neumann entropy.)

For each n, let L(n) be a subspace of H⊗n and let ΠL(n) be the projection operator
onto the subspace L(n). Given a pair (C(n),L(n)), let us denote the inner product of the
projected ith and jth vectors by

ĝ
(n)
ij := 〈ΠL(n)Ψ(n)(i)|ΠL(n)Ψ(n)(j)〉,

and define random variables

Ŷ
(n)
i :=

Ln∑
j( ̸=i)

|ĝ(n)
ij |2.

We say that a sequence {C(n)}n satisfies asymptotic weak orthogonality condition if there
is a sequence {L(n)}n of subspaces such that the following conditions are satisfied: for all
i,

(i) ĝ
(n)
ii → 1 in probability,

(ii) Ŷ
(n)
i → 0 in probability,

Some remarks are in order. The condition (i) implies that, for sufficiently large n,
the ith vector Ψ(n)(i) will be almost parallel to L(n), so that the projected ith vector
ΠL(n)Ψ(n)(i) be almost identical to the original vector Ψ(n)(i). The condition (ii) implies
that, for sufficiently large n, all the vectors Ψ(n)(j), (j ̸= i), will be simultaneously almost
orthogonal to the projected ith vector ΠL(n)Ψ(n)(i). It should be emphasized that the
choice of subspaces {L(n)}n is independent of the index i.
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Theorem 1 (von Neumann entropy as the weak orthogonality capacity) Given a prob-
ability measure p, let Cw(p) be the supremum of lim supn→∞ log Ln/n over all sequences
{C(n)}n that satisfy the asymptotic weak orthogonality condition. Then Cw(p) = H(ρ),
where H(ρ) is the von Neumann entropy for the density operator (1).

Before proceeding to the proof, we mention a close connection between Theorem 1 and
the noiseless quantum channel coding theorem [3]. Let us regard C(n) as a quantum random
codebook. Given a vector (a quantum codeword) in C(n), our task is to estimate, by means
of a certain measurement, which vector among C(n) is the actual one. Associated with a
codebook C(n) and a subspace L(n) is the Gram operator

G :=
Ln∑
j=1

|ΠL(n)Ψ(n)(j)〉〈ΠL(n)Ψ(n)(j)|.

The operator G is strictly positive on the subspace

L̂(n) := Span{ΠL(n)Ψ(n)(j); 1 ≤ j ≤ Ln}.

Let the operator G−1 be the inverse of G on L̂(n) and zero on the orthogonal complement
L̂(n)⊥. According to [3], we introduce a measurement M (n) by

M (n) :=

|µ̂(1)〉〈µ̂(1)|, . . . , |µ̂(Ln)〉〈µ̂(Ln)|, I −
Ln∑
j=1

|µ̂(j)〉〈µ̂(j)|

 , (4)

where µ̂(j) are vectors on L̂(n) defined by

µ̂(j) := G−1/2ΠL(n)Ψ(n)(j) = G−1/2Ψ(n)(j).

We can regard M (n) as a decoder for the codebook C(n), in which the ith entry |µ̂(i)〉〈µ̂(i)|,
(1 ≤ i ≤ Ln), corresponds to the ith codeword in C(n), and the (Ln + 1)st entry the wild
card. (Note that the decoder (4) with the special choice of a subspace L(n) = H⊗n was
introduced by Holevo [4]).

The idea for adopting the decoder (4) is this: When the ith vector Ψ(n)(i) is strictly
orthogonal to the other vectors in C(n), then the Gram operator G with L(n) := H⊗n is
decomposed into the orthogonal direct sum

G = |Ψ(n)(i)〉〈Ψ(n)(i)| ⊕
∑
j ̸=i

|Ψ(n)(j)〉〈Ψ(n)(j)|,

so that

G−1/2 = |Ψ(n)(i)〉〈Ψ(n)(i)| ⊕

∑
j ̸=i

|Ψ(n)(j)〉〈Ψ(n)(j)|

−1/2

,
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and
µ̂(i) = G−1/2Ψ(n)(i) = Ψ(n)(i).

As a consequence, the decoding error probability P
(n)
e (i) for the ith codeword Ψ(n)(i) by

the decoder (4) is

P (n)
e (i) = 1 − Tr |Ψ(n)(i)〉〈Ψ(n)(i)|µ̂(i)〉〈µ̂(i)| = 0.

Thus it is expected that, when the ith vector is almost orthogonal to the other vectors
in C(n), the decoding error probability P

(n)
e (i) will be small. In fact, this expectation is

verified by the following

Lemma 2 If |ĝ(n)
ii |2 > 1 − ε and Ŷ

(n)
i < ε hold for some i and 0 < ε < 1, then the

decoding error probability P
(n)
e (i) for the ith codeword Ψ(n)(i) by the decoder (4) is upper

bounded by 3
2ε.

Proof See Appendix B. 2

Corollary 3 If {C(n)}n satisfies asymptotic weak orthogonality condition, then E[P (n)
e ] →

0 as n → ∞, where P
(n)
e is the average decoding error probability for the code (C(n),M (n)),

and E[ · ] denotes the expectation.

Proof Let the event E
(n)
i (ε) be defined by

E
(n)
i (ε) := {|ĝ(n)

ii |2 > 1 − ε and Ŷ
(n)
i < ε}.

By the assumption of asymptotic weak orthogonality, for all ε > 0 and δ > 0, there is an
N such that for all n ≥ N and i, P (E(n)

i (ε)) > 1 − δ holds. Then

E[P (n)
e (i)] = E[P (n)

e (i);E(n)
i (ε)] + E[P (n)

e (i);E(n)
i (ε)c]

≤ E[P (n)
e (i);E(n)

i (ε)] + P (E(n)
i (ε)c)

<
3
2
ε + δ.

Here, E[X; A] :=
∫
A X dP , and Lemma 2 is used in the last inequality. Since this upper

bound is independent of i, we have

E[P (n)
e ] =

1
Ln

Ln∑
i=1

E[P (n)
e (i)] <

3
2
ε + δ.
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This completes the proof. 2

Theorem 1 and Corollary 3 clarify why the decoder of the type (4) has fitted to the
random coding technique in the proof of the direct part of the noiseless quantum channel
coding theorem [3]. The notion of asymptotic weak orthogonality for the random codebook
C(n) thus explicates the physical implication of the probabilistic distinguishability among
codewords in the quantum channel coding problem as well as the geometrical mechanism
behind the decoder (4).

Proof of Theorem 1 We first prove the direct part Cw(p) ≥ H(ρ). Fix an arbitrarily
small positive constant δ and, for each n, let Ln be such that Ln < en(H(ρ)−4δ). We show
that there is a sequence {L(n)}n of subspaces for which the asymptotic weak orthogonality
conditions (i) and (ii) hold for all i. The idea of the proof is similar to [3]: we take L(n) to be
the δ-typical subspace Λ(n)

δ with respect to the density ρ. (For the reader’s convenience, the
definition and the basic properties of the δ-typical subspace are summarized in Appendix
C.) Since

ĝ
(n)
ii = 〈Π

Λ
(n)
δ

Ψ(n)(i)|Π
Λ

(n)
δ

Ψ(n)(i)〉 = Tr |Ψ(n)(i)〉〈Ψ(n)(i)|Π
Λ

(n)
δ

,

we have
E[ĝ(n)

ii ] = Tr ρ⊗nΠ
Λ

(n)
δ

> 1 − δ

for all i and all sufficiently large n (see Eq. (9)). This proves (i). On the other hand, for
all j(̸= i),

|ĝ(n)
ij |2 = |〈Π

Λ
(n)
δ

Ψ(n)(i)|Π
Λ

(n)
δ

Ψ(n)(j)〉|2

= TrΠ
Λ

(n)
δ

|Ψ(n)(i)〉〈Ψ(n)(i)|Π
Λ

(n)
δ

|Ψ(n)(j)〉〈Ψ(n)(j)|Π
Λ

(n)
δ

,

so that

E|ĝ(n)
ij |2 = TrΠ

Λ
(n)
δ

ρ⊗nΠ
Λ

(n)
δ

ρ⊗nΠ
Λ

(n)
δ

= Tr (ρ⊗n)2Π
Λ

(n)
δ

≤ e−n(H(ρ)−3δ),

(see Eq. (10)), and
E[Ŷ (n)

i ] ≤ (Ln − 1) e−n(H(ρ)−3δ) < e−nδ.

Thus Ŷ
(n)
i → 0 in L1 for all i, proving (ii). This completes the proof of the direct part

Cw(p) ≥ H(ρ).
We next prove the converse part Cw(p) ≤ H(ρ). Let X be the random variable uni-

formly distributed over C(n) and let Y be the random variable representing the outcome of
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the corresponding decoder M (n) defined by (4). Then by virtue of Fano’s inequality,

log 2 + P (n)
e log Ln ≥ H(X|Y ) = H(X) − I(X : Y )

= log Ln − 1
Ln

Ln∑
j=1

DM(n)

(
|Ψ(n)(j)〉〈Ψ(n)(j)|

∥∥∥∥∥ 1
Ln

Ln∑
k=1

|Ψ(n)(k)〉〈Ψ(n)(k)|
)

≥ log Ln − 1
Ln

Ln∑
j=1

D

(
|Ψ(n)(j)〉〈Ψ(n)(j)|

∥∥∥∥∥ 1
Ln

Ln∑
k=1

|Ψ(n)(k)〉〈Ψ(n)(k)|
)

= log Ln − H

(
1

Ln

Ln∑
k=1

|Ψ(n)(k)〉〈Ψ(n)(k)|
)

.

Here D(σ∥τ) := Trσ(log σ − log τ) is the quantum relative entropy between the quantum
states σ and τ (with suppσ ⊂ supp τ), and DM (σ∥τ) denotes the classical Kullback-Leibler
divergence between the probability distributions p(·) := Tr σM(·) and q(·) := Tr τM(·) over
the outcomes of the measurement M . (See [5] for notations.) The second inequality is due
to the familiar monotonicity relation of the relative entropy [6, Theorem 1.5]. Now taking
the expectation for the above inequality, and using the concavity of the von Neumann
entropy, we have

log 2 + E[P (n)
e ] log Ln ≥ log Ln − E

[
H

(
1

Ln

Ln∑
k=1

|Ψ(n)(k)〉〈Ψ(n)(k)|
)]

≥ log Ln − H

(
1

Ln

Ln∑
k=1

E
[
|Ψ(n)(k)〉〈Ψ(n)(k)|

])
= log Ln − H(ρ⊗n)
= log Ln − nH(ρ).

Therefore
(1 − E[P (n)

e ])
log Ln

n
≤ H(ρ) +

log 2
n

.

Thus in order to assure the asymptotic weak orthogonality (so that E[P (n)
e ] → 0 as n → ∞

by Corollary 3), lim supn log Ln/n must be less than or equal to H(ρ). This completes the
proof of the converse part Cw(p) ≤ H(ρ). 2

3 Strong orthogonality

If the vectors in C(n) are mutually strictly orthogonal, then the Gram matrix G(n) = [g(n)
ij ],

where g
(n)
ij is the inner product (2), is reduced to the identity. Therefore if they are
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mutually ‘almost’ orthogonal, the Gram matrix is expected to be close to the identity.
This observation prompts us to define the strong orthogonality as follows. Given C(n), let
the random variable Z(n) be defined by the squared sum of off-diagonal elements of G(n),
i.e.,

Z(n) :=
Ln∑
i=1

Ln∑
j(̸=i)

|g(n)
ij |2.

We say that a sequence {C(n)}n satisfies asymptotic strong orthogonality condition if the
following two conditions are satisfied:

(i) Z(n) → 0 in probability,
(ii) the sequence {Z(n)}n is uniformly integrable.

Theorem 4 (Quantum Rényi entropy as the strong orthogonality capacity) Given a
probability measure p, let Cs(p) be the supremum of lim supn→∞ log Ln/n over all sequences
{C(n)}n that satisfy asymptotic strong orthogonality condition. Then Cs(p) = 1

2H2(ρ),
where H2(ρ) is the quantum Rényi entropy of degree 2 for the density operator (1).

Proof For i ̸= j,

|g(n)
ij |2 = |〈Ψ(n)(i)|Ψ(n)(j)〉|2 = Tr (|Ψ(n)(i)〉〈Ψ(n)(i)|)(|Ψ(n)(j)〉〈Ψ(n)(j)|),

so that
E|g(n)

ij |2 = Tr (ρ⊗n)2 = (Tr ρ2)n = e−nH2(ρ),

and
E[Z(n)] = Ln(Ln − 1) e−nH2(ρ).

Let δ > 0 be an arbitrarily small positive consitant. If Ln < en(H2(ρ)/2−δ) then E[Z(n)] → 0,
and if Ln > en(H2(ρ)/2+δ) then E[Z(n)] → ∞. This completes the proof. 2

Several remarks are in order. If {C(n)}n satisfies the condition (i) for the asymptotic
strong orthogonality, then in a similar way to Lemma 2, it can be shown that the de-
coding error probabilities {P (n)

e (i)}1≤i≤Ln by the decoder (4) with L(n) := H⊗n exhibits∑Ln
i=1 P

(n)
e (i) → 0 in L1 as n → ∞. (Compare this with Corollary 3.) The notion of

asymptotic strong orthogonality thus leads to a new, strong type of probabilistic distin-
guishability in quantum measurement theory. It is not clear whether there is a coding
theorem in which this strong distinguishability playes a pivotal role. A related question
whether the converse part of Theorem 4 holds without the uniform integrability condition
(ii) is also still open.
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4 Conclusions

We have shown that asymptotic orthogonalities of random vectors lead us to new, geomet-
rical, characterizations of the von Neumann entropy and the quantum Rényi entropy of
degree 2. These characterizations are closely related to the distinguishability of the vectors
by quantum mechanical measurements. In particular, a mechanism behind the random
coding technique for the noiseless quantum channel coding theorem was clarified.
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Appendices

A Remark on the condition (3)

In this appendix, we exemplify that the condition (3) does not characterize the von Neu-
mann entropy. Let φ0, φ1 be unit vectors in H with a := |〈φ0|φ1〉|2 < 1, and let p be the
probability measure on H such that p(φ0) = p(φ1) = 1

2 . The nonzero eigenvalues of the
corresponding density operator ρ = 1

2 |φ0〉〈φ0| + 1
2 |φ1〉〈φ1| are (1 ±

√
a)/2, so the quantum

Rényi entropy of degree 2 is

h2 := H2(ρ) = − log
1 + a

2
.

Let {Xk(i)}ki be {φ0, φ1}-valued random variables i.i.d. with respect to p, and let Ψ(n)(i) =
X1(i) ⊗ · · · ⊗ Xn(i). The squared norm of the inner product g

(n)
ij then becomes

|g(n)
ij |2 =

n∏
k=1

|〈Xk(i)|Xk(j)〉|2 = aNij ,

where Nij is the number of indices k for which Xk(i) ̸= Xk(j).
Now fix a number i arbitrarily. Then it is easily shown that for each n, {|g(n)

ij |2 ; j ∈

N , j ̸= i} are i.i.d. random variables, each taking the value aℓ with probability
(

n

ℓ

)
2−n,

where ℓ = 0, ..., n. In particular, they have the expectation

m(n) := E
[
|g(n)

ij |2
]

=
(

1 + a

2

)n

= e−nh2 ,
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and the variance

v(n) := V
[
|g(n)

ij |2
]

=

(
1 + a2

2

)n

−
(

1 + a

2

)2n

.

We claim the following.

Proposition 5 Let ε be a positive constant and let

Y
(n)
i =

Ln∑
j(̸=i)

|g(n)
ij |2.

If Ln < en(h2−ε), then Y
(n)
i converges to 0 in probability as n → ∞, and if Ln > en(h2+ε),

then Y
(n)
i does not.

Proof Assume first that Ln < en(h2−ε). Then E[Y (n)
i ] = (Ln − 1)m(n) < e−nε → 0

as n → ∞, proving that Y
(n)
i → 0 in probability. To prove the second part, we use the

following inequality:

P

(
Y

(n)
i <

1
2
(Ln − 1) m(n)

)
<

4
(Ln − 1) m(n)

, (5)

which is verified as follows.

P

(
Y

(n)
i <

1
2
(Ln − 1) m(n)

)
≤ P

(∣∣∣Y (n)
i − (Ln − 1) m(n)

∣∣∣ >
1
2
(Ln − 1)m(n)

)
<

(
2

(Ln − 1)m(n)

)2

V [Y (n)
i ]

=
4

(Ln − 1) m(n)
· v(n)

m(n)
<

4
(Ln − 1) m(n)

.

Now assume that Ln > en(h2+ε). Then (Ln − 1)m(n) > enε − m(n) → ∞ as n → ∞. This
fact and the inequality (5) together prove that Y

(n)
i does not converge to 0 in probability.

2

According to Proposition 5, it is h2 (the quantum Rényi entropy of degree 2) that
characterizes the asymptotic behavior of Y

(n)
i in this example. As a consequence, one

cannot characterize the von Neumann entropy as the capacity for the condition (3) in
general.

Remark: If the definition of the asymptotic weak orthogonality is such that Y
(n)
i → 0

in probability and the sequence {Y (n)
i }n is uniformly integrable for all i, then it can be

shown in a similar way to Theorem 4 that Cw(p) = H2(ρ) for a general probability measure
p.
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B Proof of Lemma 2

Due to the symmetry, it suffices to consider the case when i = 1. Let {êk}k be a complete
orthonormal system (CONS) of the finite dimensional subspace L̂(n) with

ê1 :=
ΠL(n)Ψ(n)(1)

∥ΠL(n)Ψ(n)(1)∥
.

The (1, 1)th matrix element of G−1/2 with respect to the CONS {êk}k is(
G−1/2

)
11

:= 〈ê1|G−1/2ê1〉

=
〈ΠL(n)Ψ(n)(1)|G−1/2ΠL(n)Ψ(n)(1)〉

∥ΠL(n)Ψ(n)(1)∥2

=
〈Ψ(n)(1)|G−1/2Ψ(n)(1)〉

∥ΠL(n)Ψ(n)(1)∥2
. (6)

The error probability P
(n)
e (1) for the first codeword Ψ(n)(1) in C(n) with respect to the

decoder (4) is evaluated as

P (n)
e (1) = 1 − |〈Ψ(n)(1)|µ̂(1)〉|2

= 1 − |〈Ψ(n)(1)|G−1/2Ψ(n)(1)〉|2

= 1 − ∥ΠL(n)Ψ(n)(1)∥4
∣∣∣(G−1/2

)
11

∣∣∣2
≤ 1 − ∥ΠL(n)Ψ(n)(1)∥4 (G11)

−1 . (7)

Here G11 stands for the (1, 1)th matrix element of G, and we have used (6) and the inequality(
G−1/2

)
11

≥ (G11)
−1/2 ,

which is verified by Lemma 6 below. On the other hand,

G11 = |〈ê1|ΠL(n)Ψ(n)(1)〉|2 +
∑
j≥2

|〈ê1|ΠL(n)Ψ(n)(j)〉|2

= ∥ΠL(n)Ψ(n)(1)∥2 +
1

∥ΠL(n)Ψ(n)(1)∥2

∑
j≥2

|〈ΠL(n)Ψ(n)(1)|ΠL(n)Ψ(n)(j)〉|2

= ∥ΠL(n)Ψ(n)(1)∥2

1 +
1

∥ΠL(n)Ψ(n)(1)∥4

∑
j≥2

|〈ΠL(n)Ψ(n)(1)|ΠL(n)Ψ(n)(j)〉|2


< ∥ΠL(n)Ψ(n)(1)∥2
(

1 +
ε

1 − ε

)
= ∥ΠL(n)Ψ(n)(1)∥2 1

1 − ε
. (8)
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Substituting (8) into (7), we have

P (n)
e (1) < 1 − ∥ΠL(n)Ψ(n)(1)∥2(1 − ε) < 1 − (1 − ε)3/2 <

3
2
ε.

This completes the proof of Lemma 2. 2

Lemma 6 Let A = [Aij ] be a strictly positive Hermitian matrix. Then1

(A−1/2)11 ≥ (A11)
−1/2

Proof Let
A =

∑
k

λkEk

be the spectral decomposition. Then

A−1/2 =
∑
k

(λk)−1/2Ek,

so that

(A−1/2)11 =
∑
k

(λk)−1/2〈e1|Eke1〉 ≥
(∑

k

λk〈e1|Eke1〉
)−1/2

= (A11)−1/2.

Here we have used Jensen’s inequality and the fact that 〈e1|Eke1〉 ≥ 0 for all k and∑
k 〈e1|Eke1〉 = 1. 2

C Typical subspaces

In this appendix, we give a brief account of the so-called typical subspace (cf. [7] [8] [3]).
Given a density operator ρ on H, let

ρ =
∑
j∈J

λjEj

be a Schatten decomposition, where λj > 0 for all j ∈ J and
∑

j λj = 1. Note that
λ := (λ1, λ2, ...) is naturally regarded as a probability distribution on the index set J such
that λ(j) = λj . A Schatten decomposition of ρ⊗n is given by

ρ⊗n =
∑

(j1,...,jn)∈Jn

(λj1 · · ·λjn)(Ej1 ⊗ · · · ⊗ Ejn).

1 More generally, we can prove that (Am)11 ≥ (A11)
m for m < 0 or m > 1, and (Am)11 ≤ (A11)

m

otherwise.
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Obviously, the eigenvalues of ρ⊗n form a probability distribution λn, the i.i.d. extension of
λ, on the set Jn.

Given a density operator ρ and a positive constant δ, an eigenvalue (λj1 · · ·λjn) of ρ⊗n

is called δ-typical if the sequence j1, ..., jn of indices is δ-typical [9, p. 51] with respect
to the probability distribution λn, that is, if e−n(H(ρ)+δ) ≤ λn(j1, ..., jn) ≤ e−n(H(ρ)−δ). It
follows that for all sufficiently large n,

(a) e−n(H(ρ)+δ) ≤ (a δ-typical eigenvalue) ≤ e−n(H(ρ)−δ),
(b) (the sum of δ-typical eigenvalues) > 1 − δ,
(c) (1 − δ)en(H(ρ)−δ) ≤ (the number of δ-typical eigenvalues) ≤ en(H(ρ)+δ).

Here (a) is a direct consequence of the definition, and (b) and (c) follow from the asymptotic
equipartition property [9, Theorem 3.1.2].

Let Λ(n)
δ (⊂ H⊗n) be the linear span of such eigenvectors of ρ⊗n that correspond to δ-

typical eigenvalues. The subspace Λ(n)
δ is called δ-typical with respect to the density ρ. Let

Π
Λ

(n)
δ

be the projection operator onto the δ-typical subspace Λ(n)
δ . Clearly the operators ρ

and Π
Λ

(n)
δ

commute. And it follows immediately from (a)-(c) that, for all sufficiently large
n,

Tr ρ⊗nΠ
Λ

(n)
δ

> 1 − δ, (9)

Tr (ρ⊗n)2Π
Λ

(n)
δ

≤
(
e−n(H(ρ)−δ)

)2
en(H(ρ)+δ) = e−n(H(ρ)−3δ). (10)
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