On Relations of Dimensions of Automorphic Forms of $\operatorname{Sp}(2, R)$ and Its Compact Twist Sp (2) (I)

Tomoyoshi Ibukiyama

Let p be a fixed prime. In the previous paper [9], we have given some examples and conjectures on correspondence between automorphic forms of $S p(2, \boldsymbol{R})$ (size four) and $S p(2)=\left\{g \in \boldsymbol{H} ; g^{t} \bar{g}=1_{2}\right\}$ (\boldsymbol{H} : Hamilton quaternions) which preserves L-functions, where the p-adic closures of the discrete subgroups (to which automorphic forms belong) are minimal parahoric. This was an attempt to a generalization of Eichler's correspondence between $S L_{2}(R)$ and $S U(2)$. Ihara raised such a problem for symplectic groups and Langlands [15] has given a quite general philosophy on correspondence of automorphic forms of any reductive groups (functoriality with respect to L-groups). In this paper, we give good global dimensional relations of automorphic forms of $S p(2, \boldsymbol{R})$ and $S p(2)$, when the p-adic closures of discrete subgroups in question are maximal compact. (As for similar results for other groups, see [8].) More precisely, put

$$
\begin{aligned}
K(p) & =S p(2, Q) \cap \gamma M_{4}(Z) \gamma^{-1} \\
& =S p(2, Q) \cap\left(\begin{array}{cccc}
* & * & * / p & * \\
p * & * & * & * \\
p * & p * & * & p * \\
p * & * & * & *
\end{array}\right), \quad \text { where } \gamma=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

and $*$'s run through all integers. For any $\Gamma \subset S p(2, R)$, denote by $A_{k}(\Gamma)$ (resp. $S_{k}(\Gamma)$) the space of automorphic (resp. cusp) forms belonging to Γ. We shall calculate the dimension of $S_{k}(K(p))$ for all primes p (Theorem 4 in §4). By comparing these with those of certain automorphic forms (i.e., certain spherical functions) of $S p(2)$, we shall show certain interesting relations of dimensions (Theorem 1 below). Some philosophical aspects of relations of orbital integrals have been explained in Langlands [16]. But except for the case of $G L_{n}$, or the product of its copies, as far as I know, this is the first global result concerning on the comparison of

[^0]dimensions of spaces of automorphic forms belonging to different \boldsymbol{R}-forms of a complex Lie group. We propose a precise conjecture on the correspondence of these spaces which is suggested by these relations (Conjecture 1.4). (Some examples of pairs of automorphic forms whose Euler 3-factors fit this conjecture have been given in [9].) In a sense, the situation is fairly different from the case of $G L_{2}$. For example, it is noteworthy that, nevertheless the discrete subgroups in question are 'maximal', some 'old forms' come in these spaces. This is not because there exist some forms obtained by the Saito-Kurokawa lifting. To state the relation more explicitly, we need some more notations. Let B be the definite quaternion algebra with the prime discriminant p, O a maximal order of B. Put $B_{p}=$ $B \otimes_{\varrho} \boldsymbol{Q}_{p}$ and $O_{p}=O \otimes_{\boldsymbol{Z}} \boldsymbol{Z}_{p}$. Put
$$
G=\left\{g \in M_{2}(B) ; g^{t} \bar{g}=n(g) 1_{2}, n(g) \in Q_{+}^{\times}\right\} .
$$

Let G_{A} be the adelization of G, and G_{∞} (resp. G_{q}) be the infinite (resp. q-adic) component of G_{A}. For any open subgroup U of G_{A}, denote by $\mathbb{M}_{2}(U)$ the space of automorphic forms on G_{A} belonging to U with 'weight ρ_{ν} ', where ρ_{ν} is the irreducible representation of $S p(2)$ which corresponds to the Young diagram | 1 | \cdots | ν |
| :--- | :--- | :--- |
| 1 | \cdots | ν | (cf. Ihara [11], Hashimoto [5]). We take an open subgroup $\overline{U_{2}=G_{\infty} U_{p}^{2}} \prod_{q \neq p} U_{q}^{1}$ of G_{A}, where $U_{q}^{1}=$ $G L_{2}\left(O_{q}\right) \cap G_{q}$, and U_{q}^{2} is the unit group of the right order of a maximal left O_{p}-lattice in the non principal genus in the quaternion hermitian space B_{p}^{2} with the metric $n(x)+n(y)$ for $(x, y) \in B_{p}^{2}$, where $n(*)$ is the reduced norm of B. (cf. § 1). Put

$$
\Gamma_{0}(p)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(Z) ; c \equiv 0 \bmod p\right\} .
$$

Theorem 1. For each integer $k \geqq 5$ and each prime integer p, we have the following relation of the dimensions:

$$
\begin{aligned}
& \operatorname{dim} S_{k}(K(p))-2 \operatorname{dim} S_{k}(S p(2, Z)) \\
& \quad=\operatorname{dim} \mathfrak{M}_{k-3}\left(U_{2}\right)-\operatorname{dim} A_{2}\left(\Gamma_{0}(p)\right) \times \operatorname{dim} S_{2 k-2}\left(S L_{2}(Z)\right) .
\end{aligned}
$$

The conjectural meaning of this Theorem will be explained in Section 1. The dimension of $S_{k}(S p(2, Z))$ has been known by Igusa [12], and the dimension of $\mathfrak{M}_{k-3}\left(U_{2}\right)$ has been given in [7] (II). So, only $\operatorname{dim} S_{k}(K(p))$ is to be calculated. Recently, Hashimoto [6] obtained a general (but not explicit) formula of dimensions of cusp forms belonging to any discrete
subgroups Γ of $S p(2, R)$. Roughly spoken, his assertion is as follows: apparently, we have to calculate the contribution of each Γ-conjugacy class to the dimension, but at least for the semi-simple conjugacy classes, we can calculate everything from some data on integral property of their local conjugacy classes in $S p\left(2, \boldsymbol{Q}_{p}\right)$ and $S p(2, \boldsymbol{R})$ (so, in these cases, we can avoid the classification of Γ-conjugacy classes), and besides, for all conjugacy classes, 'local data' at the infinite place can be explicitly written down. (As for the further details such as 'family', see his paper.) But in order to obtain the dimensions explicitly by using his formula, we must calculate such local data (the number of 'optimal embeddings' and some local masses) of semi-simple conjugacy classes, and classify $K(p)$-conjugacy classes of parabolic type or some mixed type. (Since $K(p)$ is not contained in $S p(2, Z)$, there were no known results on such classification.) These calculations are rather elaborate and have been done in somewhat lengthy case by case process similar to [7], and here, we shall often omit the proofs, or content ourselves with some sketchy proofs. (As for an expository review on results in [5], [6], [7] how to calculate dimensions in general, confer [8], § 4.) In Section 2, we give local data of semi-simple conjugacy classes. In Section 3, we classify $K(p)$-conjugacy classes of parabolic or mixed type. In Section 4, we sum up them and prove Theorem 1.

The author would like thank Dr. K. Hashimoto who has shown him the manuscript of his paper [6], and Dr. S. Kato who informed him the notion of the folding of the Dynkin diagrams of p-adic algebraic groups. The author would like to express his hearty thanks to Professors I. Satake and Y. Morita who gave him an opportunity to write this paper here, in spite of his absence from this Symposium.

§ 1. Conjectural meaning of Theorem 1

To explain the situation more clearly, we recall some local theory of p-adic algebraic groups (cf. Tits [18]). The extended Dynkin diagram for G_{p} can be obtained from the one for $\operatorname{Sp}\left(2, \boldsymbol{Q}_{p}\right)$ by dividing by the non trivial graph automorphism σ, and each vertex can be regarded as a double coset of a minimal parahoric subgroups. The diagrams are given as follows: (See C_{2} and ${ }^{2} C_{2}$ in the table of [16], p. 64.)

These double cosets are explicitly given as follows: put

$$
B(p)=\left\{g \in S p(2, Z): g \equiv\left(\begin{array}{cccc}
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & 0 \\
0 & 0 & * & *
\end{array}\right) \bmod p\right\} \quad(*: \text { integers })
$$

and let $B(p)_{p}$ be the p-adic closure of $B(p)$. Then, $B(p)_{p}$ is an Iwahori subgroup of $S p\left(2, \boldsymbol{Q}_{p}\right)$. We can take

$$
S_{0}=B(p)_{p} w_{0} B(p)_{p}, \quad S_{1}=B(p)_{p} w_{1} B(p)_{p}, \quad \text { and } \quad S_{2}=B(p)_{p} w_{2} B(p)_{p}
$$

where

$$
\begin{array}{ll}
w_{0}=\left(\begin{array}{rrrr}
0 & 0 & -p^{-1} & 0 \\
0 & 1 & 0 & 0 \\
p & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad w_{1}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), \quad \text { and } \\
w_{2}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) .
\end{array}
$$

On the other hand, put

$$
G_{p}^{*}=\left\{g \in M_{2}\left(B_{p}\right): g\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)^{t} \bar{g}=n(g)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), n(g) \in \boldsymbol{Q}_{p}^{\times}\right\} .
$$

Then, $G_{p}^{*} \cong G_{p}$. We fix such an isomorphism and regard subgroups of G_{p} as those of G_{p}^{*} if necessary. Put

$$
U_{p}^{0}=\left(\begin{array}{rr}
O_{p} & O_{p} \\
\pi O_{p} & O_{p}
\end{array}\right)^{\times} \cap G_{p}^{*},
$$

where π is a prime element of O_{p} such that $\pi^{2}=p$. Then, U_{p}^{0} is a minimal parahoric subgroup of G_{p}, and we can take

$$
\tau_{2}=U_{p}^{0}=\left(\begin{array}{cc}
0 & -\pi^{-1} \\
\pi & 0
\end{array}\right) U_{p}^{0}, \quad \tau_{1}=U_{p}^{0}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) U_{p}^{0}
$$

There are three maximal compact subgroups (up to conjugation) in $S p\left(2, Q_{p}\right)$, that is,

$$
K(p)_{p}=B(p)_{p} \cup S_{0} \cup S_{2} \cup S_{0} S_{2}, S p\left(2, Z_{p}\right), \quad \text { and } \quad \rho S p\left(2, Z_{p}\right) \rho^{-1}
$$

where

$$
\rho=\left(\begin{array}{rrrr}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & p & 0 & 0 \\
p & 0 & 0 & 0
\end{array}\right)
$$

Among these, only $K(p)_{p}$ is invariant by σ, and the group which 'corresponds' with $K(p)_{p}$ by 'folding' is $U_{p}^{2}=U_{p}^{0} \cup \tau_{2}$. So, it is natural to consider that there exists some good correspondence between $S_{k}(K(p))$ and $\mathfrak{M}_{k-3}\left(U_{2}\right)$. But, in spite of the fact that these are 'maximal' groups, we must subtract the 'old forms' from each space. Now, we shall explain this. We intend to regard the cusp forms in $S_{k}(K(p))$ obtained 'from' $S_{k}(S p(2, Z))+S_{k}\left(\rho S p(2, Z) \rho^{-1}\right)$ as old forms. But $K(p)$ is not conjugate to $S p(2, Z)$ or $\rho S p(2, Z) \rho^{-1}$, and is not contained in, or does not contain any of these groups. So, we must define some mapping between these spaces. Define $\mathrm{Tr}_{K(p) / B(p)}: S_{k}(B(p)) \rightarrow S_{k}(K(p))$ by:

$$
\operatorname{Tr}_{K(p) / B(p)}(f)=\left(\sum_{r \in B(p) K(p)} f \mid[\gamma]_{k}\right) /[K(p): B(p)]
$$

for any $f \in S_{k}(B(p))$, where $f \mid[\gamma]_{k}=f(\gamma z) \operatorname{det}(C z+D)^{-k}$ for $\gamma=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in$ $S p(2, Q)$: Denote by Tr the restriction of $\operatorname{Tr}_{K(p) / B(p)}$ on $S_{k}(S p(2, Z))+$ $S_{k}\left(\rho S p(2, Z) \rho^{-1}\right)$. We define new forms of $S_{k}(K(p))$ to be the orthogonal complement of $\operatorname{Tr}\left(S_{k}(S p(2, Z))+S_{k}\left(\rho S p(2, Z) \rho^{-1}\right)\right.$ in $S_{k}(K(p))$, and denote it by $S_{k}^{0}(K(p))$. The map Tr does not vanish in general. For example, we have

Lemma 1.2. Let $f \in S_{k}(S p(2, Z))$ be an eigen form of the Hecke operators $T(p)$ and $T\left(p^{2}\right)$ with eigenvalues $\lambda(p)$ and $\lambda\left(p^{2}\right)$, respectively. Assume that $\lambda(p) \neq 0$ or $\lambda\left(p^{2}\right) \neq p^{2 k-2}$. (For example, this is satisfied for all eigen forms of the Maass space M_{k}.) Then $\operatorname{Tr}(f) \neq 0$.

The proof consists of an easy argument on Fourier coefficients, and will be omitted here. In view of the Ramanujan Conjecture, it is very plausible that the assumption of Lemma 1.2 is always satisfied. On the other hand, the map Tr is not injective in general:

Lemma 1.3. Let k be an even integer. Then, for $f \in M_{k}$, we have $\operatorname{Tr}(f)=\operatorname{Tr}\left(f \mid[\rho]_{k}\right)$.

The proof is easy and omitted here. It seems that, if k is odd, then Tr is injective, and if k is even, then ker $\operatorname{Tr}=\left\{f-f \mid[\rho]_{k} ; f \in M_{k}\right\}$. If this is true, we have $\operatorname{dim} S_{k}^{0}(K(p))=\operatorname{dim} S_{k}(K(p))-2 \operatorname{dim} S_{k}(\operatorname{Sp}(2, Z))$ for odd k, and $\operatorname{dim} S_{k}^{0}(K(p))=\operatorname{dim} S_{k}(K(p))-2 \operatorname{dim} S_{k}(S p(2, Z))+\operatorname{dim} S_{2 k-2}\left(S L_{2}(Z)\right)$ for even k. (Numerical examples in [9] support this.) On the other hand, we can show that, if a common eigen form $f \in \mathbb{M}_{\nu}\left(U_{2}\right)$ satisfies a certain condition, then $L(s, f)=L(s, g) L(s, h)$ for some $g \in A_{2}\left(\Gamma_{0}(p)\right)$ and $h \in S_{2 \nu+4}\left(S L_{2}(Z)\right.$). (This is a slight modification of Ihara [13].) So, denote by $\mathfrak{M}_{\nu}^{E}\left(U_{2}\right)$ the space spanned by common eigen forms $f \in \mathbb{M}_{\nu}\left(U_{2}\right)$ such
that $L(s, f)=L(s, g) L(s, h)$ (up to Euler p-factors) for some $g \in A_{2}\left(\Gamma_{0}(p)\right.$) and $h \in S_{2 k-2}\left(S L_{2}(Z)\right.$. We define the space of new forms of $M_{2}\left(U_{2}\right)$ to be the orthogonal complement of $\mathfrak{M}_{\nu}^{E}\left(U_{2}\right)$ in $\mathbb{M}_{2}\left(U_{2}\right)$. Theorem 1 and some examples seem to suggest that

$$
\operatorname{dim} \mathfrak{M}_{\nu}^{0}\left(U_{2}\right)=\operatorname{dim} \mathfrak{M}_{\nu}\left(U_{2}\right)-\operatorname{dim} A_{2}\left(\Gamma_{0}(p)\right) \times \operatorname{dim} S_{2 \nu+4}\left(S L_{2}(Z)\right)
$$

for even ν, and

$$
\operatorname{dim} \mathfrak{M}_{\nu}^{0}\left(U_{2}\right)=\operatorname{dim} \mathfrak{M}_{\nu}\left(U_{2}\right)-\operatorname{dim} S_{2}\left(\Gamma_{0}(p)\right) \times \operatorname{dim} S_{2 \nu+4}\left(S L_{2}(Z)\right)
$$

for odd ν.
Conjecture 1.4. For any integer $k \geqq 5$, there exists an isomorphism ϕ of $\mathfrak{M}_{k-3}^{0}\left(U_{2}\right)$ onto $S_{k}^{0}(K(p))$ such that $L(s, f)=L(s, \phi(f))$ (up to Euler p factors) for any common eigen form $f \in \mathfrak{M}_{k-3}^{0}\left(U_{2}\right)$ of all the Hecke operators $T(n)(n \neq p)$.

Now, we point out one important fact. There exist some new forms of $S_{k}(K(p))$ which can be obtained by lifting cusp forms in $S_{2 k-2}\left(\Gamma_{0}(p)\right)$ (see examples in [9]). So, also in the case of $\mathfrak{M}_{2}\left(U_{2}\right)$, it seems more natural to define new forms in the same point of view as in the case of $S_{k}(K(p))$. Put $U_{p}^{1}=G L_{2}\left(O_{p}\right) \cap G_{p}^{*}$. Put

$$
U_{1}=G_{\infty} \prod_{q} U_{q}^{1}, \quad \text { and } \quad U_{0}=G_{\infty} U_{p}^{0} \prod_{q \neq p} U_{p}^{1}
$$

The 'trace map' $\mathrm{Tr}_{U_{2} / U_{0}}$ of $\mathfrak{M}_{2}\left(U_{0}\right)$ to $\mathfrak{M}_{\nu}\left(U_{2}\right)$ can be defined as before. Denote the orthogonal complement of $\operatorname{Tr}_{U_{2} / U_{0}}\left(\mathfrak{M}_{\nu}\left(U_{1}\right)\right)$ in $\mathfrak{M}_{\nu}\left(U_{2}\right)$ by $\mathfrak{M}_{\nu}^{1}\left(U_{2}\right)$. (We note here that U_{p}^{1} is not conjugate to U_{p}^{2}, which causes the difference from the case of $S L_{2}$.) Then, it seems natural to expect $\mathbb{M}_{\nu}^{0}\left(U_{2}\right)$ $=\mathfrak{M}_{2}^{1}\left(U_{2}\right)$. In representation theoretic language, our conjecture seems to be stated as follows: Let $\pi=\otimes \pi_{q}$, or $\pi^{\prime}=\otimes \pi_{q}^{\prime}$ be an irreducible (admissible) automorphic representation of $G S p\left(2, Q_{A}\right)$, or G_{A}, respectively. (Here, $G S p$ means the group of symplectic similitudes.) Assume that π_{∞} corresponds to $\operatorname{det}^{\nu+3}, \pi_{\infty}^{\prime}$ to ρ_{ν}, and that π_{q} or $\pi_{q}^{\prime}(q \neq p, \infty)$ has a $S p\left(2, Z_{q}\right)$-fixed vector. Further, assume that π_{p} has a $K(p)_{p}$-fixed vector, but no $S p\left(2, Z_{p}\right)$ - or $\rho S p\left(2, Z_{p}\right) \rho^{-1}$-fixed vector, and that π_{p}^{\prime} has a U_{p}^{2}-fixed vector, but no U_{p}^{1}-fixed vector. Let A (resp. B) be the set of all such π (resp. π^{\prime}). Then, there exists a bijection $\varphi: A \rightarrow B$ such that $L(s, \pi)=$ $L(s, \varphi(\pi))$?

§ 2. Semi-simple conjugacy classes

In this section, we shall give 'local data' at p of semi simple conjugacy classes, then, give their contribution to $\operatorname{dim} S_{k}(K(p))$ as Theorem 2. (The
local data at $q \neq p$ have been given in [7].) The proofs are lengthy and elaborate but similar technique can be found in [7], and we will omit them here. We review some notations. Put

$$
R=\gamma M_{4}\left(Z_{p}\right) \gamma^{-1}, \quad \text { where } \gamma=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & p & \\
& & & 1
\end{array}\right)
$$

and put

$$
G S p=\left\{g \in M_{4}\left(Q_{p}\right) ; g\left(\begin{array}{cc}
0 & 1_{2} \\
-1_{2} & 0
\end{array}\right)^{t} g=n(g)\left(\begin{array}{cc}
0 & 1_{2} \\
-1_{2} & 0
\end{array}\right)\right\} .
$$

Let R^{\times}be the invertible elements of R. For $g \in G S p$, let $Z(g)$ be the commutor algebra of $\boldsymbol{Q}_{p}(g)$ in $M_{4}\left(\boldsymbol{Q}_{p}\right)$. For any \boldsymbol{Z}_{p}-order Λ_{1}, Λ_{2} of $Z(g)$, write $\Lambda_{1} \sim \Lambda_{2}$ when $a^{-1} \Lambda_{1} a=\Lambda_{2}$ for some $a \in Z(g) \cap G S p$. For any torsion element $g \in G S p$ and Z_{p}-order $\Lambda \subset Z(g)$, put $c_{p}(g, R, \Lambda)=$ the number of elements of $M(g, \Lambda)$, where $M(g, \Lambda)=(Z(g) \cap G S p) \backslash M(g, R, \Lambda) / R^{\times}$and $M(g, R, \Lambda)=\left\{x \in G S p ; x^{-1} g x \in R^{\times}, Z(g) \cap x R x^{-1} \sim \Lambda\right\}$. In the following sentences, we always denote by $f(x)$ the principal polynomial of the elements in conjugacy classes treated there.

Proposition 2.1. The total contribution of $\pm 1 \in K(p)$ to $\operatorname{dim} S_{k}(K(p))$ is given by:

$$
\left(p^{2}+1\right)(2 k-2)(2 k-3)(2 k-4) / 2^{9} 3^{3} 5 .
$$

Proof. Obvious, because $[S p(2, Z): B(p)]=\left(p^{2}+1\right)(p+1)^{2}$ and $[K(p): B(p)]=(p+1)^{2}$. q.e.d.

Proposition 2.2. The representatives of $K(p) /\{ \pm 1\}$-conjugacy classes with $f(x)=(x-1)^{2}(x+1)^{2}$ are given by:

$$
\delta_{1}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \quad \text { and } \quad \delta_{2}=\left(\begin{array}{rrrr}
1 . & 0 & 0 & 1 \\
0 & -1 & -1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) .
$$

The contribution $t\left(\delta_{1}\right), t\left(\delta_{2}\right)$ of each conjugacy class to $\operatorname{dim} S_{k}(K(p))$ for $k \geqq 5$ is given by:

$$
\begin{aligned}
& t\left(\delta_{1}\right)=(-1)^{k}(2 k-2)(2 k-4) / 2^{8} 3^{2}, \\
& t\left(\delta_{2}\right)= \begin{cases}(-1)^{k}(2 k-2)(2 k-4) / 2^{7} 3, & \text { if } p \neq 2, \\
(-1)^{k}(2 k-2)(2 k-4) / 2^{9}, & \text { if } p=2 .\end{cases}
\end{aligned}
$$

Next, we treat the case where $f(x)=(x-1)^{2} g(x)$ and $g(x)$ is an irreducible quadratic polynomial. Put $F=\boldsymbol{Q}[x] / g(x)$. We identify the algebra $M_{2}\left(\boldsymbol{Q}_{p}\right) \times M_{2}\left(\boldsymbol{Q}_{p}\right)$ with the algebra

$$
\left\{\left(\begin{array}{llll}
a & 0 & b & 0 \\
0 & x & 0 & y \\
c & 0 & d & 0 \\
0 & z & 0 & w
\end{array}\right) ; a, b, c, d, x, y, z, w \in \boldsymbol{Q}_{p}\right\} .
$$

Put $g=\left(\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \omega\right)$, where $\omega=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right),\left(\begin{array}{rr}0 & -1 \\ 1 & 1\end{array}\right)$, or $\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)$ for $f(x)=(x-1)^{2}\left(x^{2}+1\right),(x-1)^{2}\left(x^{2}+x+1\right)$, or $(x-1)^{2}\left(x^{2}-x+1\right)$, respectively.

Proposition 2.3. Let notations be as above.
(i) If $\left(\frac{F}{p}\right)=1$, then

$$
c_{p}(g, R, \Lambda)=\left\{\begin{array}{l}
2 \cdots \text { if } \Lambda \sim M_{2}\left(Z_{p}\right) \oplus Z_{p}^{2} \\
0 \cdots \text { otherwise }
\end{array}\right.
$$

(ii) If $\left(\frac{F}{p}\right)=-1$, or $p=3$ and $f(x)=(x-1)^{2}\left(x^{2}-x+1\right)$, then

$$
c_{p}(g, R, \Lambda)=\left\{\begin{array}{l}
2 \cdots \text { if } \Lambda \sim M_{2}\left(\boldsymbol{Z}_{p}\right) \oplus \boldsymbol{Z}_{p}=\Lambda_{1} \\
0 \cdots \text { otherwise }
\end{array}\right.
$$

$$
\text { and } M\left(g, \Lambda_{1}\right)=\left\{1_{4},\left(\begin{array}{llll}
0 & p & 0 & 0 \\
p & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\right\}
$$

(iii) If $p=3$ and $f(x)=(x-1)^{2}\left(x^{2}+x+1\right)$, then

$$
c_{p}(g, R, \Lambda)=\left\{\begin{array}{l}
2 \cdots \text { if } \Lambda \sim \Lambda_{1}=M_{2}\left(Z_{p}\right) \oplus \boldsymbol{Z}_{p}^{2} \\
1 \cdots \text { if } \Lambda \sim \Lambda_{2} \\
0 \cdots \text { otherwise }
\end{array}\right.
$$

where

$$
\Lambda_{2}=\left\{\left(\left(\begin{array}{cc}
a & 3 b \\
c & d
\end{array}\right), x+y \omega\right) ; a, b, c, d, x, y \in Z_{3}, x+y \equiv d \bmod 3\right\}
$$

$\left[\Lambda_{1} \cap G S p: \Lambda_{2} \cap G S p\right]=6$, and $M\left(g, \Lambda_{1}\right)$ is as in (ii),

$$
M\left(g, \Lambda_{2}\right)=\left\{\left(\begin{array}{rrrr}
-3 & 3 & -1 & 0 \\
3 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)\right\}
$$

(iv) If $\left(\frac{F}{p}\right)=0$ and $p=2$,

$$
c_{p}(g, R, \Lambda)=\left\{\begin{array}{l}
2 \cdots \text { if } \Lambda \sim \Lambda_{1}=M_{2}\left(Z_{p}\right) \oplus Z_{p}[\omega], \\
1 \cdots \text { if } \Lambda \sim \Lambda_{2}, \\
0 \cdots \text { otherwise },
\end{array}\right.
$$

where

$$
\Lambda_{2}=\left\{\left(\left(\begin{array}{rr}
a & 2 b \\
c & d
\end{array}\right), x+y \omega\right) ; a, b, c, d, x, y \in Z_{2}, x-y \equiv d \bmod 2\right\}
$$

$\left[\Lambda_{1} \cap G S p: \Lambda_{2} \cap G S p\right]=3$, and $M\left(g, \Lambda_{1}\right)$ is as in (ii),

$$
M\left(g, \Lambda_{2}\right)=\left\{\left(\begin{array}{rrrr}
-2 & 2 & 1 & 0 \\
2 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)\right\}
$$

Next, we treat the case where $f(x)=g(x)^{2}$ and $g(x)$ is an irreducible quadratic polynomial. First, we treat the case where $Z_{0}(g)$ is split. (As for the notation $Z_{0}(g)$, see [7] (I), § 2.) Put $F=Q[x] / g(x)$.

Proposition 2.4. Let assumptions be as above,
(i) If $\left(\frac{F}{p}\right)=-1$, then $c_{p}(g, R, \Lambda)=0$ for any Λ.
(ii) If $\left(\frac{F}{p}\right)=1$, take $g=\left(\begin{array}{cc}a 1_{2} & 0 \\ 0 & b 1_{2}\end{array}\right)$, where $a, b \in Q_{p}$ and $g(x)=$ $(x-a)(x-b)$, then

$$
c_{p}(g, R, \Lambda)=\left\{\begin{array}{l}
1 \cdots \text { if } \Lambda \sim \Lambda_{1}=M_{2}\left(Z_{p}\right) \oplus\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right)^{-1} M_{2}\left(Z_{p}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right), \\
0 \cdots \text { otherwise },
\end{array}\right.
$$

$\left[G S p \cap G L_{2}\left(Z_{p}\right)^{2}: \Lambda_{1} \cap G S p\right]=p+1$, where we embed $M_{2}\left(\boldsymbol{Q}_{p}\right)^{2}$ in $M_{4}\left(\boldsymbol{Q}_{p}\right)$ diagonally.
(iii) If $\left(\frac{F}{p}\right)=0$ and $p=2$, take $g=\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1\end{array}\right)$, then

$$
c_{p}(g, R, \Lambda)=\left\{\begin{array}{l}
1 \cdots \text { if } \Lambda \sim \Lambda_{1}=x R x^{-1} \cap Z(g), \\
1 \cdots \text { if } \Lambda \sim \Lambda_{2}=y R y^{-1} \cap Z(g), \\
0 \cdots \text { otherwise },
\end{array}\right.
$$

where

$$
x=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
-1 & 1 & -1 & -1 \\
1 & 0 & 0 & -1
\end{array}\right) \quad \text { and } \quad y=\left(\begin{array}{rrrr}
4 & 0 & 1 & 2 \\
-4 & 4 & 1 & 0 \\
-4 & 4 & -3 & -4 \\
4 & 0 & 1 & -2
\end{array}\right) \text {, }
$$

$d_{2}\left(\Lambda_{1}\right)=3, e_{2}\left(\Lambda_{1}\right)=2, d_{2}\left(\Lambda_{2}\right)=6, e_{2}\left(\Lambda_{2}\right)=2$.
(iv) If $\left(\frac{F}{p}\right)=0$ and $p=3$, take $g=\left(\begin{array}{rrrr}1 & 1 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 1\end{array}\right)$, then

$$
c_{p}(g, R, \Lambda)=\left\{\begin{array}{l}
1 \cdots \text { if } \Lambda \sim \Lambda_{1}=x R x^{-1} \cap Z(g) \\
1 \cdots \text { if } \Lambda \sim \Lambda_{2}=y R y^{-1} \cap Z(g) \\
0 \cdots \text { otherwise }
\end{array}\right.
$$

where

$$
x=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \text { and } \quad y=\left(\begin{array}{rrrr}
3 & 0 & 0 & 1 \\
3 & 3 & 1 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$d_{3}\left(\Lambda_{1}\right)=1, e_{3}\left(\Lambda_{1}\right)=1, d_{3}\left(\Lambda_{2}\right)=8, e_{3}\left(\Lambda_{2}\right)=2$, where $d_{p}(\Lambda)$ and $e_{p}(\Lambda)$ are as in [7] (I), Proposition 12.

Next, we treat the case where $Z_{0}(g)$ is division. Then, $\left(\frac{F}{p}\right) \neq 1$ by definition of $Z_{0}(g)$.

Proposition 2.5.
(i) If $\left(\frac{F}{p}\right)=-1$, take $g=\left(\left(\begin{array}{ll}1 & 0 \\ 0 & p\end{array}\right) \omega\left(\begin{array}{ll}1 & 0 \\ 0 & p\end{array}\right)^{-1}, \omega\right)$,
where ω are as in Proposition 2.3, and g are regarded as elements of GSp as in Proposition 2.3. Then,

$$
c_{p}(g, R, \Lambda)=\left\{\begin{array}{l}
1 \cdots \text { if } \Lambda \sim \Lambda_{1} \\
0 \cdots \text { otherwise }
\end{array}\right.
$$

and $d_{p}\left(\Lambda_{1}\right)=e_{p}\left(\Lambda_{1}\right)=1$, where

$$
\begin{gathered}
\Lambda_{1}=\left\{\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)^{-1} ; A, B, C, D \in Z_{p}[\omega] \subset M_{2}\left(Z_{p}\right)\right\} . \\
\text { (ii) If }\left(\frac{F}{p}\right)=0 \text { and } p=2 \text {, take } g=\left(\begin{array}{cc}
0 & -1_{2} \\
1_{2} & 0
\end{array}\right) \text {, then } \\
c_{p}(g, R, \Lambda)=\left\{\begin{array}{l}
1 \cdots \text { if } \Lambda \sim \Lambda_{1}=x R x^{-1} \cap Z(g), \\
1 \cdots \text { if } \Lambda \sim \Lambda_{2}=y R y^{-1} \cap Z(g), \\
0 \cdots \text { otherwise },
\end{array}\right.
\end{gathered}
$$

where

$$
x=\left(\begin{array}{cc}
p 1_{2} & 1_{2} \\
0 & 1_{2}
\end{array}\right), \quad y=\left(\begin{array}{rrrr}
2 & 0 & 0 & 1 \\
-2 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right),
$$

$d_{2}\left(\Lambda_{1}\right)=6, e_{2}\left(\Lambda_{1}\right)=2, d_{2}\left(\Lambda_{2}\right)=1$, and $e_{2}\left(\Lambda_{2}\right)=2$.
(iii) If $\left(\frac{F}{p}\right)=0$ and $p=3$, take $g= \pm\left(\begin{array}{cc}0 & 1_{2} \\ -1_{2} & 1_{2}\end{array}\right)$, then,

$$
c_{p}(g, R, \Lambda)=\left\{\begin{array}{l}
1 \cdots \text { if } \Lambda \sim \Lambda_{1}=x R x^{-1} \cap Z(g) \\
0 \cdots \text { otherwise }
\end{array}\right.
$$

where

$$
x=\left(\begin{array}{rrrr}
p & 0 & 0 & 0 \\
0 & p & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \text { and } \quad d_{3}\left(\Lambda_{1}\right)=4, e_{3}\left(\Lambda_{1}\right)=2
$$

Next, we treat the regular elements $g \in K(p)$. When $Z[g]$ is the maximal order of $Q[g]$, it is fairly easy to classify global conjugacy classes. We sketch it here. Let $\zeta \in S p(2, Z)$ be an element whose principal polynomial is $f(x)=\left(x^{2}+1\right)\left(x^{2} \pm x+1\right), x^{4} \pm x^{3}+x^{2} \pm x+1, x^{4}+1$, or $x^{4}-$ $x^{2}+1$. (It exists and we fix it.) When $f(x)=\left(x^{2}+1\right)\left(x^{2} \pm x+1\right)$, more explicitly, put

$$
\zeta=\left(\begin{array}{rrrr}
-1 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Put $J=\left(\begin{array}{cc}0 & 1_{2} \\ -1_{2} & 0\end{array}\right)$. Assume that $g^{-1} \zeta g \in K(p)$ for some $g \in G L_{4}(Q)$. Then, $\zeta\left(g J^{t} g J^{-1}\right)=\left(g J^{t} g J^{-1}\right) \zeta$, and $g J^{t} g J^{-1} \in \boldsymbol{Q}(\zeta)$. The map $\boldsymbol{Q}(\zeta) \ni h \mapsto$ $J^{t} h J^{-1} \in \boldsymbol{Q}(\zeta)$ is the complex conjugation on $\boldsymbol{Q}(\zeta)$, and $g J^{t} g J^{-1}$ is invariant by this map. So, $g J^{t} g J^{-1} \in Q\left(\zeta+\zeta^{-1}\right)$. Put

$$
\gamma=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Then, $\gamma^{-1} g^{-1} \zeta g \gamma \in M_{4}(Z)$. Now, the class number of $\boldsymbol{Q}(\zeta)$ is one. So, by virtue of Chevalley [2], $a g \gamma \in G L_{4}(Z)$ for some $a \in \boldsymbol{Q}(\zeta)$.

Lemma 2.6. Let $f(x)$ be one of the above polynomials. Then, the set of $K(p)$-conjugacy classes with principal polynomial $f(x)$ corresponds bijectively to the set

$$
\left\{\alpha / p ; \alpha \in Z\left[\zeta+\zeta^{-1}\right], N(\alpha)= \pm p\right\} / N_{Q(\zeta) / Q\left(\zeta+\zeta^{-1}\right)}\left(Z[\zeta]^{\times}\right)
$$

The map is given by:

$$
\left\{g^{-1} \zeta g ; g \gamma \in G L_{4}(Z)\right\} \longrightarrow g J^{t} g J^{-1} .
$$

Proof. The injectivity is obvious. The surjectivity is proved by case by case process.
q.e.d.

Proposition 2.7. The numbers of $K(p)$-conjugacy classes of above types are given as follows:

$$
\begin{aligned}
& \left(x^{2}+1\right)\left(x^{2} \pm x+1\right) \cdots 8 \\
& x^{4}+1
\end{aligned} \cdots\left\{\begin{array}{l}
0 \cdots \text { if }\left(\frac{F}{p}\right)=-1 \\
4 \cdots \text { if }\left(\frac{F}{p}\right)=0 \\
8 \cdots \text { if }\left(\frac{F}{p}\right)=1
\end{array}\right.
$$

$$
\begin{aligned}
& x^{4}+x^{3}+x^{2}+x+1, \text { and } \\
& x^{4}-x^{3}+x^{2}-x+1
\end{aligned} \quad \cdots \text { same as in } x^{4}+1,
$$

$$
x^{4}-x^{2}+1 \quad \ldots\left\{\begin{array}{l}
0 \cdots \text { if }\left(\frac{F}{p}\right)=-1 \\
2 \cdots \text { if }\left(\frac{F}{p}\right)=0 \\
4 \cdots \text { if }\left(\frac{F}{p}\right)=1
\end{array}\right.
$$

where $F=\boldsymbol{Q}\left(\zeta+\zeta^{-1}\right)$.
Next, we treat the case where $f(x)=\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$. In this case, $Z[x] / f(x)$ is not the maximal order, and we give the local data instead of giving global conjugacy classes. Put $F=\boldsymbol{Q}[x] /\left(x^{2}+x+1\right)$. Put

$$
g=\left(\begin{array}{rrrr}
a & 0 & 0 & 0 \\
0 & -a & 0 & 0 \\
0 & 0 & b & 0 \\
0 & 0 & 0 & -b
\end{array}\right), \quad \text { where }\left(\frac{F}{p}\right)=1
$$

where $f(x)=\left(x^{2}-a^{2}\right)\left(x^{2}-b^{2}\right), a, b \in \boldsymbol{Q}_{p}$,

$$
g_{1}=\left(\begin{array}{rrrr}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right), \quad g_{2}=\left(\begin{array}{rrrr}
0 & 0 & -1 / p & 0 \\
0 & 0 & 0 & 1 \\
p & 0 & -1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right), \quad \text { when }\left(\frac{F}{p}\right)=-1,
$$

and

$$
g_{1}=\left(\begin{array}{cccc}
0 & 0 & -1 / p & 0 \\
0 & 0 & 0 & 1 \\
p & 0 & -1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right), \quad g_{2}=\left(\begin{array}{rrrr}
0 & 0 & 1 / p & 0 \\
0 & 0 & 0 & 1 \\
-p & 0 & -1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right), \quad \text { when } p=3 .
$$

Proposition 2.8.

(i) If $\left(\frac{F}{p}\right)=1$, then

$$
c_{p}(g, R, \Lambda)=\left\{\begin{array}{l}
2 \cdots \text { if } \Lambda \sim Z_{p}^{4} \\
0 \cdots \text { otherwise },
\end{array}\right.
$$

where \boldsymbol{Z}_{p}^{4} is embedded diagonally in $M_{4}\left(\boldsymbol{Z}_{p}\right)$, and

$$
M\left(g, Z_{p}^{4}\right)=\left\{1_{4},\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\right\}
$$

(ii) If $\left(\frac{F}{p}\right)=-1$ then,

$$
\begin{aligned}
& c_{p}\left(g_{1}, R, \Lambda\right)=0 \text { for any } \Lambda, \text { and } \\
& c_{p}\left(g_{2}, R, \Lambda\right)=\left\{\begin{array}{l}
2 \cdots \text { if } \Lambda \sim o_{p} \\
0 \cdots \text { otherwise },
\end{array}\right.
\end{aligned}
$$

where o_{p} is the maximal order of $F_{p}=\boldsymbol{Q}_{p}\left(g_{2}\right)$, and

$$
M\left(g_{2}, o_{p}\right)=\left\{1_{4},\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
p & 0 & 0 & 0 \\
0 & 0 & 0 & p \\
0 & 0 & 1 & 0
\end{array}\right)\right\}
$$

(iii) If $\left(\frac{F}{p}\right)=0(p=3)$, then

$$
c_{p}\left(g_{i}, R, \Lambda\right)=\left\{\begin{array}{l}
2 \cdots \text { if } \Lambda \sim o_{p}, \\
0 \cdots \text { otherwise, } \quad \text { for } i=1,2
\end{array}\right.
$$

where o_{p} and $M\left(g_{i}, o_{p}\right)$ are the same as in (ii).

Now, denote by H_{i} the total contribution to $\operatorname{dim} S_{k}(K(p))$, of those semi-simple conjugacy classes whose principal polynomials are of the form $f_{i}(\pm x)$, where the polynomials $f_{i}(x)$ are defined as in [7] (I), p. 590. We can give H_{i} explicitly as a corollary to the above results by using [7] and Hashimoto [6].

Theorem 2. Assume that $k \geqq 5$, then H_{1} and H_{2} have been given in Proposition 2.1, 2.2, and $H_{i}(i \geqq 3)$ are given as follows:

$$
\begin{aligned}
& H_{3}= \begin{cases}{[k-2,-k+1,-k+2, k-1 ; 4] / 2^{4} 3,} & \cdots \text { if } p \neq 2, \\
5[k-2,-k+1,-k+2, k-1 ; 4] / 2^{5} 3, & \cdots \text { if } p=2,\end{cases} \\
& H_{4}= \begin{cases}{[2 k-3,-k+1,-k+2 ; 3] / 2^{2} 3^{3},} & \cdots \text { if } p \neq 3, \\
5[2 k-3,-k+1,-k+2 ; 3] / 2^{2} 3^{3}, & \cdots \text { if } p=3,\end{cases} \\
& H_{5}=[-1,-k+1,-k+2,1, k-1, k-2 ; 6] / 2^{2} 3^{2}, \\
& H_{6}= \begin{cases}\frac{5(2 k-3)(p+1)}{2^{7} 3}+\frac{(-1)^{k}(p+1)}{2^{7}} & \cdots \text { if } p \equiv 1 \bmod 4, \\
\frac{(2 k-3)(p-1)}{2^{7}}+\frac{5(-1)^{k}(p-1)}{2^{7} 3} & \cdots \text { if } p \equiv 3 \bmod 4, \\
\frac{3(2 k-3)}{2^{7}}+\frac{7(-1)^{k}}{2^{7} 3} & \cdots \text { if } p=2,\end{cases} \\
& H_{7}=\left\{\begin{array}{l}
\frac{(2 k-3)(p+1)}{2 \cdot 3^{3}}+\frac{(p+1)}{2^{2} 3^{3}}[0,-1,1 ; 3] \cdots \text { if } p \equiv 1 \bmod 3, \\
\frac{(2 k-3)(p-1)}{2^{2} \cdot 3^{3}}+\frac{(p-1)}{2 \cdot 3^{3}}[0,-1,1 ; 3] \cdots \text { if } p \equiv 2 \bmod 3, \\
\frac{5(2 k-3)}{2^{2} 3^{3}}+\frac{1}{3^{3}}[0,-1,1 ; 3] \quad \cdots \text { if } p=3,
\end{array}\right. \\
& H_{8}=[1,0,0,-1,-1,-1,-1,0,0,1,1,1 ; 12] / 2 \cdot 3 \text {, } \\
& H_{9}=\left\{\begin{array}{l}
2[1,0,0,-1,0,0 ; 6] / 3^{2} \cdots \text { if } p \neq 2, \\
{[1,0,0,-1,0,0 ; 6] / 2 \cdot 3^{2} \cdots \text { if } p=2,}
\end{array}\right. \\
& H_{10}=\left(1+\left(\frac{5}{p}\right)\right)[1,0,0,-1,0 ; 5] / 5, \\
& H_{11}=\left(1+\left(\frac{2}{p}\right)\right)[1,0,0,-1 ; 4] / 2^{3}, \quad \text { and }
\end{aligned}
$$

$$
H_{12}= \begin{cases}{[0,1,-1 ; 3] / 2 \cdot 3} & \cdots \text { if } p \equiv 1 \bmod 12 \\ (-1)^{k} / 2 \cdot 3 & \cdots \text { if } p \equiv 11 \bmod 12 \\ (-1)^{k} / 2^{2} \cdot 3 & \cdots \text { if } p=2,3 \\ 0 & \cdots \text { if } p \equiv 5,7 \bmod 12\end{cases}
$$

where $\left(\frac{*}{p}\right)$ is the Legendre symbol, and $t=\left[t_{0}, t_{1}, \cdots, t_{q-1} ; q\right]$ means that $t=t_{j}$ if $k \equiv j \bmod q$.

§ 3. Conjugacy classes of non-semi-simple types

In this section, we shall give the representatives of non semi-simple $K(p)$-conjugacy classes which have non-zero contribution to $\operatorname{dim} S_{k}(K(p))$, and give their contribution to $\operatorname{dim} S_{k}(K(p))(k \geqq 5)$. Put

$$
\begin{aligned}
P_{0} & =\left\{\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right) \in S p(2, Q)\right\} \quad \text { and } \\
P_{1} & =\left\{\left(\begin{array}{cccc}
* & 0 & * & * \\
* & * & * & * \\
* & 0 & * & * \\
0 & 0 & 0 & *
\end{array}\right) \in S p(2, Q)\right\}
\end{aligned}
$$

Lemma 3.1. Assume that $g \in S p(2, Q)$ is not semi-simple. Then, some $\operatorname{Sp}(2, Q)$-conjugate of g is contained in P_{0} or P_{1}.

As for the proof, see Borel-Tits [1]. Next two lemmata are easy and the proof will be omitted.

Lemma 3.2. The Satake compactification of $K(p) \backslash S p(2, R)$ has a unique zero-dimensional cusp and two one-dimensional cusps, that is

$$
\begin{aligned}
S p(2, Q) & =K(p) P_{0} \\
& =K(p) P_{1} \cup K(p)\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) P_{1}
\end{aligned}
$$

Lemma 3.3. Assume that $g \in K(p)$ is not semi-simple. Then, some $K(p)$-conjugate of g is contained in P_{0}, P_{1}, or P_{1}^{\prime}, where

$$
P_{1}^{\prime}=\left\{\left(\begin{array}{llll}
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & 0 \\
0 & * & * & *
\end{array}\right) \in S p(2, \boldsymbol{Q})\right\}
$$

By this Lemma, we can assume that $g \in P_{0}, P_{1}$, or P_{1}^{\prime}. Then, by case by case direct calculations, we can give a complete list of $K(p)$-conjugacy classes which are not semi-simple and which have contribution to $\operatorname{dim} S_{k}(K(p))$. The proofs are lengthy but routine, and will be omitted here.

Theorem 3. The representatives of $K(p)$-conjugacy classes which are of elliptic/parabolic, δ-parabolic, parabolic, or paraelliptic (in the sense of Hashimoto [6]), are given in the following list, together with their contribution to $\operatorname{dim} S_{k}(K(p))(k \geqq 5)$. The contribution to $\operatorname{dim} S_{k}(K(p))$, of each set of conjugacy classes below, is denoted by I_{i}.
(I) Elliptic/parabolic
(1) $f(x)=(x-1)^{2}\left(x^{2}-x+1\right)$ and $(x+1)^{2}\left(x^{2}+x+1\right)$,

$$
\begin{array}{ll}
\pm\left(\begin{array}{rccc}
0 & 0 & 1 / p & 0 \\
0 & 1 & 0 & n \\
-p & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) & \pm\left(\begin{array}{cccc}
1 & 0 & -1 / p & 0 \\
0 & 1 & 0 & n \\
p & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
\pm\left(\begin{array}{cccc}
1 & 0 & n / p & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right) & \pm\left(\begin{array}{cccr}
1 & 0 & n / p & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \quad(n \in Z, n \neq 0)
\end{array}
$$

The total contribution of the above conjugacy classes to $\operatorname{dim} S_{k}(K(p))$ is given by:

$$
I_{1}=[0,1,1,0,-1,-1 ; 6] / 6,
$$

(2) $f(x)=(x-1)^{2}\left(x^{2}+x+1\right)$ and $(x+1)^{2}\left(x^{2}-x+1\right)$
(i) $\quad \pm\left(\begin{array}{cccc}0 & 0 & -1 / p & 0 \\ 0 & 1 & 0 & n \\ p & 0 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad \pm\left(\begin{array}{rccc}-1 & 0 & 1 / p & 0 \\ 0 & 1 & 0 & n \\ -p & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

$$
\pm\left(\begin{array}{rccr}
1 & 0 & n / p & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right) \quad \pm\left(\begin{array}{rrcc}
1 & 0 & n / p & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) \quad(n \in Z, n \neq 0):
$$

$I_{2}=[-2,1,1 ; 3] / 2 \cdot 3^{2}$,
(ii) $\pm\left(\begin{array}{lllr}1 & 0 & n / p & 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & -1\end{array}\right) \quad \pm\left(\begin{array}{rrrr}1 & 0 & -n / p & 1 \\ 0 & -1 & -1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & -1 & 0\end{array}\right)$

$$
\begin{aligned}
& \pm\left(\begin{array}{rrrr}
0 & 0 & -1 / p & 0 \\
0 & 1 & 1 & n \\
p & 0 & -1 & p \\
0 & 0 & 0 & 1
\end{array}\right) \quad \pm\left(\begin{array}{rccc}
-1 & 0 & 1 / p & -1 \\
0 & 1 & 1 & -n \\
-p & 0 & 0 & -p \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \text { (} n \in Z, n \neq 0 \text { if } p \neq 3 \text { and } n \neq-1 \text { if } p=3 \text {): } \\
& I_{3}=\left\{\begin{array}{l}
{[-2,1,1 ; 3] / 3^{2} \cdots \text { if } p=3,} \\
2[-1,1,0 ; 3] / 3^{2} \cdots \text { if } p \equiv 1 \bmod 3, \\
2[-1,0,1 ; 3] / 3^{2} \cdots \text { if } p \equiv 2 \bmod 3,
\end{array}\right. \\
& \text { (3) } f(x)=(x-1)^{2}\left(x^{2}+1\right) \text { and }(x+1)^{2}\left(x^{2}+1\right) \text {, } \\
& \pm\left(\begin{array}{rccc}
0 & 0 & 1 / p & 0 \\
0 & 1 & 0 & n \\
-p & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \pm\left(\begin{array}{cccc}
0 & 0 & -1 / p & 0 \\
0 & 1 & 0 & n \\
p & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \pm\left(\begin{array}{rrrr}
1 & 0 & n / p & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) \quad \pm\left(\begin{array}{rccr}
1 & 0 & n / p & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \quad(n \in Z, n \neq 0), \\
& \pm\left(\begin{array}{rccr}
0 & 0 & 1 / p & 0 \\
0 & 1 & 1 & n \\
-p & 0 & 0 & -p \\
0 & 0 & 0 & 1
\end{array}\right) \quad \pm\left(\begin{array}{cccr}
0 & 0 & -1 / p & 0 \\
0 & 1 & 1 & -n \\
p & 0 & 0 & p \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \pm\left(\begin{array}{rrrr}
1 & 0 & n / p & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & -1 & 0
\end{array}\right) \quad \pm\left(\begin{array}{rrrr}
1 & 0 & -n / p & 1 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right) \\
& (n \in Z, n \neq 0 \text { if } p \neq 2 \text { and } n \neq 1 \text { if } p=2): \\
& I_{4}=[-1,1,1,-1 ; 4] / 2^{2},
\end{aligned}
$$

(II) δ-parabolic: $f(x)=(x-1)^{2}(x+1)^{2}$
(i) $\quad \pm\left(\begin{array}{rrrr}1 & 0 & n / p & 0 \\ 0 & -1 & 0 & m \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right) \quad \pm\left(\begin{array}{rrrr}1 & 0 & n / p & -1 \\ 0 & -1 & 1 & m \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$

$$
(n, m \in Z, n \neq 0, m \neq 0):
$$

$I_{5}=(-1)^{k} / 2^{3}$,
(ii) $\quad\left(\begin{array}{rrrr}1 & 1 & n / p & m \\ 0 & -1 & m & -2 m \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1\end{array}\right) \quad\left(\begin{array}{rrrr}1 & 1 & n / p & m-1 \\ 0 & -1 & m & -2 m+1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1\end{array}\right)$

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
-1 & 0 & 2 m / p & m \\
-p & 1 & m-1 & n \\
0 & 0 & -1 & -p \\
0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{rrcr}
-1 & 0 & (2 m-1) / p & m \\
-p & 1 & m-1 & n \\
0 & 0 & -1 & -p \\
0 & 0 & 0 & 1
\end{array}\right) \\
& (m, n \in Z, \text { and }(2 n+p m,-2 m),(4 n+p(2 m-1),-2 m+1), \\
& (2 m, 2 n-p m), \text { or }(2 m-1,4 n-p(2 m-1)), \text { is not equal } \\
& t o(0,0), \text { respectively. })
\end{aligned}
$$

$I_{6}=(-1)^{k}\left(2-\left(\frac{-1}{p}\right)\right) / 2^{4}$,

(iii) $\quad \pm\left(\right.$| 1 | 0 | S | |
| ---: | ---: | ---: | ---: |
| 0 | -1 | | |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | -1 |$)$,

where $S=\left(\begin{array}{cc}n / p & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & n\end{array}\right),\left(\begin{array}{rr}n / p & -1 \\ 1 & 0\end{array}\right),\left(\begin{array}{rr}0 & -1 \\ 1 & n\end{array}\right) \quad(n \in Z, n \neq 0)$
$I_{7}=-(-1)^{k}(2 k-3) / 2^{3} 3$.
(III) Parabolic: $f(x)=(x-1)^{4}$ and $(x+1)^{4}$
(1) $\pm\left(\begin{array}{ll}1_{2} & S \\ 0 & 1_{2}\end{array}\right) ; S=\left(\begin{array}{ll}0 & 0 \\ 0 & n\end{array}\right),\left(\begin{array}{cc}n / p & 0 \\ 0 & 0\end{array}\right) \quad(n \in Z, n \neq 0)$, $I_{8}=-p(2 k-3) / 2^{4} \cdot 3^{2}$.

Next, put $L=\left\{\left(\begin{array}{ll}s_{1} & s_{12} \\ s_{12} & s_{2}\end{array}\right) ; s_{1} \in p^{-1} Z, s_{12}, s_{2} \in Z\right\}$ and for $S_{1}, S_{2} \in L$, write $S_{1} \sim S_{2}$ when $S_{1}=U S_{2}{ }^{t} U$ for some $U \in \Gamma_{0}(p) \cup\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right) \Gamma_{0}(p)$.
(2) $\pm\left(\begin{array}{ll}1_{2} & S \\ 0 & 1_{2}\end{array}\right) ; S \in\left\{S \in L, \operatorname{det} S \in\left(Q^{\times}\right)^{2}\right\} / \sim$,
$I_{9}=-1 / 2^{3} 3$
(3) $\pm\left(\begin{array}{ll}1_{2} & S \\ 0 & 1_{2}\end{array}\right) ; S \in\{S \in L, S$ definite $\} / \sim$,
$I_{10}=(p+1) / 2^{3} 3$,
(4) $\pm\left(\begin{array}{ll}1_{2} & S \\ 0 & 1_{2}\end{array}\right) ; S \in\left\{S \in L, S\right.$ indefinite, $\left.\operatorname{det} S \in\left(Q^{\times}\right)^{2}\right\} / \sim$, (the contribution to the dimension is zero),
(IV) Paraelliptic:

Put

$$
g(d)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
d & 1 & 0 & 0 \\
0 & 0 & 1 & -d \\
0 & 0 & 0 & 1
\end{array}\right),
$$

where d is some integer.
(1) $f(x)=\left(x^{2}+1\right)^{2}$:
(i) If $\left(\frac{-1}{p}\right)=-1$, there exists none in $K(p)$,
(ii) if $\left(\frac{-1}{p}\right)=1$, then

$$
\begin{aligned}
& g(d)^{-1}\left(\begin{array}{rrc}
0 & -1 & c \\
1 & 0 & S \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) g(d), \\
& S=\left(\begin{array}{cr}
0 & -n \\
n & 0
\end{array}\right),\left(\begin{array}{rr}
1 & n \\
-n & 1
\end{array}\right) \quad(n \in Z, n \neq 0), \\
&\left(\begin{array}{cr}
0 & -n \\
n+1 & 0
\end{array}\right),\left(\begin{array}{rr}
1 & n+1 \\
-n & 1
\end{array}\right) \quad(n \in Z),
\end{aligned}
$$

where d runs through a set of the representatives in \boldsymbol{Z} of the solutions of $d^{2}+1 \equiv 0 \bmod p$, and
(iii) if $p=2$, then

$$
\begin{aligned}
& g(1)^{-1}\left(\begin{array}{rrc}
0 & -1 & S \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) g(1), \\
& S=\left(\begin{array}{lr}
0 & -n \\
n & 0
\end{array}\right),\left(\begin{array}{cc}
2^{-1} & 2^{-1}-n \\
2^{-1}+n & -2^{-1}
\end{array}\right) \quad(n \in Z, n \neq 0), \\
& \\
& \\
& \left(\begin{array}{rr}
0 & -n \\
n+1 & 0
\end{array}\right),\left(\begin{array}{cc}
2^{-1} & -2^{-1}-n \\
2^{-1}+n & -2^{-1}
\end{array}\right) \quad(n \in Z)
\end{aligned}
$$

$$
I_{11}=-\left(1+\left(\frac{-1}{p}\right)\right) / 8
$$

(2) $f(x)=\left(x^{2}+x+1\right)^{2}$ and $\left(x^{2}-x+1\right)^{2}$:
(i) If $\left(\frac{-3}{p}\right)=-1$, then, there exists none in $K(p)$,
(ii) if $\left(\frac{-3}{p}\right)=1$, then,

$$
\begin{aligned}
& \pm g(d)^{-1}\left(\begin{array}{lrc}
0 & -1 & S \\
1 & -1 & S \\
0 & 0 & -1 \\
0 & 0 & 1
\end{array}\right) g(d) \\
& S=\left(\begin{array}{cc}
-n & -2 n \\
n & -n
\end{array}\right) \quad(n \in Z, n \neq 0) \\
& \\
& \quad\left(\begin{array}{cl}
-n & -2 n \\
n+1 & -n
\end{array}\right),\left(\begin{array}{ll}
-n & -2 n \\
n+2 & -n
\end{array}\right) \quad(n \in Z),
\end{aligned}
$$

where d runs through a set of the representatives of the solutions of $x^{2}+x+1 \equiv 0 \bmod p$, and
(iii) if $p=3$, then, besides the above conjugacy classes in (ii) (here, we put $d=1$), there exist following conjugacy classes:

$$
\left(\begin{array}{rrr}
1 & -1 & B \\
3 & -2 & B \\
0 & 0 & -2
\end{array}-3\right), \quad \text { where } B=\left(\begin{array}{cc}
-m-2 e-h & -3 m-6 e-h \\
0 & 0
\end{array} 1 \quad 1\right)
$$

$e= \pm 1 / 3, h=0, \pm 1$, and m is any integer such that $3 m+6 e+h \neq 0$:

$$
I_{12}=-\left(1+\left(\frac{-3}{p}\right)\right) / 6
$$

§ 4. Proof of Theorem 1

In this section, we prove Theorem 1. First, we get
Theorem 4. For any integer $k \geqq 5$ and any prime p, we have

$$
\operatorname{dim} S_{k}(K(p))=\sum_{i=1}^{12} H_{i}+\sum_{i=1}^{12} I_{i}
$$

where H_{i} or I_{i} is given in Theorem 2 or Theorem 3, respectively.
By virtue of [7] and Igusa [12], our Theorem 1 is a corollary to Theorem 4. But it is interesting to see the details of contribution of each conjugacy classes. We denote by J_{i} the contribution to

$$
\operatorname{dim} S_{k}(K(p))-2 \operatorname{dim} S_{k}(S p(2, Z))-\operatorname{dim} \mathfrak{M}_{k-3}
$$

of those semi-simple conjugacy classes whose principal polynomials are of the form $f_{i}(\pm x)(i=1, \cdots, 12)$. (As for the notations $f_{i}(x)$, see [7], p. 590, e.g., $f_{6}(x)=\left(x^{2}+1\right)^{2}, f_{7}(x)=\left(x^{2}+x+1\right)^{2}$, and $f_{12}(x)=x^{4}-x^{2}+1$.) We get the following result.

Numerical examples of $\operatorname{dim} S_{k}(K(p))$

p	k	5	6	7	8	9	10	11	12	13	14	15
2	0	0	0	1	0	1	1	2	0	2	1	4
3	0	1	0	1	1	2	1	4	1	4	3	6
5	1	1	1	2	2	4	4	6	5	9	8	13
7	1	2	2	4	4	7	7	11	11	16	16	24
11	2	3	3	6	7	12	14	20	22	32	36	48
13	3	5	7	10	13	19	23	31	37	48	56	72

Proposition 4.1. The numbers $J_{i}(i=1, \cdots, 12)$ are given as follows:
$J_{i}=0$ if $i \neq 6,7,12$, and

$$
\begin{aligned}
& J_{6}=\frac{1}{2^{4}}\left(1-\left(\frac{-1}{p}\right)\right)+\frac{(p-1)}{2^{4} 3}(-1)^{k}-\frac{k}{2^{3} 3}\left(1-\left(\frac{-1}{p}\right)\right), \\
& J_{7}=\frac{1}{2^{2} 3}\left(1-\left(\frac{-3}{p}\right)\right)+\frac{(p-1)}{2^{2} 3^{2}}[0,-1,1 ; 3]-\frac{k}{2 \cdot 3^{2}}\left(1-\left(\frac{-3}{p}\right)\right), \\
& J_{12}=\frac{1}{2^{2} 3}\left(1-\left(\frac{-3}{p}\right)\right)(-1)^{k}+\frac{1}{2^{2} 3}\left(1-\left(\frac{-1}{p}\right)\right)[0,-1,1 ; 3] .
\end{aligned}
$$

Proof. The contribution to $\operatorname{dim} \mathfrak{M}_{k-3}\left(U_{2}\right)$ has been given in [7], $\operatorname{dim} S_{k}\left(S p(2, Z)\right.$) in Hashimoto [6], and $\operatorname{dim} S_{k}(K(p))$ in Theorem 2 of this paper.
q.e.d.

Remark. This result is rather mysterious. Those elements with the principal polynomials $f_{i}(x)(i=8, \cdots, 12)$ are regular elements. Among those, as stated above, only J_{12} is exceptionally non-zero. I do not know the intrinsic reason of this.

Next, we shall give the contribution to

$$
\operatorname{dim} S_{k}(K(p))-2 \operatorname{dim} S_{k}(S p(2, Z)),
$$

of non-semi-simple conjugacy classes. (Note that there is no such contribution to $\mathfrak{M}_{k-3}\left(U_{2}\right)$.) More precisely, take a set $\{\gamma\} \subset S p(2, R)$ of non semi-simple elements, and denote by $K(\{\gamma\})$ the contribution to

$$
\operatorname{dim} S_{k}(K(p))-2 \operatorname{dim} S_{k}(S p(2, Z))
$$

of those $K(p)$-conjugacy classes whose elements are $S p(2, R)$-conjugates of one of $\{\gamma\}$. Put

$$
\begin{aligned}
& \hat{\delta}(\pm 1, \pm 1)=\left(\begin{array}{llll}
1 & 0 & \pm 1 & 0 \\
0 & 1 & 0 & \pm 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad a=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
& b=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \hat{\beta}(\theta, \lambda)=\left(\begin{array}{rrrrr}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & \lambda \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
& \hat{\gamma}(\theta, \lambda)=\left(\begin{array}{rrrr}
\cos \theta & \sin \theta & \lambda \cos \theta & \lambda \sin \theta \\
-\sin \theta & \cos \theta & -\lambda \sin \theta & \lambda \cos \theta \\
0 & 0 & \cos \theta & \sin \theta \\
0 & 0 & -\sin \theta & \cos \theta
\end{array}\right) .
\end{aligned}
$$

Proposition 4.2. For $k \geqq 5$, we have

$$
\begin{aligned}
& K\left(\pm \hat{\beta}\left(\frac{2 \pi}{3},+1\right)\right)=\left(1-\left(\frac{-3}{p}\right)\right)[0,-1,1 ; 3] / 3^{2}, \\
& K(\hat{\delta}(\pm 1, \pm 1))=\frac{(-1)^{k}}{2^{4}}\left(1-\left(\frac{-1}{p}\right)\right), \\
& K(\pm a)=-\frac{p-1}{2^{4} 3^{2}}(2 k-3), \\
& K(\pm b)=\frac{p-1}{2^{3} 3} \\
& K\left(\hat{r}\left(\frac{\pi}{2}, \pm 1\right)\right)=\frac{1}{2^{3}}\left(1-\left(\frac{-1}{p}\right)\right), \\
& K\left(\pm \hat{r}\left(\frac{2 \pi}{3}, \pm 1\right)\right)=\frac{1}{2 \cdot 3}\left(1-\left(\frac{-3}{p}\right)\right),
\end{aligned}
$$

and $K(\gamma)=0$ for any other $\gamma \in S p(2, R)$ which is not $\operatorname{Sp}(2, \boldsymbol{R})$-conjugate to one of the above.

Proof is obvious by virtue of Theorem 3 and Hashimoto [6], Theorem 6.2. Now, denote six non zero values in Proposition 4.2 by $K_{i}(i=1$, $\cdots, 6)$, that is, $K_{1}=K(\pm \hat{\beta}(2 \pi / 3, \pm 1))$, and so on. Then, for $k \geqq 5$, we have,

$$
\begin{aligned}
\operatorname{dim} & S_{k}(K(p))-2 \operatorname{dim} S_{k}(S p(2, Z))-\operatorname{dim} \mathfrak{M}_{k-3}\left(U_{2}\right) \\
& =J_{6}+J_{7}+J_{12}+\sum_{i=1}^{6} K_{i}
\end{aligned}
$$

$$
\begin{aligned}
=- & \left\{\frac{p-1}{12}+\frac{1}{4}\left(1-\left(\frac{-1}{p}\right)\right)+\frac{1}{3}\left(1-\left(\frac{-3}{p}\right)\right)\right\} \\
& \times\left\{\frac{k}{6}-\frac{1}{3}[0,-1,1 ; 3]-\frac{1}{4}\left(3+(-1)^{k}\right)\right\} \\
= & -\operatorname{dim} A_{2}\left(\Gamma_{0}(p)\right) \times \operatorname{dim} S_{2 k-2}\left(S L_{2}(Z)\right) .
\end{aligned}
$$

So, we obtain Theorem 1.
Remark. We get also the following interesting result. Put

$$
\begin{array}{cc}
& \Gamma_{0}(p)=B(p) \cup B(p) w_{1} B(p), \quad \Gamma_{0}^{\prime}(p)=B(p) \cup B(p) w_{2} B(p), \\
\text { and } & \Gamma_{0}^{\prime \prime}(p)=B(p) \cup B(p) w_{0} B(p) .
\end{array}
$$

When $p=2$, the dimensions of cusp forms belonging to these groups are easily calculated by using Igusa [14] (II) (cf. [11]). We get the following equality for $k \geqq 3$:

$$
\begin{aligned}
& \operatorname{dim} S_{k}(B(2))-\operatorname{dim} S_{k}\left(\Gamma_{0}(2)\right)-\operatorname{dim} S_{k}\left(\Gamma_{0}^{\prime}(2)\right)-\operatorname{dim} S_{k}\left(\Gamma_{0}^{\prime \prime}(2)\right) \\
& \quad+\operatorname{dim} S_{k}(K(2))+2 \operatorname{dim} S_{k}(S p(2, Z)) \\
& \quad=\operatorname{dim} \mathfrak{M}_{k-3}\left(U_{0}\right)-\operatorname{dim} \mathfrak{M}_{k-3}\left(U_{1}\right)-\operatorname{dim} \mathfrak{M}_{k-3}\left(U_{2}\right)
\end{aligned}
$$

where the discriminant of B is two. This supports the conjecture in [9]. This relation is extended in [8] for all p.

References

[1] A. Borel and J. Tits, Groupes reductifs, Publ. Math. IHES, 27 (1965), 55150.
[2] C. Chevalley, Sur certains idéaux d'une algèbre simple, Abh. Math. Sem. Univ. Hamburg, 10 (1934), 83-105.
[3] M. Eichler, Uber die darstellbarkeit von Modulformen durch Theta Reihen, J. Reine Angew. Math., 195 (1956), 159-171.
[4] -, Quadratische Formen und Modulformen, Acta arith., 4 (1958), 217239.
[5] K. Hashimoto, On Brandt matrices associated with the positive definite quaternion hermitian forms, J. Fac. Sci. Univ. Tokyo Sec. IA 27 (1980), 227-245.
[6] -, The dimension of the space of cusp forms of Siegel upper half plane of degree two, (I) J. Fac. Sci. Univ. Tokyo Sect. IA, 30 (1983), 403-488; (II) Math. Ann. 266 (1984), 539-559.
[7] K. Hashimoto and T. Ibukiyama, On class numbers of positive definite binary quaternion hermitian forms, (I) J. Fac. Sci. Univ. Tokyo Sect. IA., 27 (1980), 549-601; (II) ibid., 28 (1982), 695-699; (III) ibid., 30 (1983), 393-401.
[8] -, On relations of dimensions of automorphic forms of $S p(2, R)$ and its compact twist $S p$ (2) (II), in this volume.
[9] T. Ibukiyama, On symplectic Euler factors of genus two, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1984) and Proc. Japan Acad., 57 Ser. A no. 5 (1981), 271-275.
[10] - On automorphic forms of $\mathrm{Sp}(2, \mathrm{R})$ and its compact forms $S p$ (2), Sémi. Delange-Pisou-Poitou 1982-83, Birkhäuser Boston Inc. (1984), 125134.
[11] - On the graded rings of Siegel modular forms of genus two belonging to certain level two congruence subgroups, preprint.
[12] J. Igusa, On Siegel modular forms of genus two, Amer. J. Math., 84 (1962), 175-200, (II) ibid., 86 (1964), 392-412.
[13] Y. Ihara, On certain arithmetical Dirichlet series, J. Math. Soc. Japan, 16 (1964), 214-225.
[14] H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Lecture Notes in Math., 260, Springer (1972).
[15] R. P. Langlands, Problems in the theory of automorphic forms, Lecture Notes in Math., 170, Springer (1970), 18-61.
[16] - Stable conjugacy: Definitions and Lemmas, Canad. J. Math., 31 (1979), 700-725.
[17] H. Shimizu, On zeta functions of quaternion algebras, Ann. of Math., 81 (1965), 166-193.
[18] J. Tits, Reductive groups over local fields, Proc. Symp. Pure Math., XXXIII part 1 (1979), 29-69.

Department of Mathematics
College of General Education
Kyushu University
Ropponmatsu, Fukuoka
810 Japan
and
Max-Planck-Institut für Mathematik
Gottfried-Claren Str. 26
5300 Bonn 3, BRD

[^0]: Received March 5, 1984.
 The author was partially supported by SFB 40, Univ. Bonn and Max-Planck Institut für Mathematik.

