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ON "EASY" ZETA FUNCTIONS 

TOMOYOSHI IBUKIYAMA AND HIROSHI SAITO 

The aim of this article is to explain that among the various types of zeta func
tions there are far more that have easy expressions than is commonly believed. 
Specifically, we would like to explain that in an unexpectedly large number of cases 
the zeta functions of prehomogeneous vector spaces and the zeta functions of au
tomorphic forms can be calculated in terms of known functions if we bring to bear 
all our arithmetical knowledge, even though this "easiness" is often not apparent 
from the definitions. In the first half of the article more emphasis has been placed 
on the development of the ideas than on mathematical correctness. 

1. Two KINDS OF ZETA FUNCTIONS 

This may sound a bit like a joke, but we have come to feel that there are two 
kinds of zeta functions: "easy zeta functions" and "difficult zeta functions. " Even 
though we cannot define these precisely, we want to gradually explain this feeling. 

The series L:�=1 ann-s associated to a sequence {an} and a complex number 
8 is called a Dirichlet series. Depending on how the an are taken, this series may 
have very good properties. For instance, if we set ((8) = L:�=1 n -s, then we have 
the following: 

(1) ((8) converges absolutely for �(8) > 1 and can be continued analytically to 
the whole 8-plane as a meromorphic function. 

(2) ((8) has a functional equation. Namely, if we set �(8) = 7r-s/2r(8/2)((8), 
then �(1 - 8) = �(8). 

(3) ((8) has an Euler product. Namely, ((8) = ITp(l-p-S)-l (p runs over prime 
numbers). 

This ((8) is called the Riemann zeta function. Taking ((8) as a model, one 
can think up many other Dirichlet series which satisfy properties (1)-(3) or some 
part of them. These functions are labelled with a suitable adjective and are called 
zeta functions or L-functions. Here {an} will often have a good definition with 
some natural arithmetical meaning, but there is no reason that the individual 
an themselves should be described by any especially concrete formula. Let us 
agree to speak somewhat vaguely of an "easy zeta function" whenever there is 
an easy explicit formula for the an. From this point of view, the Riemann zeta 
function is the model of an easy zeta function, while at the opposite extreme the 
L-function L(8,�) = L:�=l T(n)n-S associated to Ramanujan's Delta function 
� = q IT::1 (1 - qn ) 24 = L:�=1 T( n )qn can be taken as the model of a difficult zeta 
function. 
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What other kinds of easy zeta functions might there be, then? For example, for 
any ring A let us denote by Symn (A) the vector space of symmetric matrices of size 
m with coefficients in A. In particular, we write Lm = Symm(Z). Let S ELm, and 
for the sake of simplicity let us suppose that S >  0, i.e., S is positive definite. For 
T E Ln we set A(S, T) = #{X E Mmn(Z) I txsx = T} . Then, for instance, if we 
set ((s, S) = L�1 A(S, l) l-s, will ((s, S) be an easy zeta function? In other words, 
will there be a simple formula for the A(S, l)? Let us take as an example the Epstein 
zeta function (m(s) = LXEZ=-{O} N(x)-S, where we have written N(x) = txx. It 
has an analytic continuation to the whole plane and a functional equation. We 
cite a few concrete instances from the Iwanami Mathematical Dictionary.1 Setting 
L(s) = L�=1 (- I)n-1(2n -1)-s for simplicity, we have, e.g., 

(6(S) = -4((s) L(s - 2) + 16 ((s - 2) L(s) , 

(8 (S) = 16 (1 - 21-s + 24-2s) ((s) ((s - 3), 
(12 (S) = 8 (1 - 26-2s) ((s) ((s - 5) + 16 L(s, ¢). 

Here L( s, ¢) is the L-function coming from a weight 6 cusp form (namely, ¢ = JLS."); 
so it is a difficult zeta function. To explain the complicated nature of (12 (s) in 
comparison with (6 (s) and (8 (s), we review Siegel's formula in a simple case. Let 
us say that S1, S2 E Lm belong to the same class if tgs1g = S2 for a suitable 
9 E GLm(Z). The numbers of solutions A(S, T) and other quantities described 
above depend only on the class. On the other hand, we say that S1 and S2 belong 
to the same genus if for an arbitrary prime number p there is a gp E GLm(Zp) (Zp 
the ring of p-adic integers) with tgpS1gp = S2 and if also S1 and S2 are equivalent 
after a change of basis over the field of real numbers. The number of classes within 
a single genus (that is, the subset of elements of Ln that are locally equivalent to 
a given element) is called the class number of the genus. This class number is in 
general larger than l. If it is bigger than one, then it is not to be expected that 
global quantities like the number of solutions considered above can be found just 
by evaluating the number of local solutions. In fact, the class number for the rank 
12 identity matrix h2 is not 1, and this is the reason for the complexity of (12 (S) . 
On the other hand, it might be that if we take the average over all the classes in 
a single genus, then this can be calculated in terms of local quantities. The first 
formulation of Siegel's formula states precisely this. Let £ c Lm be a genus, which 
for simplicity we take to be that of a positive definite matrix. Let S1 , ... ,Sh be 
the representatives of the classes in £. Fix some T E Ln. Also set E(S) = A(S, S) 
and write M(£) = L7=1 E(Si)-1. M(£) is called the mass of £. 

Theorem (Siegel). With the above notation, the following holds: 

(t, A(Si, T) E(Si)-1) M(£)-1 

= cm,n det(S)-n/2 det(T)(m-n-1)/2 II O!p(£, T). 
p 

lTranslated into English as Encyclopedic Dictionary of Mathematics, MIT Press, Cambridge, 
MA, 1977, 1987. 
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Here cm,n is a constant depending on m and n whose detailed description we 
omit. cxp(£, T) is a quantity called the local density: If for S E Symm(Zp) we set 
Apv(S, T) = #{X E Mmn(Z/pVZ) I txsx == T (mod pV)}, and if E = 1 for m > n 
and E = 1/2 for m = n, then we define 

cxp(S, T) = E lim pv(m(m+1)/2-mn) Apv(S, T). 
v--->oo 

The quantity in the limit on the right-hand side stabilizes for v sufficiently large; 
so the definition is consistent. Moreover, since it also does not depend on how we 
choose S E £, we wrote it above as cxp(£, T). 

Now Siegel's formula has another aspect. In order to keep the explanation simple 
we consider the case n = 1. Write SJ = {z E <C I 'S( z) > O} for the complex upper 
half plane. The theta function on SJ associated to S E Ln, 

00 

{}(S,z) = L A(S,l) exp(27filz), 
l=O 

is a modular form on SJ with respect to a suitable discrete group. 

Theorem (Siegel). With the notation taken as above, 

h 
M(£)-1 L {}(Si, z) E(Si)-1 

i=1 

is equal to a modular form on SJ called an Eisenstein series. 

That is, the "average" of the theta functions as we run through the classes is 
a relatively standard modular form. The important point is that not only are the 
"averages" over the classes of the A(Si, l) for the individuall expressible in terms of 
local invariants, but the average over the whole set of zeta functions (s, Si) is also 
a standard object. (In case the dimension n of the matrix T is bigger than 1, one 
must consider theta functions and Eisenstein series on the Siegel upper half-plane, 
but we omit the explanation of this.) The local densities are fairly well understood. 
Actually, no completely general formula for the local densities is known, but still it 
is not too unreasonable to call the above "average" of the zeta functions over the 
classes in a genus an "easy" zeta function, and it may also be permissible to call 
Eisenstein series a "source" of easy zeta functions. (We will touch upon this point 
again later on.) 

Now, the identity matrices 16 and 18 both have class number 1. From this point 
of view one would not expect (6 (s) and (8 (s) to differ, but the former does not 
have an Euler product, while the latter one does. Yet, seen from the point of view 
of Siegel's theorem, we have no grounds to consider the latter more natural. So 
we cannot avoid calling (6 (s) a completely standard zeta function. Based on these 
thoughts, we would like to make the following assertion: 

Observation 1. It is a misconception that good zeta functions must have Euler 
products. 

As prototypical zeta functions which do not have an Euler product but which 
do have a functional equation we can take the zeta functions of prehomogeneous 
vector spaces. These will be discussed in the next section. 
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2. ZETA FUNCTIONS OF PREHOMOGENEOUS VECTOR SPACES 

We will illustrate our motivation for studying these objects through an example. 
For any ring A and any natural number n we set V(A) = Symn(A). Then GLn(C) 
acts on V(C) by x --> tgxg (x E V(C), g E GLnCC)). In fact (GLn, V) is an example 
of a prehomogeneous vector space defined over Q. Now let L� be the lattice 

L� = {x = (Xij) E V I Xii E 2, 2Xij E 2 (1::::; i, j ::::; n) } 

in V. The elements of L� are the so-called semi-integral symmetric matrices. For an 
element x of L� with x > ° (positive definite) we set f x = {"( E S Ln (2) I t"(x"( = x} 
and write /-L( x) = # (f x ) -1. We define the zeta function of L� by 

where L�/'" denotes a set of representatives of the orbits of the action of SLn(2) 
on L�. (Note that this is totally different from the zeta functions ((s, S) associated 
to the various symmetric matrices themselves which we considered in the previous 
section.) There are already works by Siegel concerning the convergence of these 
series, but it was T. Shintani who later studied them deeply and proved their 
analytic continuation and functional equation (cf. [16]). One of the reasons that 
great attention has been paid to these functions is their special values; specifically, 
their values at non-negative integers s appear as one ingredient in the dimension 
formula for Siegel modular forms. This is due to Y. Morita [12] for n = 2 and to 
Shintani [16] for general n. It has been possible to actually calculate this special 
value if n = 2. This is because of the special circumstance that in that case 
det(x) can be considered as a ternary quadratic form and can be understood from 
Siegel's results on zeta functions of quadratic forms. For general n everybody 
assumed that, because of their role in the dimension formula (which is after all a 
formula for an integral quantity), the special values should be rational numbers, 
but for n 2: 3 nothing was known. The sole exception was the result ((0, L3) = 

1/3456 obtained by Hashimoto and Tsushima, but the proof of this was terribly 
complicated. Namely, they calculated the dimension formula for modular forms 
in two ways, using both the Selberg trace formula and the Lefschetz fixed point 
theorem, and then by comparing the non-understood terms which were left over 
were able to determine the value in question. On the other hand, ((s, L�) itself 
was given by a complicated expression even for n = 2; so it was vaguely thought 
to be a difficult object. Thus one could imagine that perhaps ((s, L�) itself was 
a complicated mystery and that just its special values were nice because of some 
accidental circumstances, so that one might try to calculate them by some kind of 
contour integral techniques, with the amount of calculation needed probably being 
too great to carry out in practice. But the truth is: 

Observation 2. It is a misconception to think that ((s, L�) is complicated. In fact 
it can be written in terms of known zeta functions and is "easy." 

It is in fact the principal aim of this article to amplify and explain this observation 
as fully as possible. 
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Before stating Observation 2 as a precise theorem, we will give a simple review 
of prehomogeneous vector spaces (under suitable conditions) . This should make it 
easier for the reader to understand the overall picture. Let V be a finite-dimensional 
vector space over Q and G a connected reductive algebraic group over Q acting on 
V. In general, for an algebraic variety W and a ring A we write W(A) for the 
A-valued points (points with coordinates in A). If there is a proper algebraic subset 
S of V(C) such that G(C) acts transitively on V(C) - S(C) , then (G, V) is called 
a prehomogeneous vector space. For the sake of simplicity we shall assume in what 
follows that S(C) is an irreducible hypersurface S(C) = {x E V(C) 1 P(x) = o}. 
Here P(x) is taken to be a generator of the relative invariants of G, i.e., of the 
polynomials satisfying f(gx) = x(g)f(x) (X(g) E C, g E G(C)) .  Next, let f c G(lR) 
be a discrete subgroup of finite covolume and L a f-invariant lattice in V(Q) . We 
would like to assign a weight to each x E L, and for this purpose we fix an invariant 
measure dg on G and a G-invariant measure w on V. For x E L, x tj. S, we write 
Gx = {g E G(lR) 1 gx = x} and f x = f n Gx. Because of the prehomogeneous 
property, an invariant measure on Gx can be defined as the "ratio" of dg and w. 

The effect of this definition is that when looking at all x simultaneously we can 
eliminate the ambiguity of the invariant measure up to a constant factor. Then, if 
the volume p,(x) = vol(Gxlf x) with respect to the measure just defined is finite for 
every x E L, we can define zeta functions in the following way. We first decompose 
V(lR) - S(lR) into G(lR) -orbits, say V(lR) - S(lR) = Ui V

i (disjoint) .  Then for each 
Vi we define 

Thus a priori there is one such partial zeta function corresponding to each G(lR) 
orbit, but in fact it can happen that the zeta functions for different i's coincide. The 
functional equation of the zeta function is then actually a relationship between the 
vectors (i(S, L) ) and (i(S, L* ) )  formed from these, and the individual functions do 
not have to have functional equations when taken separately. Here L * is the dual 
lattice of L. 

In the previously discussed case V = Symn and G = G Ln, we take Vi (0 ::::: i ::::: n) 
to be the set of real symmetric matrices of signature (i, n - i), corresponding to 
the decomposition into real orbits. Then there are a priori n + 1 zeta functions 
(of course «(s, L�) = (n( s, L�) ) ,  but from the definitions one immediately sees 
that (i(s,L) = (n-i(s,L). From now on, we consider the case Ln = Symn(Z) , 
L = Ln or L�, and f = SLn(Z). In fact, for some reason the following fact has 
escaped attention, namely, the arithmetical theory of quadratic forms shows that 
(i(S, L) depends only on 0 = (_l)n-i and € = (_1) (n-i) (n-i+1)/2. Therefore for 
L = Ln or L� let us write (i(S, L) = «(s, L, 0, E) . We also suppose from now on 
that n ;::: 3. (This is because the case n = 2 is already known and also presents 
various peculiarities. We will touch on this again later.) The concrete formulas for 
the zeta functions are completely different for odd and even n. In order to state 
the theorem in a simple form, let us prepare some notation. For an integer i ;::: 0, 
the Bernoulli number Bi is defined by tet I (et - 1) = 2:::0 Biti Ii! . Furthermore, 
set 

1 rr[(n-1)/2j B ·1 
b - ,=1 2, n - 2n-1 ([n21]) ! ' 
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Finally, for the case when n is odd, we set 

n -1 (n-1)/2 
Qn(s) = ((s - -2-) II ((2s-(2i-1)) , 

i=l 

Theorem (cf. [7]). 

(n-l)/2 
Rn(S) ((s) II ((2s-2i). 

i=l 

((s,L�,iS,f) = bn 2(n-1)s (Qn(S) + fiS(n+1)/2(_1)(n2-1)/8Rn(s)) , 
((s,Ln,iS,f) = bn (2(n-1)/2 Qn(S) + fiS(n+1)/2(_1)(n2-1)/8Rn(s)) . 

We see from this that these zeta functions do not have Euler products but that 
they are the sums of two pieces which do have Euler products. 

Now let us suppose that n is even. We first set 

n/2-1 n/2 
An(s) = II ((2s - 2i) , Bn(s) = II ((2s - (2i -1)) . 

i=l i=l 

But the case of even n is more complicated, and we need more notation. 
If K is a quadratic extension of Q, we denote by dK the discriminant and by XK 

the quadratic character corresponding to K. We also consider the case K = Q EB Q 
and in that case set dK = 1 and take XK to be the unit character. Then for is = ±1 
we set 

D�(s, is) = (_1)[n/4] 2 (27f )-n/2 r(n/2) IdKI(n-1)/2 L(n/2, XK) 
(-1)n/2odK >0 

((2s) ((2s - n + 1) 
Id I-s 

x L(2s _ n/2 + 1,XK) K . 

Here the sum runs over all quadratic fields K or K = QEBQ with (-1)n/2iSdK > 0.2 
Then setting 

00 

D�(s,iS) = LH(n/2,d,iS) d-S 
d=l 

defines the notation H(n/2, d, is), after which we define 

00 

Dn(s, is) = L H(n/2, 4d, is) d-s . 
d=l 

These functions D� and Dn have a close relation with Eisenstein series, as will be 
discussed in the following section. 

2 Translator's remark. We can write D;'(s,o) more simply as Cn L 1l:>I-s+(n-l)/2 L(n/2, l:», 
where Cn = (-1)[n/412(27r)-n/2qn/2), the sum is over all integers l:> == 0 or 1 (mod 4) with 

(_1)n/20l:> > 0, and Lt:>.(-) is a certain standard L-function defined in terms of binary quadratic 
forms of discriminant l:>. (Cf. Modular Functions of One Variable VI, Springer Lecture Notes 

627, pp. 109-110 and 130. ) In this notation, H(n/2, d, 0) equals Cn d(n-l)/2 L(n/2, (_1)n/20d). 
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Theorem (cf. [7]). Let n ;::: 4 be an even number. Then the following formulas 
hold: 

((s, L�, 15, E) 
2B" 

= bn 2ns (( _1)[n/4j D�(s, 15) An(s) + E i5n (_1)n(n+2)/8 � Bn(s)) , n 
((s, Ln, 15, E) 

2(n+2)/2 B" 
= bn ((_1)[n/4j Dn(s, 15) An(s) + Ei5n (_1)n(n+2)/8 n/2 Bn(s)) , n 

where we have set i5n = 1 if (_1)n/2 = 15 and i5n = 0 otherwise. 
Here the Dirichlet series Dn(s, 15) and D�(s, 15) do not have Euler products, but if 

one looks closely one sees that they are sums of infinitely many terms which do have 
Euler products. In fact it has been shown that this can be said in general about the 
zeta functions of prehomogeneous vector spaces. (Writing down a concrete formula, 
however, is a different matter.) 

The proofs of these two theorems do not use the general theory of prehomo
geneous vector spaces at all. Instead, one carries out an arithmetical calculation 
directly from the definitions. If we try to obtain other concrete theorems in the 
same spirit, then a number of results which were previously unclear emerge as 

simple corollaries. For example-although we will not enlarge on this here-one 
can give a direct proof of the functional equation without appealing to the general 
theory. Moreover, our results turn out to be much simpler than those obtained by 
Shintani. In particular, the special values ((1- m, L�) (m = 1, 2, . . . ) for arbitrary 
nand m can all finally be expressed in terms of Bernoulli numbers. The dimension 
formula for automorphic forms comes out as one would expect from the general 
theory, and the residues can also be written down fairly concretely. 

If i = n, then the zeta functions we have been discussing are zeta functions of 
self-dual homogeneous cones (also called symmetric cones). For the general orbits, 
it would be more correct to speak of the zeta functions of formally real Jordan 
algebras. These types of functions were investigated by Satake, Ogata and others 
in order to get a better understanding of the geometric invariants of quotient spaces 
of bounded symmetric domains by discrete groups (cf. [13]). For them, too, one can 
use basically the same computational techniques, and, at least for typical Q-forms, 
the zeta functions can be shown to be "easy" ones. These are only a subclass of 
prehomogeneous vector spaces, but can be extended in large part to the general 
case. And also for zeta functions like those of binary cubic forms, which were 
previously thought to be exceedingly complicated, a totally unexpected relation 
has been found (work of Ohno and Nakagawa) .  At this point we will risk proposing 
the following question: 

Problem. Are the "averages" of the zeta functions of prehomogeneous vector 
spaces all "easy zetas"? 

Here the word "average" is like the corresponding notion in the Siegel formula, 
where we took an average over the genus of a lattice L. For many (G, V) and L the 
class number is one, as happened for example for the two theorems stated above, 
and in this case there is no need for any averaging. The notion of "easy zeta" still 
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remains imprecise, but we are now thinking, for instance, of the zeta functions of a 
wider class of Eisenstein series (e.g. for metaplectic groups) . The meaning of this 
will be explained more fully below. 

3. REAL-ANALYTIC EISENSTEIN SERIES 

This section has two aims. The first is to give an explanation of Dn(s, 0) and 
related quantities in terms of automorphic forms; the second, to make some com
ments about the particular automorphic aspects of the functional equation, etc., 
in the special (and pathological) case n = 2. Our results will extend the results 
obtained by Cohen [3], Sturm [18] and others for the case 0 = 1. We begin by giv
ing the definition of one-variable Eisenstein series of half-integral weight following 
Shimura [15] and others. For a positive or negative odd number k, a parameter 
IJ E C with �(IJ) » 0, and a variable z E Sj (Sj = complex upper half-plane) , we 
define the Eisenstein series E(k,lJ,z) and E*(k,lJ,z) by 

E(k, IJ, z) 

E*(k, IJ, z) 

yU/2 f f (�)Edk (4CZ+d)k/214CZ+dl-u, 
d=l c=-oo dodd 

E(-�) (_2iz)k/2 4z 

yU/22k/2-Ue(_�) f f (�
b
)Edk (dZ+b)k/2 IdZ+bl-u. 

d=l b=-oo dodd 

Here (;) is the quadratic residue symbol, while Ed is 1 or R according as d == 1 or 
3 mod 4. To get the zeta function we want, it is convenient to define the combination 

F(k, IJ, z) = E(k, IJ, z) + 2k/2-u (e(k/8) + e ( -k/8)) E*(k, IJ, z). 

Since F is invariant under translation by integers, if we write z = x + iy it has a 
Fourier expansion of the form 

00 F(k, IJ, z) L Cd(Y) e2-rridx . 
d=-oo 

An explicit formula for Cd(Y) = Cd(Y, IJ) can be obtained easily from, e.g., Shimura 
[15]. We further set G(y) = L�-oo Cd(Y) and H(y) = L�-oo C4d(y/4). Then 
from the modularity we get 

We consider the two Mellin transforms 

W�,k(S) = 100 (G(y) - co(Y)) ys-1 dy, 

Wu,k(S) = 100 (H(y) - co(y/4)) yS-1 dy. 
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Then for n an even number, n > 2, it can be shown that 

'l!�,-n-1 (s) 
= (_It(n+2)/8+[n/4J7rn+1/2r ( (n + 1)/2) -lr(n/2)-1((n)-1(27r)-Sr(s )D�(s, 1) , 

'l!�,_n+3(S) 
= (_It(n+2)/8+1+[n/417rn+1/2 r(n/2)-lr ( (n - 1)/2) -1 ((n) -1(27r) -Sr(s) 

n- 1 n - 1 
x (D�(s, 1) 1 (s, -2-' 1) + D�(s, -1) 1 (s, 1, -2-)) ' 

for �(s) » 0, and similar formulas for 'l! with all asterisks removed. Here we have 
set 100 (1 + U)<->-luf3-1 

1(s,a,(3) = 

( ) duo 
o 1 + 2u S 

Then by the usual Hecke argument, the functions 'l!�,k and 'l! cr,k extend meromor
phically to all of C and satisfy 

'l!�,k(o-- k/2 - s) = (_1)(k2-1)/8 22s-2cr+k+1 'l!cr,k(S), 

from which the functional equation and position of the poles follow. We have thus 
interpreted the Dirichlet series which we are interested in in terms of Eisenstein 
series. It is noteworthy that here, rather than using the zeta functions of automor
phic forms of integral weight, as is done in the usual Shimura correspondence, we 
directly take the Mellin transform of the form of half-integral weight. 

The case n = 2, on the other hand, is less simple. The reason is that if x E L2nV1 
and - det x is a perfect square, then the quantity p,( x) becomes infinite, so that 
even the definition of (1 (s, L2) becomes problematic in this case. One could try 
to proceed by summing only over the x for which p,(x) is finite, but in fact if we 
do this then the functional equation is not satisfied. The question therefore arises 
of how to modify the definition to get a good zeta function. It does not seem to 
be known yet how to make this modification for prehomogeneous vector spaces 
in general. In our case it was done by Shintani [16] and F. Sato [14] , but our 
methods give an alternative solution. Namely, if we put k = 1 in the above 'l!* 
and 'l! and think of them as functions of 0- and s, then the situation is roughly 
speaking as follows. After a suitable normalization, these functions have the shape 
A(o-, s) + ((0-- l)B(o-, s) for suitable holomorphic functions A and B, with a pole 
at 0- = 2. The residue of this pole is expressible in terms of the Riemann zeta 
function and is not especially interesting. However, the part of the sum with p,(x) 
finite appears naturally in A(2, s), so if we look at the constant term of the Laurent 
expansion around 0- = 2 then a correction term arises from the B(o-, s) part, and 
the above functional equation implies a functional equation between the corrected 
zeta functions (viz., the constant terms) . The calculation is somewhat tricky, but 
all known results can be recovered using this method. That this method succeeds in 
explaining everything starting from automorphic forms, and in particular Eisenstein 
series, is especially attractive from our point of view. 

4. KOECHER-MAASS SERIES 

Up to the last section we have been speaking somewhat vaguely of the zeta 
functions associated with Eisenstein series as "easy" . Now we want to state a 
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little more correctly what this means, for instance, for the zeta functions associated 
to automorphic forms on the Siegel modular group Sp(n, Z). In the interest of 
brevity we omit the precise definition of Siegel automorphic forms, but in any case 
they are holomorphic functions F( Z) in the Siegel upper half-space .f)n = {Z = 
X + iY E Symn(C) I X, Y E Symn(lR.), Y > O} that satisfy a suitable invariance 
property with respect to the operation of Sp(n, Z) (and a growth condition). These 
automorphic forms have Fourier expansions of the form 

F(Z) = L a(T) exp (27ri tr(TZ) ) , 
TEL� 

with a(T) equal to 0 unless T is half-integral. We then set 

((s, F) = 
� fL(T) a(T) 

. � det(T)s TEL�/�, T>O 

This is called the Koecher-Maass series associated to F. For n = 1 it is just the 
zeta function defined by Heeke, and in particular has an Euler product if F is a 
simultaneous eigenfunction of all Hecke operators, but the Koecher-Maass series 
for n ::::: 2 do not in fact belong to the mainstream of the zeta functions that have 
been studied up to now. From the point of view of modern representation theory, it 
is more natural to define zeta functions by local decompositions of representations 
(Euler products!), so the zeta functions whose definitions use the eigenvalues with 
respect to Hecke operators have been studied the most. Such zeta functions have 
Euler products from the very beginning, but the proof of their functional equations, 
etc. , is all the more difficult. The Koecher-Maass series for n ::::: 2, on the other 
hand, behave in a completely different way: the proof of the functional equation is 
comparatively easy, but they do not in general possess an Euler product. 

However, the function ((s, F) defined above at least visually resembles ((s, L�). 
Of course, since one cannot in general even hope for a formula for the Fourier 
coefficients when F is a cusp form, it is not possible always to call ((s, F) an easy 
zeta function. But if F is related to some sort of lifting, then the zeta function 
may be easy. And indeed, in the case n = 2 there are results of Bocherer [2] for the 
Maass space and for Klingen-Eisenstein series. For general n the following theorem 
results from the joint work of Ibukiyama and Katsurada. 

Theorem. If F is a Siegel Eisenstein series, then ((s, F) can be written down by an 
explicit formula involving the Riemann zeta function and zeta functions associated 
to Eisenstein series of halrintegml weight in one variable. 

This has been extended by Saito from the ground field Q to the case of general 
ground fields. For the details we would like to refer to the papers now in preparation. 
Because the weight enters as a parameter, the results are more complicated than 
for ((s, L�), but their general nature is surprisingly similar. If we repeat the above 
theorem in the form of a catchword, we get 

Observation 3. The Koecher-Maass series of Siegel Eisenstein series are "easy 
zetas". 

Now, since Eisenstein series are averages of theta series, and ((s, F) is an average 
of Fourier coefficients, can one speak of ((s, F) as being an average of averages? 
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Problem. Compute the Koecher-Maass series of elements belonging to the orthog
onal complement of the space of cuspidal automorphic forms on a Siegel domain 
of the first kind (tube domain), e.g. , of Klingen-Eisenstein series. Are they "easy 
zetas"? 

Of course, since these automorphic forms become cusp forms on the boundary, 
we cannot avoid the data coming from this part. The question is whether what 
remains after we remove this part is "easy". 

In any case, it seems that among the zeta functions which we normally meet the 
family of "easy" zetas is rather extensive. 

5. DIMENSION FORMULA AND EXPONENTIAL SUMS 

We now discuss two other important related topics. The first is the dimension 
formula for holomorphic automorphic forms on a bounded symmetric domain D. 
This is provided by the Selberg trace formula with a suitable integral kernel, but 
the actual calculation of the dimension is extremely troublesome and in fact the 
number of formulas that are known is quite small. Since the integral kernel has 
the form of a sum of translates of a function by the action of the discrete group f 
with respect to which the automorphic forms are defined, it makes sense to speak 
of the contribution coming from an element or (if it converges) a subset of f. Let 
us suppose for instance that the algebraic group G used in writing D = G / K is 
defined over Q and that f is an arithmetic subgroup of G(Q). Then it is generally 
believed that: 

(1) If an element, E f has no eigenvalue of absolute value 1, then its contribution 
vanishes. 

(2) Suppose that a suitable power of, is a unipotent element of f. If the unipo
tent part of its Jordan decomposition is contained in the center U of the 
unipotent radical of a maximal parabolic Q-subgroup, we call, central. Then 
the contribution of non-central elements vanishes. 

If we believe these statements, then the only contributions to the dimension formula 
for a congruence subgroup of sufficiently high level will come from ±1 (unit element) 
and the central unipotent elements. On the other hand, for any maximal parabolic 
subgroup, U has the structure of a Jordan algebra. Therefore we should expect to 
be able to write its contribution as a special value of the zeta function of a cone. 
In order to prove this, one has to prove new functional equations, etc., which are 
not contained in the general theory of prehomogeneous vector spaces, but under 
suitable arithmetical assumptions these can actually be obtained, and because one 
can interpret them as special values of easy zeta functions it is possible to write 
down explicitly a conjectural formula for the dimension of the space of automorphic 
forms. For this we refer the reader, for instance, to [6] and [4]. It used to be assumed 
that the complexity would become unmanageable as the dimension of the domain 
increased, but the above considerations suggest that it may really be possible in 
future to write down the dimension formula for automorphic forms on bounded 
symmetric domains. 

Next we say something about exponential sums. In connection with the dimen
sion formula for Siegel modular forms of degree 2, Lee and Weintraub formulated a 
conjecture saying that a certain sum of roots of unity of a previously unknown type 
could be expressed in terms of Bernoulli numbers. Several people considered the 
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challenge of finding an elementary proof of this conjecture, but no one succeeded. 
By the work of Hashimoto and Arakawa [1], it could be shown that the conjecture 
reduced to the evaluation of special values of the L-functions of a prehomogeneous 
vector space of a certain type. But in fact, this L-function can be written down 
in explicit form by using our theory, and one also obtains the Lee-Weintraub con
jecture ([11], [10], [9]) .  But even now there is no elementary proof. Going even 
further, it may be that there are exponential sums of a similar type for more gen
eral prehomogeneous vector spaces, but this is not yet known. We think that there 
may be the possibility of a general theory here. 

6. CONCERNING THE PROOFS 

Unfortunately, we are gradually reaching the end of our allotted space. Also, 
to be honest, the proofs are very complicated-in contrast to the easiness of the 
results. But, even if we can't explain the proof of the formula for ((s, Ln) in detail, 
we would still like to discuss it briefly. Looking carefully, one sees that ((s, Ln) 
describes the distribution of masses of genera in Ln. Each mass is given by Siegel's 
formula as a product of reciprocals of local densities. The form of the local densities 
CY.p(S, S) occurring here is extremely well understood. In the case p = 2 it is quite 
complicated, but still there is a complete formula. Using it, one can therefore in 
principle carry out the calculation. Specifically, we should first calculate the sum 
over equivalence classes of S E Symn(Zp) of the quantity CY.p(S, S)-lldet(S)I� and 
then take the product over p. In practice, however, there are several complications. 

(1) First of all, even if the determinants of a collection of local (i.e., over Zp) 
symmetric matrices are equal, this does not imply the existence of a global (i.e., 
over Z) symmetric matrix. The necessary condition for this is that the product 
of the Hasse invariants is 1. But since verifying this condition each time would 
be difficult, one instead considers the local Dirichlet series both including and not 
including the Hasse invariant, forms the products over all p and then adds them, 
so that only the part where the product of the Hasse invariants is 1 survives. This 
is the same technique as is used, for example, for the "relative trace formula." 

(2) The next problem is that the classification of the local isomorphism classes is 
extremely complicated for p = 2. But in fact the zeta function only involves cruder 
data than the mass of a single genus. By lumping together all the genera with 
the same determinant we obtain a quantity which is much simpler than in Siegel's 
formula, and in fact, if we collect together all of the ones with the same Jordan 
decomposition (= class of symmetric matrices with the same normal form), then 
we can calculate the average of the reciprocals of the local densities without using 
the classification of the equivalence classes. This part is one of the key lemmas. 

(3) The quantities calculated as above for each Jordan decomposition must then 
be put together into a local Dirichlet series which is as simple as possible. We 
do this in two steps, first collecting the contributions corresponding to Jordan 
decompositions of a fixed size and then letting the size vary, using the q-analogue 
of the Taylor expansion for the latter. 

(4) The coefficient apv of the Dirichlet series occurring in (3) is obtained as the 
sum (or as the sum weighted by the Hasse invariants) of the reciprocals of the local 
densities taken over all local equivalence classes with det(S) = dopv for a fixed 
number do prime to p. This involves studying a certain decomposition of the so
called Jgusa local zeta function. If the result were independent of the value of do, 
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then we could obtain the global Dirichlet series simply by multiplying together the 
local ones corresponding to all p, but in fact it does depend strongly on do. We 
therefore have to study the individual local Dirichlet series carefully and rewrite 
them before we can assemble them into a global object. 

Unfortunately, we have no idea why in the above proof the final formula should 
become so simple, and in particular, why quantities like Dn(s, 0) appear. We can 
only say that when one does the calculation this is what happens, and that it seems 
to be an extremely attractive problem to explain the essential reason for such an 
outcome and to give a different proof. 

Our results saying that there are not as many difficult zeta functions in the world 
as one might have expected could perhaps be seen as not very positive. But on the 
other hand, it may be that some new insight has been gained and that some new 
questions have arisen whose meaning is only beginning to emerge. 

We have restricted ourselves here to quoting only the most basic references. For 
more details, we refer to the bibliographies at the end of [7]- [9]. 
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