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of Sp(2,R) and Its Compact Twist Sp(2) (I) 

Tomoyoshi Ibukiyama 

Let p be a fixed prime. In the previous paper [9], we have given 
some examples and conjectures on correspondence between automorphic 
forms of Sp(2, R) (size four) and Sp(2)={g e H; gtg= 12} (H: Hamilton 
quaternions) which preserves L-functions, where the p-adic closures of the 
discrete subgroups (to which automorphic forms belong) are minimal 
parahoric. This was an attempt to a generalization of Eichler's corre
spondence between SL2(R) and SU(2). Ihara raised such a problem for 
symplectic groups and Langlands [15] has given a quite general philosophy 
on correspondence of automorphic forms of any reductive groups (func
toriality with respect to L-groups). In this paper, we give good global 
dimensional relations of automorphic forms of Sp(2, R) and Sp(2), when 
the p-adic closures of discrete subgroups in question are maximal compact. 
(As for similar results for other groups, see [8].) More precisely, put 

K(p) = Sp(2, Q) n r M.(Z)r- 1 

( 
* * 

= Sp(2, Q) n ;: p** 

p* * 

*/p *) (1 0 0 0) * * 0 1 0 0 
* p*' where r= 0 0 p 0 
* * 0 0 0 1 

and *'s run through all integers. For any TcSp(2, R), denote by AlF) 
(resp. Sk(T» the space of automorphic (resp. cusp) forms belonging to T. 
We shall calculate the dimension of SlK(p» for all primes p (Theorem 4 
in § 4). By comparing these with those of certain automorphic forms 
(i.e., certain spherical functions) of Sp(2), we shall show certain interest
ing relations of dimensions (Theorem 1 below). Some philosophical 
aspects of relations of orbital integrals have been explained in Langlands 
[16]. But except for the case of GLn , or the product of its copies, as far 
as I know, this is the first global result concerning on the comparison of 
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dimensions of spaces of automorphic forms belonging to different R-forms 
of a complex Lie group. We propose a precise conjecture on the corres
pondence of these spaces which is suggested by these relations (Conjecture 
1.4). (Some examples of pairs of automorphic forms whose Euler 3-factors 
fit this conjecture have been given in [9].) In a sense, the situation is 
fairly different from the case of GLz• For example, it is noteworthy that, 
nevertheless the discrete subgroups in question are 'maximal', some 'old 
forms' come in these spaces. This is not because there exist some forms 
obtained by the Saito-Kurokawa lifting. To state the relation more 
explicitly, we need some more notations. Let B be the definite quatemion 
algebra with the prime discriminant p, 0 a maximal order of B. Put Bp= 
B®aQp and Op=O®zZ1.'. Put 

G={g e MlB); gtg=n(g)lz, n(g) e Q~}. 

Let GA be the adelization of G, and G~ (resp. Gq ) be the infinite (resp. 
q-adic) component of GA. For any open subgroup U of GA, denote 
by fin.(U) the space of autoinorphic forms on GA belonging to U with 
'weight P:, where p. is the irreducible representation of Sp(2) which cor-

1 I ... Iv 
responds to the Young diagram I I (cf. Ihara [11], Hashimoto 

1 ... v 

[5]). We take an open subgroup Uz=G~U; I1 q*p U~ of GA , where U~= 
GLz(Oq) n Gq, and U~ is the unit group of the right order of a maximal 
left Op-Iattice in the non principal genus in the quatemion hermitian space 
B; with the metric n(x)+n(y) for (x, y) e B;, where n(*) is the reduced 
norm of B. (cf. § 1). Put 

Theorem 1. For each integer k > 5 and each prime integer p, we have 
the following relation of the dimensions: 

dim SiK(p»-2 dim SiSp(2, Z» 

= dim fink-3(Uz)-dim Az(ro(p» X dim SZk-z(SLz(Z». 

The conjectural meaning of this Theorem will be explained in Section 
1. The dimension of S,,(Sp(2, Z» has been known by 19usa [12], and the 
dimension of fink-S(UZ) has been given in [7] (II). So, only dim S,,(K(P» is 
to be calculated. Recently, Hashimoto [6] obtained a general (but not 
explicit) formula of dimensions of cusp forms belonging to any discrete 
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subgroups r of Sp(2, R). Roughly spoken, his assertion is as follows: 
apparently, we have to calculate the contribution of each r -conjugacy 
class to the dimension, but at least for the semi-simple conjugacy classes, 
we can calculate everything from some data on integral property of their 
local conjugacy classes in Sp(2, Qp) and Sp(2, R) (so, in these cases, we 
can avoid the classification of r-conjugacy classes), and besides, for all 
conjugacy classes, 'local data' at the infinite place can be explicitly written 
down. (As for the further details such as 'family', see his paper.) But in 
order to obtain the dimensions explicitly by using his formula, we must 
calculate such local data (the number of 'optimal embeddings' and some 
local masses) of semi-simple conjugacy classes, and classify K(p)-conjugacy 
classes of parabolic type or some mixed type. (Since K(p) is not contained 
in Sp(2, Z), there were no known results on such classification.) These 
calculations are rather elaborate and have been done in somewhat lengthy 
case by case process similar to [7], and here, we shall often omit the proofs, 
or content ourselves with some sketchy proofs. (As for an expository 
review on results in [5], [6], [7] how to calculate dimensions in general, 
confer [8], § 4.) In Section 2, we give local data of semi-simple conjugacy 
classes. In Section 3, we classify K(p)-conjugacy classes of parabolic or 
mixed type. In Section 4, we sum up them and prove Theorem 1. 

The author would like thank Dr. K. Hashimoto who has shown him 
the manuscript of his paper [6], and Dr. S. Kato who informed him the 
notion of the folding of the Dynkin diagrams of p-adic algebraic groups. 
The author would like to express his hearty thanks to Professors 1. Satake 
and Y. Morita who gave him an opportunity to write this paper here, in 
spite of his absence from this Symposium. 

§ 1. Conjectural meaning of Theorem 1 

To explain the situation more clearly, we recall some local theory of 
p-adic algebraic groups (cf. Tits [18]). The extended Dynkin diagram for 
G p can be obtained from the one for Sp(2, Qp) by dividing by the non 
trivial graph automorphism a, and each vertex can be regarded as a 
double coset of a minimal parahoric subgroups. The diagrams are given 
as follows: (See Cz and 2CZ in the table of [16], p. 64.) 

These double co sets are explicitly given as follows: put 
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R(p) ~ { • E Sp(2, Z), .'" (~ ~ ~ ~) mod p} (" integers) 

and let B(p)p be the p-adic closure of B(p). Then, B(p)p is an Iwahori 
subgroup of Sp(2, Qp). We can take 

So=B(p)pwoB(p)p, SI = B(p)pwIB(p)p, and S2=B(p)PW2B(p)p, 

where 

W"~(~ 
0 -p-' 0) w,~(~ 

1 0 

~} 1 o 0 0 0 and 0 o 0' 0 0 
0 o 1 0 1 

w,~(~ 
0 ° 0) 0 o -1 
0 1 O· 
1 o 0 

On the other hand, put 

G;= {g E MlBp): g(~ 6)tg=n(g)(~ 6)' neg) E Qi}. 

Then, G;=.Gp • We fix such an isomorphism and regard subgroups of 
G p as those of G; if necessary. Put 

Uo = ( 0 pOp) x n G* 
p n:O p Op P' 

where n: is a prime element of Op such that n:2=p. Then, U~ is a minimal 
parahoric subgroup of G P' and we can take 

o (0 -n:- I ) 0 
!"z= U p= n: 0 Up, 

There are three maximal compact subgroups (up to conjugation) in 
Sp(2, Qp), that is, 

K(p)p=B(p)p U So U S2 U SOS2' Sp(2, Zp), and pSp(2, Zp)p-t, 

where 

o -1) -1 0 
o O· 
o 0 
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Among these, only K(p)p is invariant by d, and the group which 'corres
ponds' with K(p)p by 'folding' is U;= U~ U 't'2. So, it is natural to 
consider that there exists some good correspondence between SlK(p» 
and mk -aCU2). But, in spite of the fact that these are 'maximal' groups, 
we must subtract the 'old forms' from each space. Now, we shall explain 
this. We intend to regard the cusp forms in Sk(K(p» obtained 'from' 
Sk(Sp(2, Z» + SipSp(2, Z)p-I) as old forms. But K(p) is not conjugate 
to Sp(2, Z) or pSp(2, Z)p-I, and is not contained in, or does not contain 
any of these groups. So, we must define some mapping between these 
spaces. Define TrK(p)/B(p): Sk(B(p»--+Sk(K(p» by: 

TrK(p)/B(P)(J) = ( L: fl [r]k)/[K(p): B(p)] 
rEB(p)\K(p) 

for any fe SlB(p», wherefl [r]k=f(rz) det (CZ+D)-k for r=(~ ~) e 

Sp(2, Q): Denote by Tr the restriction of TrK(p)/B(p) on Sk(Sp(2, Z»+ 
Sk(pSp(2, Z)p-I). We define new forms of Sk(K(p» to be the orthogonal 
complement of Tr(Sk(Sp(2, Z»+Sk(pSp(2, Z)p-I) in SiK(p», and denote 
it by S~(K(p». The map Tr does not vanish in general. For example, 
we have 

Lemma 1.2. Let f e Sk(Sp(2, Z» be an eigen form of the Hecke 
operators T(p) and T(p2) with eigenvalues J.(p) and J.(p2), respectively. 
Assume that J.(p)=t'=O or J.(p2)=t'=p2k-2. (For example, this is satisfied for all 
eigenforms of the Maass space Mk.) Then Tr(J)=t'=O. 

The proof consists of an easy argument on Fourier coefficients, and 
will be omitted here. In view of the Ramanujan Conjecture, it is very 
plausible that the assumption of Lemma 1.2 is always satisfied. On the 
other hand, the map Tr is not injective in general: 

Lemma 1.3. Let k be an even integer. Then, for f e M k , we have 
Tr(J) = Tr(J1 [P]k). 

The proof is easy and omitted here. It seems that, if k is odd, then 
Tr is injective, and if k is even, then ker Tr={f - fl [p]k;fe M k}. If this is 
true, we have dim S%(K(p» = dim Sk(K(p»-2 dim SlSp(2, Z» for odd k, 
and dim S~(K(p»=dim Sk(K(p»-2 dim Sk(Sp(2, Z»+dim S2k-2(SL2(Z» 
for even k. (Numerical examples in [9] support this.) On the other 
hand, we can show that, if a common eigen form f e mveu2) satisfies a 
certain condition, then L(s,j)=L(s, g)L(s, h) for some g e AzCro(p» and 
h E S2.+4(SL2(Z». (This is a slight modification of Ihara [13].) So, denote 
by m~(U2) the space spanned by common eigen forms f E m.(U2) such 



12 T. Ibukiyama 

that L(s,f)=L(s, g)L(s, h) (up to Euler p-factors) for some g e A2(rO(p» 
and h e S21<-2(SL2(Z». We define the space of new forms of ID'l'(UJ to be 
the orthogonal complement of ID'l~(U2) in ID'l.(U2). Theorem I and some 
examples seem to suggest that 

dim ID'l~(U2)=dim ID'l.cU2)-dimA2(ro(p»X dim S2.+4(SL2(Z» 

for even lJ, and 

dim ID'l~(U2)=dim ID'l.(U2)-dim;S2(ro(p»xdim S2.+4(SL2(Z» 

for odd lJ. 

Conjecture 1.4. For any integer k> 5, there exists an isomorphism cp 
of ID'l%_s(Uz) onto S%(K(p» such that L(s,f)=L(s, cp(f» (up to Euler p
factors) for any common eigen form f e ID'l~-S(U2) of all the Hecke operators 
T(n) (n=l=p). 

Now, we point out one important fact. There exist some new forms 
of SiK(p» which can be obtained by lifting cusp forms in S2k-2(roCp» 
(see examples in [9]). So, also in the case of ID'l.cU2), it seems more 
natural to define new forms in the same point of view as in the case of 
Sk(K(p». Put U~=GL2(Op)nG:. Put 

Ul=G~ IT U~, and Uo=G~U~ IT U~. 
q q*p 

The 'trace map' Tru./uo of ID'l.cUo) to ID'l.(U2) can be defined as before. 
Denote the orthogonal complement of Tru./uo(ID'l.(U1» in ID'l.(U2) by 
ID'l!(U2). (We note here that U~ is not conjugate to U~, which causes the 
difference from the case of SL2.) Then, it seems natural to expect ID'l~(UJ 
= ID'l!( U2). In representation theoretic language, our conjecture seems to 
be stated as follows: Let tr=®trq , or tr'=®tr~ be an irreducible (admis
sible) automorphic representation of GSp(2, QA), or GA, respectively. 
(Here, GSp means the group of symplectic similitudes.) Assume that 
tr~ corresponds to det·+ 3, tr~ to p .. and that trq or tr~ (q=l=P, 00) has a 
Sp(2, Zq)-fixed vector. Further, assume that trp has a K(p)p-fixed vector, 
but no Sp(2, Zp)- or pSp(2, Zp)p-l-fixed vector, and that tr~ has a U~-fixed 
vector, but no U~-fixed vector. Let A (resp. B) be the set of all such tr 
(resp. tr'). Then, there exists a bijection cp: A-.B such that L(s, tr)= 
L(s, cp(tr»? 

§ 2. Semi-simple conjugacy classes 

In this section, we shall give 'local data' at p of semi simple conjugacy 
classes, then, give their contribution to dim SlK(p» as Theorem 2. (The 



Dimensions of Automorphic Forms (I) 13 

local data at q=f=. p have been given in [7].) The proofs are lengthy and 
elaborate but similar technique can be found in [7], and we will omit them 
here. We review some notations. Put 

R~rM.(Z,Jr-'. where r~r 1 P J 
and put 

Let RX be the invertible elements of R. For g e GSp, let Z(g) be the 
commutor algebra of QP(g) in M.(Qp). For any Zp-order AI> A2 of Z(g), 
write AI - A2 when a- IAla=A2 for some ae Z(g) n GSp. For any torsion 
element g e GSp and Zp-order AcZ(g), put cp(g, R, A)=the number of 
elements of M(g, A), where M(g, A)=(Z(g)n GSp)\M(g, R, A)/Rx and 
M(g, R, A)={x e GSp; x-Igx e RX, Z(g)nxRx-I-A}. In the following 
sentences, we always denote by f(x) the principal polynomial of the ele
ments in conjugacy classes treated there. 

Proposition 2.1. The total contribution of ± 1 e K(p) to dim Sk(K(p» 
is given by: 

(p2+ 1)(2k-2)(2k-3)(2k-4)/29335. 

Proof Obvious, because [Sp(2, Z): B(p)] = (p2 + 1)(p + 1)2 and 
[K(p): B(p)]=(p+l)2. q.e.d. 

Proposition 2.2. The representatives of K(p)/{ + 1}-conjugacy classes 
withf(x)=(x-l)2(x+ 1)2 are given by: 

(
1 0 0 0) (1. 0 o -1 0 0 0 -1 

01 = 0 0 1 0 and 02 = 0 0 
o 0 0 -1 0 0 

o 
-1 

1 
o 

g). 
-1 

The contribution t(OI)' t(02) of each conjugacy class to dim SlK(p» for 
k> 5 is given by: 

t(OI)=( - W(2k-2)(2k-4)/2832, 

{
( -1)k(2k-2)(2k-4)/273, 

t(02)= (-1)k(2k-2)(2k-4)/29 , 

if p=f=.2, 

if p=2. 
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Next, we treat the case where f(x)=(x-l)2 g(x) and g(x) is an 
irreducible quadratic polynomial. Put F=Q[x]jg(x). We identify the 
algebra M 2(Qp) X M 2(Qp) with the algebra 

m ~ ~ D;a,b'C,d'X'Y'Z'WEQ,} 

((1 0) ) (0 -1) (0 -1) (0 -1) Put g= ° l' w ,where W= 1 0' 1 l' or 1 -1 for 

f(x)=(x-l)2(x2+ 1), (x-l)2(x2+x+ 1), or (x-l)2(x2-x+ 1), respectively. 
Proposition 2.3. Let notations be as above. 

(i) -if (;)= 1, then 

_{2 ... if A~M2(ZP)EBZ;, 
cp(g, R, A) - . 

0· .. otherwise. 

(ii) -if (;)= -1, or p= 3 andf(x)=(x-l)2(x2-x+ 1), then 

_{2 ... if A~M2(ZP)EBZp=Al' 
cp(g, R, A) - . o· .. otherwise, 

~d M(g, A,)~ { 1" (i ~ ~ m 
(iii) -ifp=3 andf(x)=(x-l)2(x2+x+l), then 

{
2 ... if A~Al=M2(ZP)EBZ;, 

cp(g, R, A) = 1···if A~A2' 
0· .. otherwise, 



where 
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{
2 ... if A - Al = M2(Zp)EBZp[ro], 

Cp(g, R, A)= l···if A-A2' 

o· .. otherwise, 

A2={( (~ 2~), x+yro); a, b, c, d, x, Y E Z2' x-y=d mod 2}, 

[AI n GSp: A2 n GSp] = 3, and M(g, AI) is as in (ii), 

M(g.AJ~{C~ i ~ m 

IS 

Next, we treat the case where f(x)=g(xY and g(x) is an irreducible 
quadratic polynomial. First, we treat the case where Zo(g) is split. (As 
for the notation Zo(g), see [7] (I), § 2.) Put F=Q[x]jg(x). 

Proposition 2.4. Let assumptions be as above, 

(i) If (;)= -I, then cp(g, R, A)=O for any A. 

(ii) If(F)=I, take g=(al 2 0), where a, bE Qp and g(x)= 
p 0 bl 2 

(x-a)(x-b), then 

{ l .. ·if A-AI=M2(Zp)EB(b ~)-IMlZp)(b ~), 
cp(g, R, A) = . o· .. otherwise, 

[GSpnGL2(Zp)2: AlnGSp]=p+l, where we embed M2(Qp)2 in M4(Qp) 
diagonally. 

(iii) If( F)=O andp=2, take g=(g ~ _~ g), then 
p 1 0 0-1 

where 

{
I ... if A - Al =xRx- 1 n Z(g), 

cp(g, R, A)= l···if A-A2=yRy-InZ(g), 

o· .. otherwise, 

(
10 0 

-1 1 0 
X= -1 1-1 

1 0 0 

0) ( 4 0 1 2) o -4 4 1 0 
-1 and y= -4 4 -3 -4 ' 
-1 4 0 1-2 
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d2(A I)=3, e2(A I)=2, d2(AJ=6, e2(A 2)=2. 

(iv) .If( F)=O and p=3, take g=(- ~ 
p 0 

1 -1 0) 001 o 0 l' then 
o -1 1 

where 

{
I ... if A - Al =xRx-1 n Z(g), 

cp(g, R, A) = 1··· if A - A2= yRy-1 n Z(g), 

O· .. otherwise, 

x=(~ r ~ _~) and y=(~ ~ r _~), 
000 1 000 1 

dsCA1) = 1, ea(Al)= 1, da(A2) = 8, eaCA2)=2, where diA) and eiA) are as in 
[7] (I), Proposition 12. 

Next, we treat the case where Zo(g) is division. Then, (:) * 1 by 

definition of Zo(g). 

Proposition 2.5. 

where ware as in Proposition 2.3, and g are regarded as elements of GSp as 
in Proposition 2.3. Then, 

{
I .. ·if A-AI> 

cig, R, A)= . o· .. otherwIse, 

Al={(g ~ r g)(~ ~)(g ~ b g)_I;A,B,C,DEZP[W] CM2(ZP)}. 
0001 0001 

(ii) .If(:)=0 andp=2, take g=(~2 -62), then 

where 

{
1 ... if A-A1=xRx-1nZ(g), 

cig, R, A) = 1··· if A - A2= yRy-l n Z(g), 

O· .. otherwise, 
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( P1 2 12) (-~??~) X= 0 12 ' y= 0 0 1 l' 
000 1 

d2(Al)=6, e2(Al)=2, dlA2) = 1, and e2(AJ=2. 

(iii) If(:)=O andp=3, take g=±(-?2 ~:),then, 

{
l"'if A-Al=xRx-l nZ(g), 

cp(g, R, A)= . 
O· .. otherwlse, 

where 

f' 
Next, we treat the regular elements g e K(p). When Z[g] is the 

maximal order of Q[g], it is fairly easy to classify global conjugacy classes. 
We sketch it here. Let C e Sp(2, Z) be an element whose principal 
polynomial is f(x) = (x2+ 1)(x2±x+ 1), x'±X3+X2±X+ 1, x'+ 1, or X4_ 
XZ+1. (It exists and we fix it.) When f(x)=(x2+ 1)(XZ+x+ 1), more 
explicitly, put 

o -1 0) o 0-1 
o 0 O' 
100 

( 0 1) . PutJ= -12 02 . Assume that g-lCgeK(p) for some geGL,(Q). 

Then, C(gJlgJ- l) = (gJlgJ-l)r., and gJlgJ- l e Q(e>. The map Qm 3 h>--+ 
JlhJ- l e Q(e> is the complex conjugation on Q(e>, and gJlgJ- l is invariant 
by this map. So, gJlgJ- l e Q(C+r.- l). Put 

(
1 0 0 0) . 0 1 0 0 

r= 0 0 pO' 
000 1 

Then, r-lg-1Cgr e M,(Z). Now, the class number of Q(e> is one. So, by 
virtue of Chevalley [2], agr e GL.(Z) for some a e Q(e>. 

Lemma 2.6. Let f(x) be one of the above polynomials. Then, the set 
of K(p)-conjugacy classes with principal polynomial f(x) corresponds bijec
tively to the set 
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The map is given by: 

Proof The injectivity is obvious. The surjectivity is proved by case 
by case process. q.e.d. 

Proposition 2.7. The numbers of K(p)-conjugacy classes of above 
types are given as follows: 

o···if (;)=-1, 
4···if (;)=0, 
8···if (;)=1, 

o···if (;)=-1, 
2···if (;)=0, 
4···if (;)=1, 

Next, we treat the case where f(x)=(x2+x+ 1)(~-x+ 1). In this 
case, Z[x]l.f(x) is not the maximal order, and we give the local data instead 
of giving global conjugacy classes. Put F==:Q[x]/(x2+x+ 1). Put 

(
a 0 0 0) o -a 0 0 

g= 0 0 b 0' 
o 0 O-b 

where (;)=1, 
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and 

(
0 0 -lIp 0) o 0 0 1 

gl= P 0 -1 0' 
( 

0 0 lip 
000 

g2= _p 0-1 
o -1 0 1 o -1 0 

Proposition 2.8. 

(i) If(;)=I, then 

{
2 ... if A-Z~ 

cp(g,R,A)= o· .. otherwise, 

where Z~ is embedded diagonally in M~(Zp), and 

M(g, Z:l+, (~ ~ ~ m 
(ii) If (;)= -1 then, 

CP(gl, R, A)=O for any A, and 

{
2 ... if A-op , 

CP(g2' R, A)= . o· .. otherwise, 

where op is the maximal order of Fp=QP(g2)' and 

M(g.Oj+, (i ~ ~ m 
(iii) If(;)=O (p=3), then 

{
2 ... if A-op , 

CP(gi, R, A)= . o· .. otherwise, for i= 1,2, 

where op and M(gi' op) are the same as in (ii). 

19 
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Now, denote by Ht the total contribution to dimSr.(K(p», of those 
semi-simple conjugacy classes whose principal polynomials are of the 
form J,.(±x), where the polynomialsJ,.(x) are defined as in [7] (I), p. 590. 
We can give H t explicitly as a corollary to the above results by using[7] 
and Hashimoto [6]. 

Theorem 2. Assume that k> 5, then HI and H2 have been given in 
Proposition 2.1, 2.2, and H t (i>3) are given as/ollows: 

H3= {
[k-2, -k+l, -k+2, k-I; 4]/243, .. ·ijp=t=2, 

5[k-2, -k+I, -k+2, k-I; 4]/253, .. . ijp=2, 

.. . ijp=t=3, 

.. ·ijp=3, 

H5=[-I, -k+l, -k+2, 1, k-l, k-2; 6]/2232, 

5(2k-3)(p+I) + (-I)k(p+I) ... ijp=1 mod 4 
273 27 ' 

(2k-3)(p-I) + 5( -I)k(p-l) ... ijp=3 mod 4, 
27 . 273 

3(2k-3) + 7(-I)k 
27 273 

... ijp=2, 

(2k-3)(p+ 1) + (p+ 1) [0 -1 1· 3] ... zijp= 1 mod 3 
2.33 2233 " , , 

(2k-3)(p-I) + (p-l) 10 -1 1.3] ... zijp=2mod3 
22 .33 2. 33 L, " , 

... ijp=3, 

H8 =[I, 0, 0, -1, -1, -1, -1,0,0,1,1, 1; 12]/2.3, 

H9= {
2[1, 0, 0, -1,0,0; 6]/32 ••• ijp=t=2, 

[1,0,0, -1,0,0; 6]/2.32 ••• ijp=2, 

H lo=( 1 +(;))[1,0,0, -1,0; 5]/5, 

Hu =(l+(:))[I, 0, 0, -1;4]/23, and 
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{

[a, 1, k-1; 3]/2.3 ~ .. ~p-. 1 mod 12, 
. (-1) /2·3 ... ijp=l1 mod 12, 

H12= . 
. (-W/22 .3 ... ijp=2, 3, 

o ... ijp=5, 7 mod 12, 

where (; ) is the Legendre symbol, and t = [to, t 1> ••• , t q -I; q r'?1eans that 

't=tj ijk=jmod q. 

§ 3. Conjugacy classes of non-semi-simple types 

In this section, we shall give the representatives of non semi-simple 
K(p)-conjugacy classes which have non-zero contribution to dim Sk(K(p»), 
and give their contribution to dim Sk(K(p)) (k>5). Put 

~)ESP(2, Q)} and 
\ 

o * *) } ~ : : e Sp(2, Q) . 

00* 

Lemma 3.1. Assume that g E Sp(2, Q) is not semi-simple. Then, 
some Sp(2, Q)-conjugate of g is contained in Po or Pl. 

As for the proof, see Borel-Tits [1]. Next two lemmata are easy and 
the proof will be omitted. 

Lemma 3.2. The Satake compactijication of K(p)\Sp(2, R) has a 
unique zero-dimensional cusp and two one-dimensional cusps, that is 

Sp(2, Q)=K(p)Po 

100 0 . (0 1 0 0) . 
=K(p)PIUK(p) 0 0 0 1 Pl. 

o 0 1 0 

Lemma 3.3. Assume that ge K(p) is not semi-simple. Then, some 
K(p)-conjugate of g is contained in Po, PI' or P~, where 
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By this Lemma, we can assume thatg e Po, PI' or Pi. Then, by case 
by case direct calculations, we can give a complete list of K(p)-conjugacy 
classes which are not semi-simple and which have contribution to 
dim Sk(K(p». The proofs are lengthy but routine, and will be omitted 
here. 

Theorem 3. The representatives of K(p)-conjugacy classes which are 
of elliptic/parabolic, a-parabolic, parabolic, or paraelliptic (in the sense of 
Hashimoto [6]), are given in the following list, together with their contribution 
to dim StCK(p» (k> 5). The contribution to dim Sk(K(p»), of each set of 
conjugacy classes below, is denoted by Ii. 

(I) Elliptic/parabolic 

+(6 - 0 
o 

o nip 0) 
1 0 -1 
o 1 0 
1 0 0 

(n e Z, n=i=O) 

The total contribution of the above conjugacy classes to dim Sk(K(p» is 
given by: 

/ 1=[0, I, 1,0, -1, -1; 6]/6, 

(2) f(x)=(x-l)2(x2+x+ 1) and (x+ 1)2(x2-x+ 1) 

(i) +(g? -Vf~) +(-6? Iff ~) 
- p 0 -1 0 - -p 0 0 0 

0001 0001 

+(6 - 0 
o 

o nip 0) o 0 -1 
o 1 0 
1 0 -1 

12=[ -2, 1, 1; 3]/2.32, 

(ii) ±(g g nr -1) 
o 1 1 -1 

(
1 0 
o -1 

± 0 0 
o -1 

nip 0) o 1 
1 0 (neZ,n=i=O): 

o 0 

(
1 0 -nip 1) o -1 -1 1 

± 0 0 1 0 
o -1 -1 0 
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(
0 0 -lip 0) 

+ 0 lin 
- p 0 -1 P 

o 0 0 1 

(
-1 0 l/p -1) 

+ 0 1 1 -n 
- -p 0 0 -p 

o 0 0 1 

(n e Z, n*O ifp*3 andn*-1 ifp=3): 

{
[-2, 1, 1;3]/32 •• ·ifp=3, 

13= 2[-1,1,0; 3]/32 ••• ifp=1 mod 3, 

2[ -1,0, 1; 3]/32 ••• if p=2 mod 3, 

(3) f(x)=(x-l)2(x2+ 1) and (x+ 1)2(x2+ 1), 

+(_~ b IgP~) ±(~ b -lgP ~1) 
0001 000 

23 

r 0 nip 0) +(~ o nip 0) + 0 00 1 o 0 -1 (n e Z, n*O), - 0 0 1 0 - 0 o 1 0 
o -1 0 0 0 1 0 0 

( 0 0 lip 0) +(g o -lip 0) + 0 lin 1 1 -n 
- -p 0 0 -p - p 0 o p 

o 0 0 1 0 0 o 1 r 0 nip I) +(~ o -nip I) + 0 0 0 1 o 0-1 
- 0 0 1 0 - 0 010 

o -1 -1 0 0 1 1 0 

(n e Z, n*O ifp*2 and n*1 ifp=2): 

(II) a-parabolic: f(x)=(x-l)2(x+ 1)2 

(i) ±(g -b n{~) +(g -b 
o 0 0 -1 0 0 

n/p -1) 1 m 
1 0 
o -1 

(n, m e Z, n*O, m*O): 

(
1 1 n/p m-l) o -1 m -2m+l 
o 0 1 0 
o 0 1 -1 
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(iii) 
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(
-1 0 2m/p m) 
-p 1 m-l n 

o 0 -1-p 
o 0 0 1 

(
-1 0 (2m-l)/p m) 
-p 1 m-l n 

o 0 -1-p 
o 0 0 1 

(m, nEZ, and (2n+pm, -2m), (4n+p(2m-l), -2m+ 1), 

(2m, 2n-pm), or (2m-l,4n-p(2m-l», is not equal 

to (0, 0), respectively.): 

(
lOS ) o -1 

± 0 0 1 0' ° 0 0-1 

(n/p 0) (0 0) (n/p -1) (0 -1) where S = ° 0' On' 1 0' 1 n (n E Z, n*O) 

17= -( -1)k(2k-3)/233. 

(III) Parabolic:f(x)=(x-l)4 and (x+ 1)4 

(1) ±(b2 f);s=(g ~),(n6P g) (nEZ,n*O), 

18= -p(2k-3)/24.32. 

Next, put L={(Sl S12); Sl Ep- 1Z, S12' S2 E z} and for S10 S2 E L, 
S12 S2 

write Sl ~ S2 when Sl = us2t U for some U E roCp) U (6 _ ~)ro(p). 
(2) ±(62 f); S E {S E L, det S E (Qxy}/~, 

19= -1/233 

(3) ±(62 f); SE{SEL,Sdefinite}/~, 
110 = (p + 1 )/233, 

(4) ± (62 f); S E {S E L, S indefinite, det S E (QX)2}/ ~, 
(the contribution to the dimension is zero), 

(rv) Paraelliptic: 

Put 
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(
1 0 
d 1 

g(d)= 0 0 

o 0 

where d is some integer. 

(1) f(x) = (x2 + 1)2: 

o 0) o 0 
1 -d ' 
o 1 

(i) If ( ~ 1 ) = -1, there exists none in K(p), 

(ii) if ( ~1 )= 1, then 

(
0 -1 ) 1 0 S 

g(d)-I 0 0 ° -1 g(d), 

° 0 1 0 

( 0 -n) ( 1 n) s= nO' -n 1 (n e Z, n*O), 

( 0 -n) ( 1 n+ 1) n+ 1 0' -n 1 (n e Z), 

25 

where d runs through a set of the representatives in Z of the solutions of 
d 2 +1:=0 modp, and 

(iii) if p=2, then 

(
0 -1 

g(l)-I 6 ~ 
o 0 

° ~ l)g(1), 
1 0 

(n e Z, n*O), 

(2) f(x) = (x2+x+ 1)2 and (x2-x+ 1)2: 

(i) If ( ~ 3 ) = -1, then, there exists none in K(p), 

(ii) if( ~3)=1, then, 
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S=(-n -2n) n -n (n E Z, n:;t:O), 

( -n -2n) (-n -2n) 
n+l -n ' n+2 -n (n E Z), 

where d runs through a set of the representatives of the solutions of 
x2+x+I=:O modp, and 

(iii) if p=3, then, besides the above conjugacy classes in (ii) (here, 
we put d = 1), there exist following conjugacy classes: 

3 -2 B (-m-2e-h -3m-6e-h) (
1 -1 ) 

° ° -2 -3' where B= ° -3m-6e+h ' 
001 1 

e= ± 1/3, h=O, ± 1, and m is any integer such that 3m+6e+h:;t:O: 

§ 4. Proof of Theorem 1 

In this section, we prove Theorem 1. First, we get 

Theorem 4. For any integer k> 5 and any prime p, we have 

12 12 

dim SiK(p» = L; H i + L; Ii, 
i=l i=l 

where Hi or Ii is given in Theorem 2 or Theorem 3, respectively. 

By virtue of [7] and Igusa [12], our Theorem 1 is a corollary to 
Theorem 4. But it is interesting to see the details of contribution of each 
conjugacy classes. We denote by Ji the contribution to 

dim Sk(K(p»-2 dim Sk(Sp(2, Z»-dim W'?k_a, 

of those semi-simple conjugacy classes whose principal polynomials are of 
the formfl±x) (i = I, ... , 12). (As for the notationsh(x), see [7], p. 590, 
e.g., .fs(x)=(x2+ lY,.t;(x)=(x2+x+ IY, and h2(X)=X4_X2+ l.) We get 
the following result. 
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Numerical examples of dim SiK(p)) 

~ kl 
_pp_ ~_I 5 6 7 8 9 10 11 12 13 14 15 16 

200 0 1 0 1 120 2 1 4 
--------------------------

3 010 1 121 4 1 436 
---!---------------------------

5 1 1 1 2 2 4 4 6 5 9 8 13 
----------------------------

7 1 2 2 4 4 7 7 11 11 16 16 24 

11 2 3 3 6 7 12 14 20 22 32 36 48 

13 3 5 7 10 13 19 23 31 37 48 56 72 

Proposition 4.1. The numbers J j (i = 1, .. " 12) are given as follows: 

Jj=O if i-=/=6, 7, 12, and 

Proof The contribution to dim IDCk_3(U~) has been given in [7], 
dim Sk(Sp(2, Z)) in Hashimoto [6], and dim Sk(K(p)) in Theorem 2 of 
this paper. q.e.d. 

Remark. This result is rather mysterious. Those elements with the 
principal polynomials hex) (i = 8, .. " 12) are regular elements. Among 
those, as stated above, only J1Z is exceptionally non-zero. I do not know 
the intrinsic reason of this. 

Next, we shall give the contribution to 

dim SiK(p))-2 dim Sk(Sp(2, Z)), 

of non-semi-simple conjugacy classes. (Note that there is no such con
tribution to IDCk-aCUZ)') More precisely, take a set {r}CSp(2, R) of non 
semi-simple elements, and denote by K({r}) the contribution to 

dim Sk(K(p))-2 dim SiSp(2, Z)), 
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of those K(p)-conjugacy classes whose elements are Sp(2, R)-conjugates 
of one of {r}. Put 

(
1 0 +1 0) 

8(+1 +1)= 0 1 ~O ±1 
- ,- 0 0 1 0' 

O' 0 0 1 

(1 0 0 0) o 1 0 1 
a= 0 0 1 0' 

000 1 

(1 0 1 0) o 1 0 1 
b= 0 0 1 0' 

000 1 

(

COS fJ 0 sin fJ 0) 
P(fJ A)- 0 lOA 
t' , - -sin fJ 0 cosfJ 01' 

000 

(

COS fJ sin fJ A cos fJ 
t(fJ A) = - sin fJ cos fJ - A si,n fJ 

, 0 0 cos fJ 
. 0 0 -sinfJ 

Proposition 4.2. For k> 5, we have 

A sin fJ) A cos fJ 
sin fJ • 
cos fJ 

K( ±fi( 2; , + 1) )=( 1-( ~3) )[0, __ 1,1; 3]/32, 

K(8(±I, ±1»= (-;~)k (1_(~1)), . 

K(+a)=- p-l (2k-3), 
-, 2432 

K(+b)= P-7 1 
- 233 ' 

K(t(;. +1))= ;3 (1_(~1)), 
. K(±t( 2;, ±1))=-h-(1-(~3)), 

and K(n = ° for any other r e Sp(2, R) which is not ,Sp(2, R)-conjugate to 
one of the above. 

Proof is obvious by virtue of Theorem 3 and Hashimoto [6}, Theorem 
6.2. Now, denote six non zero values in Proposition 4.2 by Ki (i = 1, 
... ,6), that is, K1 =K(±fi(27t:/3, ±1», and so on. Then, for k>5, we 
have, 

dimSk(K(p»-2 dim SiSp(2, Z»-dim ID'tk-a(Uz) 
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=_{ P;;1 + ! (1-( ~1 ))+ ~ (1-( ~3 ))} 
X {~ - ~ [0, -1, 1; 3]- ! (3+( _1)k)} 

= -dim A2(roCp» X dim S2k-2(SL2(Z». 

So, we obtain Theorem 1. 

Remark. We get also the following interesting result. Put 

ro(p) = B(p) U B(P)W1B(p), r6(p)=B(p) U B(P)W2B(p), 

and r6'(p)=B(p) U B(p)woB(p). 

When p=2, the dimensions of cusp forms belonging to these groups are 
easily calculated by using Igusa [14] (II) (cf. [11]). We get ~he following 
equality for k';2 3: 

dim Sk(B(2» - dim Sk(ro(2» - dim Sk(r6(2» - dim Sk(r6'(2» 

+dim Sk(K(2» +2 dim Sk(Sp(2, Z» 

= dim WC k _ 3(Uo)-dim WCk _ 3(U1)-dim WC k - 3(U2) 

where the discriminant of B is two. This supports the conjecture in [9]. 
This relation is extended in [8] for all p. 
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