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Abstract. Let F be any finite field with q elements such that q is the square of an

odd prime. For each extension F' of odd (resp. even) degree over F, we shall show that

there exists a curve of genus 3 defined over F' such that the number of F'-rational points

attains the maximum (resp. minimum) of the Weil estimation.

For any curves C defined over finite fields Fq (q=pd; p: prime), Weil [20] gave an
estimate for the cardinality of the set C(Fq) of /^-rational points of C as follows:

where g = g(C) is the genus of the curve C. When q is a square, for a fixed q and variable
#, very interesting phenomena occur and the upper bound and asymptotic behaviour
for g-*co were studied for example by Ihara [11], Manin-Valdut [12]. Now, Serre
[19], [18] studied the bound for a fixed g and variable q. A part of his results says
that for any square q=p2e when 0=1, and for each square q^4 or 9 when g = 2, there
exist curves C\ and C2 defined over Fq such that

HC1(Fq))= 1 +q + 2gpe, $(C2(Fq)) = 1 + q-2gpe ,

that is, there exist curves such that the number of /^-rational points attains Weil's
maximum, or minimum. But it remained open, except for several small q and g, whether
this is also true for any g > 3 and for almost all q. (Serre, loc. cit. When q is some power
of 2, see also Oort [14].) In this paper, we shall show the following:

THEOREM 1. For each odd prime p and each positive integer e, there exists a

nonsingular irreducible curve C of genus 3 defined over Fp such that the number of Fp2e

rational points attains the maximum (resp. the minimum) of the Weil inequality for odd

(resp. even) e, that is,

More precisely, there exists a curve C defined over Fp such that the Jacobian variety J(C)

of C is isomorphic over Fp2 to the product of three copies of a supersingular elliptic curve

* Partly supported by the Grants-in-Aid for Scientific as well as Co-operative Research, The Ministry

of Education, Science and Culture, Japan.

1991 Mathematics Subject Classification. Primary 11G20; Secondary 14G15, 14G05, 11E41.



312 T. IBUKIYAMA

E defined over Fp.

This work is motivated by Professor Serre's letter [17], where he pointed out that,
to obtain the above theorem, it is sufficient to show the existence of an (irreducible
nonsingular) hyperelliptic curve (over any field) whose Jacobian is the product of
supersingular elliptic curves. When p = 3 mod 4, it is easy to show the existence of such
curve, using the class number formula of ternary quaternion Hermitian forms by
Hashimoto [3] (cf. Oort [14], [5]). In this case, we need not assume that e is odd.
Also, when/? = 3 mod 4, it is known that the curve C: x4+y4' = z4 satisfies the conditions
in our Theorem ([17], [14]). On the contrary, for general/?, we do not know whether
we can take a curve C in the above theorem so that C is hyperelliptic. Hence, we do
not know whether there exists a curve C such that #(C(Fp2e)) attains the minimum (resp.
maximum) for odd (resp. even) e. The outline of the proof of the above theorem is as
follows: We fix an odd prime number/? and take a supersingular elliptic curve E defined
over Fp such that F2 = —p id£, where we denote by F the Frobenius endomorphism
over Fp of E. (The existence of such a curve is due to Deuring [1].) Any principal
polarization Θ on E3 is defined over Fp2 (e.g. [9]). We can give a number-theoretical
criterion whether (is3, Θ) has a model {A, Θf) over Fp which is isomorphic to (is3, Θ)
over Fp2. It is known by Oort and Ueno [15] that any 3-dimensional principally polarized
abelian variety is the Jacobian of a 'good' curve (which is, in general, reducible). If
(A, Θ') as above is the Jacobian of an irreducible curve C, (i.e., if Θ is indecomposable),
then by Serre [17] or Oort [14], we can take a model Co of C such that Co is defined
over Fp and that the Jacobian variety J(C) is isomorphic to (A, Θ') over Fp2. By
calculating the mass formula for elements of a certain type of the group G of quaternion
hermitian similitudes, we can show the existence of such a principal polarization on
is3. Incidentally, a similar method cannot be applied in general for further study. That
is, when p = 1 mod 4, there exists no curve C of genus 3 defined over Fp2 such that the
Jacobian variety J(C)^E3 and that its Frobenius over Fp4 induces — p2 in J(C). (This
is caused by the fact that, in this case, the automorphism group of J(C) does not contain
an element with characteristic polynomial (x2 +1)3, cf. [3]).

In §1, we shall review algebraic geometry and give the criterion mentioned above.
In §2, we shall give explicit results on the mass formula for some elements of the group
G in Theorem 2. Sections 3 and 4 are devoted to the proof of Theorem 2. The calculation
of local data we need for a calculation of the above mass will be given in §3. We
encountered similar kind of calculations, for example, in [6], [3], [8]. Although this
calculation is fairly elaborate, it is lengthy and the proof will be omitted here. The
proofs of Theorem 2 and the above Theorem 1 will be completed in §4.

I would like to thank Professor Jean-Pierre Serre for explaning this problem and
its subtle point in his letter [17] and also for valuable comments, and also Professor
Toshiyuki Katsura for valuable discussions.
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1. Review on algebraic geometry. We fix an odd prime p and a supersingular

elliptic curve E such that the Frobenius endomorphism F of E over Fp satisfies

F2=-pidE.

LEMMA 1.1. Let n>2 be a positive integer. An n-dimensionalprincipally polarized

abelίan variety (En, Θ) rational over Fp2 has a model (A, Θ') such that it is both defined

over Fp and also isomorphic to (En, Θ) over Fp2, if and only if there exists an endomorphism

α ofEn which satisfies the following three conditions (1), (2) and (3):

(1) 0ieAut(En) F,

(2) α 2 = — pidE, and

(3) a*(Θ)ttpΘ, where we denote by « the algebraic equivalence of divisors.

PROOF. First, assume that there exists such a model (A, Θf), and denote by / the

isomorphism of (A, Θf) onto (En, Θ) defined over Fp2. Denote by σ the generator of

the Galois group Ga\(Fp2/Fp). Then, if we set α = / / ~ σ F , this α satisfies the above

conditions. In fact, we get Θ'πf*(Θ)π(fσ)*(Θσ\ which implies (3). On the other

hand, for any endomorphism β of En, we get F'β = βσF. Hence, we get (2). Conversely,

assume that there exists an endomorphism α which satisfies (1), (2), and (3). By (1),

we can put α = ε i% where εeAut(iiπ). By (2), we get εσε = id£. By (3), we get

F*ε*(Θ)πpΘ = F*(Θσ), which implies ε*(Θ)πΘσ and ε is an isomorphism of (En, Θ)

onto (En, Θσ). Hence, by the Weil criterion, we get a model (A, Θ') defined over Fp

and an Fp2-rational isomorphism / of (A, Θ') onto (En, Θ). q.e.d.

LEMMA 1.2. Assume that a principally polarized abelian variety (7s3, Θ) satisfies

the conditions in Lemma 1.1, and that Θ is an indecomposable polarization. Then, there

exists an irreducible curve C of genus three rational over Fp such that

PROOF. By Oort and Ueno [15], any ( £ 3 , Θ) is the Jacobian of a good curve,

and if Θ is indecomposable, then C is irreducible. Now, it has been shown by Serre

[17] and Oort [14], using the Torelli Theorem, that, if any principally polarized abelian

variety (Ao, Θo) rational over a field k is the Jacobian variety of a curve C o (over the

algebraic closure of k), then we can take a model C of C o such that C is rational over

k and that the Jacobian variety J(C) of C is isomorphic to (Aθ9 Θo) over a quadratic

extension of k. Going back to our situation, we get an irreducible curve C rational over

Fp whose Jacobian is isomorphic to (A, Θ') and hence to (E3, Θ) over Fp2. This means

that the Frobenius endomorphism of J{C) over Fp2 is —pidE3. q.e.d.

2. Relation to the mass formula. In this section, we shall interpret Lemma 1.1

into an arithmetic theory of the quaternion Hermitian forms, explain how to show

Theorem 1 by the mass formula, and then state the results on masses.

We put Θ = Έnd(E) and B = End(E)®Q. Then, B is a definite quaternion algebra
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over Q with discriminant/?, and 0 is a maximal order of B. As has been shown in [10],

principal polarizations on En (E: the supersingular elliptic curve over Fp which we fixed)

correspond bijectively to the set of classes of lattices in the principal genus Jέf («) of the

«-ary positive definite quaternion Hermitian space Bn (with standard metric). We need

notation to interpret the conditions in Lemma 1.1. We denote by G = G(n) the group

of quaternion Hermitian similitudes on Bn:

G = G(n) = {geMn(B);gtg = λ(g)ln} ,

where λ(g) is a positive rational number depending only on g. We denote by GA = GA(n)

the adelization of G(n). For any place v of Q, we denote by Gv = Gv(n) the u-component

of GA. For any finite place v, denote by Θv the u-adic completion of 0 and define a

compact subgroup Uv of Gυ by

Uv = GvnGLn(Θv).

We also define a subgroup U of GA by

U=Gn x Π UΌ.
V< 00

Now take the double coset decomposition

H

GA=U Ugfi (disjoint).
i = l

Then, the number H of these double cosets is equal to the class number of &(n) and

a complete set of representatives Lί9..., LH of the classe of J£{ri) is given by

Li = ΘnginBH.

LEMMA 2.1. If P = (En, Θ) satisfies the condition in Lemma 1.1, then for the lattice

Lt which corresponds to this P, there exists an element geG(n) with g2= —p\n such that

Ltgc= Lt and that gtggi~ * eπlί.

The proof is obvious.

Now, we shall review some mass formulas for G. We denote by Γt the automorphism

group of the lattice L{.

In the adelic language, we get Γ^Gng^1 Ug^ To simplify notation, for each / (1 < i<H),

we denote by T"(π) the subset of G(n) defined by:

= {geG;giggr1eπU and g

2=-p\n},

and we denote by M(«, Lt) the rational number
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M(n,Lί) = .

For each positive integer n, we denote by M(n) the following rational number (which
is a kind of "mass" of some subset of GA):

M(ή) = Σ

In the above summation, some lattices Lx are decomposable and hence correspond to
decomposable polarizations. Now, changing the indices if necessary, we assume that
the lattices Lί9..., LH. are indecomposable and that for any i>Hf, the lattice Lx is
decomposable. Now, we define M'(n) by

M\ή)=\

It is obvious that the following two conditions are equivalent:
(1) There exists an indecomposable lattice L such that Lg^Lίov some geT"(π).
(2) WegetM'(>2)>0.
On the other hand, it is known which kind of calculation is needed in order to

obtain M(ή) (cf. Hashimoto [4]), although actual calculations are somewhat elabolate.
If we get M(l), M(2), and M(3), then we can calculate M'(3) by using the following lemma.

LEMMA 2.2. Notation and assumptions being as above, we get

M'(3) = M(3)-M(1)M(2) + — M(l) 3 .

PROOF. Assume that a lattice LeS£(ri) is decomposable. So, for some positive
integer r>\ and some positive integers dί9 ...,dr such that ]Γ'.= χ dj = n9 there exists non
zero indecomposable left 0-lattices Ml9..., Mr such that, for each j (1 <j<r), the left
i?-vector space V~B® M} is of dimension dj9 and that

L = M1l"ΊMr9

where we denote by _L the orthogonal splitting of lattices with respect to the metric we
fixed. It is trivial that each M3 belongs to &{d?)9 if we identify Vj with Bdj. It can also
be proved easily in the same way as in O'Meara [13, p. 321] that the above orthogonal
splitting is unique up to order. Now, we set L = Lx for some / with \<i<H, and assume
that LgczL for some geG such that g2= -pl3 and that giggι~

1 = πu for some ueU.
Then, we get also

and
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Lg = Θ nπugi = πΘ ng{ = πL .

Hence, we get the following orthogonal splitting of L into left ^-lattices:

L = π~1M1gl - ±π-ίMrg .

Hence, by the uniqueness of the orthogonal splittings, it is shown that for each j with
1 <j<r, there exists f with 1 <f <r such that

The above lattice Mj is not necessarily isometric to My as quaternion Hermitian lattices.
Now, we assume that LGJ?(3). Then, we have two cases:

(1) r = 2, dί = l, and d2 = 2, or

In the case (1), we get Mj = π~1Mjg for each 7=1, 2. Hence, as Aut(L) =
Aut(Λ/\) x Aut(M2), we get

M(3, L) = M(1, M t) x M(2, Λf2)

in this case.
In the case (2), there are several possibilities. We shall say that the nonisometric

left (^-lattices M and N of rank 1 (but not necessarily left 0-free) are conjugate with
each other, if πM=Nb for some beB*. In other words, M and N correspond to
supersingular elliptic curves defined over Fp2 which are conjugate with each other.

(i) If Mj (1 <7<3) are not isometric with each other and M2 is conjugate to M3,
then we get

M(3, L) = M(l,M1)x
#(Aut(M2))

(ii) If any Mj (1 <y < 3) are not isometric and not conjugate with each other, then
we get

M(3, L) = M(1, Mx) xM(l, M2) xM(l, M 3 ) .

(iii) If Mγ and M2 are isometric and if M3 is not isometric and not conjugate to
the others, then #(Aut(L)) = 2x(#(Aut(M1)))2#(Aut(M3)) and we get

M(3, W 1
V ^ V 2

M(1,M I ) + V
2 2 (#(Aut(M1))2

where we identify M1 with left 0-ideal of B and denote by n{b) the reduced norm of b.
(iv) If all Mj are isometric with each other, then #(Aut(L)) = 6 (#(Aut(M1)))3,

and by easy calculation, we get
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M(3, L) = —
6

; M1bciMί and /i(*)=

2 (#(Aut(M1))2)

where the notation is as in (iiί).
(v) In the remaining cases, we get M(3, L) = 0. Hence, by easy combinatorial

argument, we get our lemma.

It is wellknown (Deuring [2]) that when /? = 3,

_ 2

3

and for any p>5,

q.e.d.

KJ-P)

if p = 1 mod 4

if /7 = 3 m o d 8

if p = l mod 8 ,

where h{d) is the class number of the order of Q(y/ d) with discriminant d and h(yj d)

is the class number of the maximal order of Q(y] d).

To get M(2) and M(3), we must calculate various complicated data. Here, we just

state the results and the proof will be given in later sections.

THEOREM 2. We assume that the discriminant p of B is an odd prime. Then, we get

M(2) =

19/72 if /> = 3 ,

if p=\ mod4 ,

if /? = 3 m o d 8 ,

if p = Ί mod 8 ,

and

M(3) =

77/23 34
if P = 3 ,

if p=\ mod4 ,

c if p = 3 mod 8 ,

if p = ΊmodS,

' we denote by χ the quadratic character which corresponds to the imaginary quadratic

field Q(yJ—p) and by B3 χ the generalized third Bernoulli number with respect to χ.

The proof will be postponed until the final section.

THEOREM 3. For every odd prime p, we get

M'(3)>0.
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Besides, l im p _ + 0 0 M / (3)=+00, and the number of curves over Fp such that #C(Fp2) =

1 +p2 + 6p tends to infinity as p-+ 00.

PROOF. By Lemma 2.2 and the above Theorem, we get an estimate for M'(3)

from below. It is fairly easy to show that

and

In fact, it is wellknown that

* y > p2J Ό if /? = 3 m o d 4 .

where / is the conductor of χ, and also that

where the L functions and zeta functions are defined as usual. As ζ(3)<1.21 and

ζQW-=-jJ)(3)>ζ(6) = π6/945, we get the above estimate for B3 χ. Hence, as hQ —p)<p, we

can always show that M'(3)>0 for sufficiently large p. For example, if p=\ mod 4,

then the above estimate gives that M'(3)>0 for p> 150. As for p< 150, we calculate

the exact value of Af'(3) directly, and we can see that M'(3) > 0. For those primes with

p = 3 mod 4, we can show in a similar way that M'(3) > 0. It is also obvious by the

above estimate that M'(3)-> 00 as/?-»oo. For each lattice L, it is obvious that M(3, L)<\.

Hence, the number of indecomposable lattices L such that M(3, L)φO increases to

infinity as /?->oo. q.e.d.

3. Review on the mass formula. From now on, we shall calculate M(2) and M(3).

In this section, first we shall review the general (but not explicit) formula for M(«), and

secondly, we shall review conjugacy classes.

PROPOSITION 3.1 (Hashimoto [4], see also [6, §1]). We have

M(n)=Σ Σ MG{Λ) Π cq(g9Λq,πUq),
{9)G LG(Λ) q<oo

where the notation will be explained below.

NOTATION. (1) {g}G runs over G-conjugacy classes of elements of G such that

G2=-PK
(2) Here, we shall explain the meaning of LG(Λ). For each element geG, we

denote by Z(g) the commutant of Q(g) in Mn(B): Z(g) = {zeMn(B); zg = gz}. We put
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ZG(g) = Z(g) n G. Now take an order A of Z(g). For any prime q, we denote by ZG(g)q

the #-adic component of the adelization ZG(g)A, and put Λq = A (x) Zq. We denote by
LG(A) the G-genus containing Λ:

LG(A) = {AfczZ(g); A1 is an order of Z(g)

and for every prime q, Aq=yq

xAqyq for some yqeZG(g)q} .

In the second summation of the above Proposition, LG{A) runs over all the G-genera.
(3) Mg(A) is the mass of the G-genus A defined below.

Take a double coset decomposition of ZG(g)A as follows:

h(Λ)

ZG(g)A= LJ ZG(g)yk(AΪ ^ZG(g)A).
k=l

For each k with 1 <k<h(A), define an order Ak of Z(g) by

The G-mass MG(A) is defined by

h(Λ

MG(A)=Σ

(4) The quantity in the last product is now defined. For each prime q, we set

M(g, Aq9 πUq) = {xeGq; x~ίgxeπUq and

Z(g)nxMn(Θq)χ-1=aAqa-1 for some aeZG(g)q} .

The "local datum" cq is defined by

cq(g, Λq9 πUq) = t(ZG(g)\M(g, Aqi πUq)/Uq).

To get M(2) and M(3), we must calculate every datum in the above propostion
explicitly. Here, we review conjugacy classes of elements of G (cf. [6]). For each n and
each prime q9 we define a subset Cq(n) of Gq(n), and a subset C(n) of G, respectively as
follows:

Cq(n) = {geGq(n)\ g2=-pln, and gtg=pln},

C(n) — {geG(n); g2=—p\n and gtg=pln}.

When « = 3, put

In 0 0
flf= 0 π 0

\0 0 πt

Then, any element ̂ ' of C(3), or Cq(3), is G-conjugate, or G€-conjugate, to g, respectively.
When /i = 2, for an element #eC(2), set F=Q(g)^Q(J^p). Then, Z(#) is a
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quaternion algebra over Fwith Z{g) ® F^ M2(B) and there exists a unique quaternion

subalgebra Z0(g) over Q of Z{g) such that ZG(g) = F x Z0(g)x (an amalgamated product

with Fr\Z0(g) = Qx.) The mapping C(2)^>Z0(g) gives a bijection from the set of

G-conjugacy classes in C(2) onto the set of definite quaternion algebra D with

D ®QF^ B®F. (AS for a more precise statement, see [6].) As for Cq(2), the same holds,

if we replace each global object above by the corresponding local one, e.g. Z(g) by Z(g)q

etc. Hence, the set Cq(2) consists of at most two Gy-conjugacy classes.

4. Local data. We shall give the most delicate term cq(g, A, πUq) in the mass

formula for n = 2 and 3. The proof consists of fairly long calculation on matrices which

is similar to that in [6] and will be omitted here. The above data are determined locally,

and we calculate them for each Gq-conjugacy class in Cq(n), « = 2, or 3. When « = 2, we

shall also calculate some numbers dq = dq(g, A) and eq = eq(g, A) which are necessary for

the calculation of MG(Λ) and defined by

and

where we put Ao = Z(g) n Λ, and denote by A any maximal order of Z0(g) which contains

Ao and by oq the maximal order of Qq(g). Throughout this section, we assume that the

discriminant p of B is an odd prime.

4.1. The case n = 2. In this subsection, we treat the case n = 2. For the sake of

convenience, we put

IV. (o V

and

£/* = G*nGL2(tfΓ>.

As we can choose an element ξ e GL2(Θq) such that

0

the mapping Gq3g^ξgξ~ιeG* induces isomorphisms Gq^G* and Uq^U*. We fix ξ

for each prime q and we shall often identify Gq with G* through the above isomorphism.

When qφp, it is also convenient in some case to use generalized symplectic group

GSp(29 Q2):
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For q Φp, we get GSp(2, Qq) ^ Gq, and we fix this isomorphism and identify these groups

sometimes.

For each prime q, we fix an element π of Θq such that π2 = —p, and put

Then, ζgxζ~γ belongs to Cq(2), and the corresponding algebra Z0{g^) (defined in the

preceding section, or [6]) is given by

e M2(Bq); a, b,c,

and is isomorphic to M2{Qq). When Qq(yJ—p) = Qq®Qq, then ξg^ζ'1 represents the

unique G^-conjugacy class in Cq(2). Besides, if qφl and Qq(yJ—p) is an unramified

quadratic extension of Qq, then for any geCq such that Z0(g) is a division algebra,

namely, if g belongs to the other G^-conjugacy class in Cq(g) than ξg^'1, we have

cq(g, Λ, Uq) = 0 for any order ΛaZ(g) (see [6, Proposition 4]). First we assume that

PROPOSITION 4.1. Notation and assumptions being as above, we get

1 if Λ~Λx=M2{Zlπ-]),
cq(ξ9ιξ \Λ,Uq) =

1.0 jor any other Λ ,

Now, we assume that qφl and that Qjiy/ —p) is an unramified quadratic extension

ofβ,.

PROPOSITION 4.2. Notation and assumptions being as above, we get

0 for any other A ,

Next, we assume that q=p. In this case, Qp(g) is a ramified quadratic extension

of Qp We fix an element π of Θp such that π 2 = -p. Then, there are two G9-conjugacy

classes in Cq(2), each of which is represented by gγ defined before, or g2 defined as

follows: When p= 1 mod 4, we put

π 0

and if p = 3 mod 4, we put
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KJq .

PROPOSITION 4.3. Let the notation be as above.

(i) As for 0! we get

if Λ~Λ1=M2(Zq[π])9

.0 for the other A ,

anddp(A1)=p+\,ep(A1) = 2.

(ii) As for g2, we get

cp(ξgiξ-\A,Uq) =

cp(g2,A, Uq) =
0 for the other A ,

Finally, we assume that q = 2. Recall that we assumed/?/2. When/?= 1 mod 4, we

define g^eGl as before. Whenp = 3 mod 8, we get

π =
1

This setting is convenient, because

of Q2(π). When p = l mod 8, we set

+π)/2] = the maximal order

π

l 2 ° 1 )eGSp(2,Q2),

where ω is an element of Z 2 such that ω2 = —p. We also define g2 for each characteristic

(or discriminant) p as follows:

When p = 1 mod 4, put

02 =

/0 0 - 1 0 \

0 0 0 - 1

/? 0 0 0

\0 /> 0 0 /

and when /? = 3 mod 8, then put

/ 1 0 2 0 \

0 1 0 4

2ε 0 - 1 0

\ 0 ε 0 - 1 /

eGSp(29Q2),

where ε= — (^+ l)/4.
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PROPOSITION 4.4. Notation and assumptions being as above, we get
(i) if p= 1 mod 4, then

if Λ~Λ1=M2(Z2(π))9

A A -Z( (l ^

. 0 /or <z«j/ 6>/Λer A ,

where

anddq(Λ1)=l, eq(Λ1)= 1,

β=-
1 0

2 VO - 1

cJg2,Λ, Uq) =
1 /or αnj other A ,

anddq(Λ2) = 3,eq(Λ2) = 2.

(ii) If p=3 mod 8,

cq(gι,Λ,Uq) =

1 i/ Λ~Λ1=Z(g)nM2(Θ2),

1 ι/ A~A2 = :

1 i/ yl-yla

. 0 /or any other A ,

where

x =

(\ 0 0 0\

0 11/2 0

0 0 1 0

\0 0 0 1/

y=

/I 0 0 0\

0 2 1 0

0 0 1 0

\0 0 0 2/

9, eq(A2)=l, dq(A3) = 3, eq(A3)=\.

1 ι/ Λ~Λ!

0 /or α«j o/Λ̂ r A ,

anddq(Λ1) = 9, eί(v41) = 3
(iii) 7/^ = 7 mod 8,

cq(gi,Λ,Uq) =

1 Ϊ/ yl-yli

1 if A~A2 = Z(g)nxM2(Θ2)χ-\

1 Ϊ/ Λ~Λ3

1 // Λ-i44

0 for any other A ,
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where

x =

/ 1

0

0

\ 0

0

1

0

0

0

1/2
1

0

1/2 \

0

0

1 /

y=

\ IBUKIYAMA

/ 1

0

0

\ 0

0

1

0

0

1/2

0

1

0

0\

0

0

1/

z =

/I

0

0

\o

0

1

0

0

1/2

0

1

0

0 \

1/2

0

1 )

and dq(Λ1)=l, e 4 (yl 1 )=l, dq(Λ2)=l, eq(Λ2)=l, dq(Λ3) = 3, eq(Λ3)=l, dq(Λ4) = 3,

eq{ΛA)=\.

4.2. The case n = 3. It is not difficult to show that for each prime q, there exists
an element ξ e GL3(Θq) such that

Ό 0 1\

ξ'ξ = \ 0 1 0 .

.1 0 0 /

W e set

Ό 0 Γ '0 0 Γ
geM3(Bqy,g{ 0 1 0 VgM 0 1 0

1 0 0; 1 0 0/

and

U* = G*nGL3(Θq).

Then, Gq3g\-^-ξgξ~ιeG* induces isomorphisms Gq^G* and t/ ?=ί7*. Now, we put

1% 0 0\

g= 0 π 0 ,

\0 0 π)

where π is any fixed element of Θq with π2=—p. Then, any element g'eCq(3) is
G4-conjugate to ξgξ'1. Hence, we shall treat everything in G* and use g as a
representative of Cg(3). To calculate MG(Λ), we need some local mass, which is denoted
by dq(Λ) and defined by

where we put Λo = M3(oq).

PROPOSITION 4.5. (1) When qψl, we get

1 if Λ~Λ0,
cq(g,Λ,πU*) =

0 for any other A .
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(2) When q = 2, we get the following results:

(i) If p = 1 mod 4, then

1 if Λ~Λ0,

. 0 for any other A .

(ii) Ifp = 7 mod 8, then

1 if A~A0,

1 if A~A2 = M3((

1 if A~A3 = M3{(

1 if A~A4 = M3((

0 for any other A ,

where, for each i with 1 <z<4, we put

and

c2(g,Λ,πU*) =

0 1,

/

\

/

\

' 1
0

κθ

^0

0

^0

0
1

.0

0

0

1

0

0

1

0

1

0

r
= 0

\o

ί°
= 0

\ 0

0
1

0

0

0

0

0
0
1

0

0
1

andd2(ΛQ)=l, rf2(yl1) = 28, d2(Λ2) = 2l,

When p = 2> mod 8, the same kind of calculation seems fairly complicated, so we
shall determine the local data at 2 for n = 3 by another method as follows: We can
reduce the problem to the case/? = 3 as we shall see later. When/? = 3, the class number
of the principal genus in B3 is two (cf. Hashimoto [3]). In this case, we can take the
maximal order Θ as

where α 2 = — 3 and β2= — l. Then, the unique indecomposable lattice class in the
principal genus of B3 is represented by L = Θ3x, where xeGL3(B) such that

0

3
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The other lattice class is represented by Θ3. Since #(Aut(03))=l/123 6 and since

13 1 1

12 3 6 7 *(Aut(0 3)) #(Aut(L))

by the usual mass formula ([6, p. 568]), we get #(Aut(L)) = 123 7. Now, define a subset

N of G by

N={geG;LgczL,g2=-3Ί3}.

Then, it is easy to see that

0); flfY'0 = 3r, g2 = - 3 13} .

The latter number was calculated by computer and we obtained #(N) = 504. Hence, we
obtained M'(3)= l/23 3 and M(3) = 77/2334 for/> = 3. Whenp = 3 mod 8, then we have
-p = -3ε 2 for some εeZ 2

x . So, if g2= -/?, then (^ε" 1) 2= - 3 . Hence, it is obvious
that for any order Λ2aZ(g)2, the datum c2(g, Λ2, πU2) does not depend on p as long
as p = 3 mod 8. For p = 3, and hence for any prime p = 3 mod 8, we get

These data are enough for later use.

5. Proof of the main theorem. In this section, we complete the proof of Theorem
1 in §1 by showing Theorem 2 in §2. First, we treat M(3). Let F be any imaginary
quadratic field over Q, and denote by oF the maximal order of F. For any natural
number n, we define the generalized unitary group GU(n, F) and the unitary group
U(n, F) as usual by

GU(n, F) = {heMn(F); hth = n(h)ln} ,
and

U(n, F) = {hs GU(n, F); n(h) = 1} .

If we put

as before, then

and
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Hence, for Λ0 = M3(oF)czZ(g), where F=Q(π), the mass MG(Λ0) is the usual mass of

the generalized unitary group GU(3, F). To get the mass MG(Λ0) from the usual mass

of the unitary group

ZG{gY = {he ZG(g); n{h) = 1} = 1/(3, F),

we shall compare the class numbers of both algebraic groups. We shall treat this problem

in a slightly more general setting. Again, let F b e any imaginary quadratic field over Q.

LEMMA 5.1. Notation being as above, assume that n is odd. Then, we get

where t is the number of prime divisors of the discriminant of F.

PROOF. Put oA=Cx xj[Ίt;<ooofv where oFv is the maximal order of the i -adic

completion Fv of F. If gl9 g2eGU(n, FA) and if n(g1)φN(Fx)n(g2)N(oϊ), then it is clear

that g1φGU(n, F)g2GU(n, oA). On the other hand, for each R = FX, FA, or oA, the set

of multiplicators n(g) of GU(n, R) is N(R), respectively, where we denote by N the usual

norm over Q or QA. Indeed, for any aeR, a\neGU(n, R) and N(a) = n(aln). On the

other hand, for geGU(n,R), we get det(gtg) = n(g)n, and since n is odd, we get

n(g) = N(det(g)/n(g)in'1)/2). So, if n(g)eN(Fx)N(a)N(ox) for some aeF^, then replacing

g by some other representative in GU(n, F)gGU(n, oA) if necessary, we may assume that

n(g) = N(a). Now, for each aeFA, put S(a) = {geGU(n, FA); n(g)e N(Fx)N(a)N(oA)}

and T(a) = {geGU(n,FA); n(g) = N(a)}. We show that $(GU(n, F)\S(a)/GU(n,oA)) =

#(t/(«, F)\T(a)/U(n, oA)) = h(U(n, F)). Indeed, if geS(a), then replacing g by some

other representative in GU(n, F)gGU(n, oA) if necessary, we may assume that n(g) = a.

So, take gι,g2εS(a) such that n(g) = a. If g1=kg2u for some keGU(n,F) and

ueGU(n,oA), then n(ku)=\. So, we get n(k)eN(Fx)f)N(oA)=\. This means that

aeU(n,F) and we U(n, oA). Besides, for any geT(ά)9 we get a~ίgeU(n,F) and so

T(a) = a~1T(l). So we get the above results. By the genus theory, it is wellknown that

)) = T-1. q.e.d.

By the above lemma and by using the fact that the unit group of a GU(n, F)-class

is the same as those of U(n, F)-classes in that, it is obvious that

where M(U(n, F)) is the usual mass of the unitary group (with respect to the genus

containing on

F). But, the explicit value of M(U(n, F)) is well-known (cf. Otremba [16],

Hashimoto-Koseki [7]) and when n = 3, this is given by:

M(U{3,F))=-—±-τB1<IB3<t,

and hence, for F= Q(^J —p) (p: odd prime), we get
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2 4 3 4 if p =

For any order Λc=:Z(g), we get MG(Λ) = MG(Λ0)Y\qdq(Λ). Hence, gathering the local
data in §4 together, we get the result for M(3) in Theorem 2.

As for the case where « = 2, it is known (cf. [6, p. 572, Proposition 12]) that

) l\D(Z0(g)) q

for any A ^Z(g). Hence, gathering local data in §4 together, we get the results for M(2)
in Theorem 2.

Thus, Theorem 2 was proved and hence Theorem 1 as well.

REFERENCES

[ 1 ] M. DEURING, Die Anzahl der Typen von Maximalordnungen einer definiten Quaternionenalgebra mit

primer Grundzahl, Jber. Deutsch. Math. Verein. 54 (1951), 24-41.
[ 2 ] M. DEURING, Die Typen der Multiplikatorenringe elliptischer Funktionenkόrper, Abh. Math. Sem.

Univ. Hamburg 14 (1941), 197-272.
[ 3 ] K. HASHIMOTO, Class numbers of positive definite ternary quaternion hermitian forms, Proc. Japan

Acad. Ser. A. Math. Sci. 59 (1983), 490-493.
[ 4 ] K. HASHIMOTO, On Brandt matrices associated with the positive definite quaternion hermitian forms,

J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 227-245.
[ 5 ] K. HASHIMOTO AND T. IBUKIYAMA, A letter to Serre, 1984.

[ 6 ] K. HASHIMOTO AND T. IBUKIYAMA, On class numbers of positive definite binary quaternion hermitian
forms, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 549-601.

[ 7 ] K. HASHIMOTO AND H. KOSEKI, Class numbers of definite unimodular Hermitian forms over the rings
of imaginary quadratic fields, Tόhoku Math. J. (2) 41 (1989), 1-30.

[ 8 ] T. IBUKIYAMA, On automorphism groups of positive definite binary quaternion hermitian lattices and
new mass formula, in Automorphic Forms and Geometry of Arithmetic Varieties, (K. Hashimoto,
Y. Namikawa eds.), Advanced Studies in Pure Math. Vol. 15, Kinokuniya, Tokyo, and Academic
Press, Orland, Florida, 1989, 301-349.

[ 9 ] T. IBUKIYAMA AND T. KATSURA, On the field of definition of superspecial polarized abelian varieties

and type numbers, 1989. Preprint.
[10] T. IBUKIYAMA, T. KATSURA AND F. OORT, Supersingular curves of genus two and class numbers,

Composito Math. 57 (1986), 127-152.
[11] Y. IHARA, Some remarks on the number of rational points of algebraic curves over finite fields. J.

Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 721-724.
[12] Yu. I. MANIN AND S. G. VLADUT, Linear codes and modular curves, J. Soviet Math. 30 (1985),

2611-2643.
[13] O. O'MEARA, Introduction to quadratic forms, Springer, Berlin, Heidelberg, New York, 1971.
[14] F. OORT, Ήyperelliptic supersingular curves, in Arithmetic algebraic geometry, Texel, 1989 (G. van

der Geer, F. Oort, J. Steenbrink, ed.) Progr. Math. 89, Birkhauser Boston, Boston, MA, 1991,247-284.
[15] F. OORT AND K. UENO, Principally polarized abelian varieties of dimension two or three are Jacobian

varieties, J. Fac. Sci. Univ. Tokyo Sect. IA 20 (1973), 377-381.



RATIONAL POINTS OF CURVES OF GENUS 3 329

[16] G. OTREMBA, ZUΓ Theorie der Hermitischen Formen in imaginar-quadratischen Zahlkόrpern, J. Reine

Angew. Math. 249 (1971), 1-19.

[17] J. P. SERRE, A letter to Hashimoto and Ibukiyama, February 1984.

[18] J. P. SERRE, Nombre des points des courbes algebrique sur Fq, Sem. Theor. Nombres Bordeaux (2)

1982/83, 22 (1983).

[19] J. P. SERRE, SUΓ le nombre des points rationnels d'une courbe algebrique sur un corps fini, C. R. Acad.

Sci. Paris Ser. I Math. 296 (1983), 397^02.

[20] A. WEIL, Courbes algebriques et varietes abeliennes, Hermann, Paris, 1971.

DEPARTMENT OF MATHEMATICS

COLLEGE OF GENERAL EDUCATION

OSAKA UNIVERSITY

TOYONAKA 560

JAPAN






