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Abstract. We propose a conjecture of Shimura type that the level one part of the
space of vector valued Siegel modular forms of degree two of half integral weight without
character (Haupt type) corresponds bijectively, up to liftings, to the space of vector valued
Siegel modular forms of integral weight of degree two of level one. This is a generalization
of our previous conjecture for Neben type (with character). Together with the previous
conjecture, this means that Siegel modular forms of degree two of half integral weight with
character and without character should correspond bijectively and Hecke equivariantly up
to liftings. The Harder conjecture on congruences for vector valued Siegel cusp forms
of integral weight is now interpreted as a half-integral weight version which means the
congruence between eigenvalues of Siegel cusp forms and non-cusp forms of half-integral
weight of the same group. We give a concrete example that this congruence really holds.

In the previous paper [12], we gave a conjecture on bijective correspondence between
vector valued holomorphic Siegel cusp forms of integral weight of degree two of level one
and those of half-integral weight belonging to the plus subspace in level 4 with character
(of Neben type), preservingL functions. As a by-product, we stated there a half-integral in-
terpretation of Harder’s conjecture on congruences as a congruence between a Siegel cusp
form of half integral weight of Neben type and the Klingen type Eisenstein series of half
integral weight of Haupt type. This is interesting since in the original Harder’s conjecture,
the congruence is stated as a congruence between a Siegel modular form and an elliptic
cusp form and not between Siegel modular forms. But this new version has an unsatis-
factory point, that is, two Siegel modular forms in question belong apparently to different
discrete subgroups, and this caused difficulty to imagine a general proof. In March in 2012,
Neil Dummigan wrote me an email on his guess that the case without character (Haupt
type) and with character (Neben type) might not be so different. His guess is based on the
following observation. Some lifting conjecture for half integral weight is known in [9] for
Haupt type (as a special case of [15]). On the other hand, for integral weight, there is no
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lifting to holomorphic vector valued Siegel modular forms of level one, so maybe liftings
would appear in real analytic ones. This would mean that real analytic ones correspond
with half-integral weight of Haupt type. But these real analytic ones and holomorphic ones
for integral weight would correspond up to liftings by some L packet conjecture, so maybe
Haupt type and Neben type might not be so different. By reading this, I started to think
of evidence of this problem and was fully convinced that his guess is right. So, in this pa-
per, we give a similar conjecture as the previous one with good evidence that the subspace
of vector valued Siegel modular forms of half-integral weight without character (of Haupt
type), which is orthogonal to the certain subspace of lifts, corresponds bijectively to those
of integral weights. As a result of this conjecture, we can interpret Harder’s conjecture on
congruences as a congruence between a holomorphic Siegel cusp form and a holomorphic
Siegel non-cusp form, both of the same half-integral weight belonging to the same discrete
group, and we can give a concrete example of this type of congruences. The conjecture
mentioned above are based on coincidence of (conjectural) dimension formulas and nu-
merical examples. We state our main conjectures in section 1. In section 2, we give precise
definitions and notations we used in section 1. In section 3, we give a comparison of general
dimensions of the spaces of modular forms in question as very strong evidence of our con-
jectures. In section 4, first we explain relations between the spaces of Siegel modular forms
of half-integral weight and the spaces of holomorphic and skew holomorphic Jacobi forms.
Then we give a concrete numerical example of the correspondence and the congruence in
the conjectures, together with some general explanation how to obtain such examples.

Acknowledgements. I would like to thank Neil Dummigan very much for drawing
my attention to compare the Haupt type and Neben type. Without his email, this study
would not have been done. (See his preprint [1] for discussion of related matters.)

1. Main conjectures

We will explain more details now. We denote by Γn = Sp(n,Z) ⊂ M2n(Z) the Siegel
modular group of degree n. For any integer j ≥ 0, we denote by ρj = Symj the j -th
symmetric tensor representation of GLn. For any integer k, j ≥ 0, we denote by Ak,j (Γn)
the space of Siegel modular forms of weight detk Symj belonging to Γn, and by Sk,j (Γn)
the subspace of cusp forms in Ak,j (Γn). We note that if j is odd and n = 2, then we have
Ak,j (Γ2) = 0.

We define a congruence subgroup Γ (n)0 (4) of Γn by

Γ
(n)

0 (4) =
{(
A B

C D

)
∈ Γn; C ≡ 0 mod 4

}
.

We denote byψ the character of Γ (n)0 (4) defined byψ(γ ) =
( −4

det(D)

)
for γ =

(
A B

C D

)
∈

Γ
(n)

0 (4), where (−4/∗) is the primitive Dirichlet character modulo 4. For any character χ

of Γ (n)0 (4), we denote by Sk−1/2,j (Γ
(n)

0 (4), χ) the space of Siegel cusp form of weight
detk−1/2 Symj with character χ . When χ is ψ or the trivial character, we denote by
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S+
k−1/2,j (Γ

(n)
0 (4), χ) the plus subspace of Sk−1/2,j (Γ

(n)
0 (4), χ), which is a kind of level

one part. (All the precise definitions above will be given in the next section.) When χ is
trivial, we omit χ in the above notation.

We first explain a lifting conjecture in [15] to the Haupt type. This is a generalization
of our conjecture in [9] on the scalar valued case to the vector valued case.

CONJECTURE 1.1 ([9],[15]). For any pair of an integer k ≥ 0 and an even integer
j ≥ 0, there exists an injective linear map L from (f, g) ∈ S2k−4(Γ1) × S2k+2j−2(Γ1) to

L(f, g) ∈ S+
k−1/2,j (Γ

(2)
0 (4)). Besides, if f and g are Hecke eigenforms, then L(f, g) is

also a Hecke eigenform and satisfies the relation

L(s,L(f, g)) = L(s − j − 1, f )L(s, g) .

Here the L function in the left hand side is defined as in Zhuravlev [26], [27] (See also [9],
[12]) and the right hand side is the usual Hecke L function (classically normalized).

For any pair of even integers k and j ≥ 0, we can define a concrete lifting map L from
S2k−4(Γ1)× S2k+2j−2(Γ1) into S+

k−1/2,j (Γ
(2)

0 (4)). (See Hayashida [8] for j = 0 and [15]
for j > 0.) In this case, we already know that if f ∈ S2k−4(Γ1) and g ∈ S2k+2j−2(Γ1)

are Hecke eigenforms and L(f, g) �= 0 for this concrete L, then L(f, g) is also a Hecke
eigenform and

L(s,L(f, g)) = L(s, g)L(s − j − 1, f ) .

Our conjecture claims that this lifting map L is an injective mapping. For odd k, we do not
know how to construct L.

We denote by S+,0
k−1/2,j (Γ

(2)
0 (4)) the orthogonal complement of the image of this map

L (conjectural in general) in S+
k−1/2,j (Γ

(2)
0 (4)).

CONJECTURE 1.2. For any integer k ≥ 3 and any even integer j ≥ 0, there exists
a linear isomorphism

σ : S+,0
k−1/2,j (Γ

(2)
0 (4)) ∼= Sj+3,2k−6(Γ2)

such that for a Hecke eigenform F ∈ S
+,0
k−1/2,j (Γ

(2)
0 (4)), the image σ(F ) is also a Hecke

eigenform and
L(s, F ) = L(s, σ (F ), Sp) .

Here L(s, σ (F ), Sp) denotes the spinor L function of σ(F ). Together with our old
conjecture in [12], we should have

CONJECTURE 1.3. Notations and assumptions being the same as before, there ex-
ists a linear isomorphism

S
+,0
k−1/2,j (Γ

(2)
0 (4)) ∼= S+

k−1/2,j (Γ
(2)

0 (4), ψ)

which preserves L functions.

These conjectures lead us to an interesting conjecture of Harder type and now we
explain this. Harder gave the following conjecture in [3]. Let g be a Hecke eigenform in
S2k+j−2(Γ1) and assume that l is a big prime ideal dividing the algebraic partLalg(k+j, g)
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ofL values of g at k+j . For each prime p, we denote by ag(p) the eigenvalue of the Hecke
operator T (p) of g . Then there should exist a Hecke eigenform F ∈ Sk,j (Γ2) such that

1 − λ(p)u+ (λ(p)2 − λ(p2)− p2k+j−4)u2 − λ(p)p2k+j−3u3 + p4k+2j−6u4

≡ (1 − pk−2u)(1 − pk+j−1u)(1 − ag(p)u+ p2k+j−3u2) mod l

for all primes p, where λ(pi) is the eigenvalue of the Hecke operator T (pi) of F , u is
an indeterminant, and the congruence means that all the coefficients as polynomials in
u are congruent. Here the left hand side is the Euler p-factor of the spinor L function
L(s, F, Sp) if we replace u by p−s . We note that the word “big prime” is not a rigorous
mathematical word. Here we understand this in the meaning that the ideal l seems generic
enough excluding exceptions of all small primes.

For a Hecke eigen cusp form h ∈ S+
k+j−1/2(Γ

(1)
0 (4)), let g be an elliptic (primitive)

cusp form in S2k+2j−2(Γ1) corresponding to h in the sense of Shimura. Then for k > 5,

there exists a Klingen type Siegel Eisenstein series E(h) ∈ A+
k−1/2,j (Γ

(2)
0 (4)) such that

L(s,E(h)) = ζ(s − j − 1)ζ(s − 2k − j + 4)L(s, g) .

The existence of such form E(h) is explained in [12] in terms of Jacobi forms.
For Ak−1/2,j (Γ

(2)
0 (4)), for each odd prime p, there are two fundamental Hecke oper-

ators T1(p) and T2(p) of the metaplectic double coset explained in the next section. Since
A+
k−1/2,j (Γ

(2)
0 (4)) is isomorphic to a space of certain Jacobi forms of level one (see §4),

we can define also T1(2) and T2(2) from the action of Hecke operators on Jacobi forms (see
[9] and [12]). If we denote by λ∗(p) and ω(p) the eigenvalues of G ∈ A+

k−1/2,j (Γ
(2)

0 (4))
for T1(p) and T2(p) respectively, then for any prime p, the Euler p-factors of L(s,G) are
defined by Hp(p−s ,G), where

Hp(u,G) = 1 − λ∗(p)u+ (pω(p) + p2k+2j−5(1 + p2))u2

− λ∗(p)p2k+2j−3u3 + p4k+4j−6u4 .

In particular, for the Klingen type Eisenstein series E(h), we have

Hp(u,E(h)) = (1 − pj+1u)(1 − p2k+j−4u)(1 − ag (p)u+ p2k+2j−3u2) ,

where ag (p) is the eigenvalue of g at p.
By taking Conjecture 1.2 into account, we can interpret Harder’s conjecture on con-

gruences for Sj+3,2k−6(Γ2) to that of S+
k−1/2,j (Γ

(2)
0 (4)) as follows.

CONJECTURE 1.4 (Half integral version of Harder’s conjecture). Notation being
as above, assume that l is a big prime ideal dividing Lalg (2k + j − 3, g). Then there

exists G ∈ S+,0
k−1/2,j (Γ

(2)
0 (4)) such that

Hp(u,G) ≡ Hp(u,E(h)) mod l

for any prime p. In particular, we have

λ∗(p) ≡ pj+1 + p2k+j−4 + ag(p) mod l ,

where λ∗(p) is the eigenvalue of T1(p) of G.
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We had this type of conjecture already in [12] on congruences between an element
of S+

k−1/2,j (Γ
(2)

0 (4), ψ) and E(h), but there was an inconvenience that E(h) belongs to

Γ
(2)

0 (4) without character while G with character. The above conjecture has an advantage
that both G and E(h) belong to the same discrete group. This enables us to prove the
congruence modulo a fixed congruence prime for all Eulerp-factors for a concrete example.
Also there are several known general strategy to prove this kind of congruence and our
conjecture will give a key to the general proof.

2. Review on definitions and notations

We write the Siegel upper half space of degree n by

Hn = {Z = X + iY ∈ Mn(C); tX = X,t Y = Y ∈ Mn(R), Y > 0} ,
where Y > 0 means that Y is positive definite. We denote by Sp(n,R) the split real
symplectic group of size 2n. Let (ρ0, V ) be an irreducible representation ofGLn(C) which
does not contain the determinant part (i.e. the depth of the corresponding Young diagram is

less than n). For any positive integer k, any g =
(
A B

C D

)
∈ Sp(n,R), and any V -valued

function F , we write

F |k,ρ0[g] = det(CZ +D)−kρ0(CZ +D)−1F(gZ) .

We say that a V -valued holomorphic function F of Hn is a Siegel modular form of weight
detk ⊗ρ0 if F satisfies

F |k,ρ0[γ ] = F for all γ ∈ Γn = Sp(n,Z)

(and with extra boundedness condition of F on the boundary when n = 1). We denote
this space by Ak,ρ0(Γn), We say that F ∈ Ak,ρ0(Γn) is a cusp form when F vanishes on
the boundary of the Satake compactification of Γn\Hn (i.e. if Φ(F) = 0 for the Siegel
Φ operator), and the subspace of cusp forms is denoted by Sk,ρ0(Γn). When ρ0 is the
j -th symmetric tensor representation ρj = Symj , we write Ak,ρ0(Γn) = Ak,j (Γn) and
Sk,ρ0(Γn) = Sk,j (Γn). If j = 0 besides, we simply write these as Ak(Γn) and Sk(Γn).
When n = 2 and ρ0 = Sym(j), the Euler p-factor of the Spinor L function of F ∈
Ak,j (Γ2) is given by

1 − λ(p)p−s + (λ(p)2 − λ(p2)− p2k+j−4)p−2s − λ(p)p2k+j−3−3s + p4k+2j−6−4s ,

where each λ(pi ) is the eigenvalue of the Hecke operator T (pi) of F .
To define modular forms of half-integral weight and the action of Hecke operators, we

introduce the metaplectic group. We write

GSp+(n,R) = {
g ∈ GL2n(R); tgJ g = n(g)J, n(g) ∈ R

×+
}
,

where J=
(

0 −1n
1n 0

)
. The metaplectic group G̃Sp

+
(n,R) consists of elements (g, φ(Z)),

where g=
(
A B

C D

)
∈GSp+(n,R) and φ(Z) is a holomorphic function such that |φ(Z)| =
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det(g)−1/4| det(CZ+D)|1/2. The multiplication of elements of G̃Sp
+
(n,R) is defined by

(g1, φ1(Z))(g2, φ2(Z)) = (g1g2, φ1(g2Z)φ2(Z)) .

We put ϑn(Z) = ∑
p∈Zn e(pZ tp) for Z ∈ Hn, where we write e(x) = exp(2πix) for any

x. Then we can define an injective homomorphism of Γ (n)0 (4) into G̃Sp
+
(n,R) by

Γ
(n)

0 (4) 
 γ → (γ, ϑn(γZ)/ϑn(Z)) ∈ G̃Sp+
(n,R) .

We denote by Γ̃ (n)0 (4) the image of Γ (n)0 (4) by this map. For any V -valued function F ,

any element γ ∈ Γ (n)0 (4), and any g̃ = (g, φ(Z)) ∈ GSp+(n,R) with n(g) = m2, we put

m−1g =
(
A1 B1
C1 D1

)
and define

F |k−1/2,ρ0 [̃g] = φ(Z)−2k+1ρ0(C1Z +D1)
−1F(gZ) .

Let χ be a character of Γ (n)0 (4). We say that F is a Siegel modular form of weight

detk−1/2 ⊗ρ0 of Γ (n)0 (4) with character χ if F |k−1/2,ρ0[γ ] = χ(γ )F for all γ ∈ Γ
(n)

0 (4)

and besides if F satisfies the boundedness condition at cusps of Γ (n)0 (4) when n = 1. The

space of such forms is denoted by Ak−1/2,ρ0(Γ
(n)

0 (4), χ) where χ is omitted if χ is triv-
ial. If ρ0 = Sym(j) (the j -th symmetric tensor representation), we write Ak−1/2,ρ0 =
Ak−1/2,j . The form F is said to be a cusp form if it vanishes on the cusps of Γ (n)0 (4) and
this space is denoted by Sk−1/2,ρ0 or Sk−1/2,j . To extract the level one part of these spaces,
we define the plus subspace, originally defined by Kohnen for n = 1 and generalized for
general n in [10], [9], [4], We write the Fourier expansion of F ∈ Ak−1/2,ρ0(Γ

(n)
0 (4), ψl)

(l = 0 or 1) by
F(Z) =

∑
T ∈L∗

n

a(T )e(Tr(T Z)) ,

where a(T ) ∈ V and L∗
n is the space of n × n half-integral symmetric matrices. We say

that F belongs to the plus subspace, if a(T ) = 0 unless T − (−1)k+l−1 tμμ ∈ 4L∗
n for

some μ ∈ Z
n (row vectors). The plus subspace is denoted by A+

k−1/2,ρ0
(Γ

(n)
0 (4), ψl) and

we put S+
k−1/2,ρ0

(Γ
(2)

0 (4), ψl) = Sk−1/2,ρ0(Γ
(n)

0 (4), ψl) ∩ A+
k−1/2,ρ0

(Γ
(n)

0 (4), ψl). When

l = 0, we omit ψl in the above notation. When n = 2, there are two fundamental Hecke
operators T1(p) and T2(p) for each prime p. When p is odd, these are defined as follows.
We define elements K1(p

2) andK2(p
2) of G̃Sp

+
(2,R) by

K1(p
2) =

⎛
⎜⎜⎝
⎛
⎜⎜⎝

1 0 0 0
0 p 0 0
0 0 p2 0
0 0 0 p

⎞
⎟⎟⎠ , p1/2

⎞
⎟⎟⎠ , K2(p

2) =

⎛
⎜⎜⎝
⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 p2 0
0 0 0 p2

⎞
⎟⎟⎠ , p

⎞
⎟⎟⎠ .

For the double cosets

Ti(p) = Γ̃
(2)

0 (4)Ki(p2)Γ̃
(2)

0 (4) =
⋃
ν

Γ̃
(2)

0 (4)̃gν .
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and F ∈ Ak−1/2,j (Γ
(2)

0 (4)), we define

F |k−1/2,jTi(p) = pi(k+j−7/2)
∑
ν

F |k−1/2,j [̃gν] .

When p = 2, we define Ti(2) from the corresponding action on Jacobi forms (see §4). The
Euler factors explained in §1 was defined by using these.

3. Comparison of dimensions

Tsushima calculated certain Euler Poincare characteristics (for k ≥ 5), which should
be equal to the true dimension of the plus space of degree two under some standard con-
jectural vanishing theorem of cohomology. He expressed this formula by a sum of a large
number of combinatorial arithmetic quantities depending on k and j , and it is not so easy
to see. Here we change his formula to a generating function of dimensions. We note that it
is needed considerable efforts to change it into the generating function written later. It is a
routine but length calculation. He stated the conjecture only for k ≥ 5 but there is a good
reason to expect this is also true for k ≥ 3. Actually, as we state later, the half of the cases
of this conjecture is now proved.

The result is given below.

CONJECTURE 3.1 ([25]). For k ≥ 3, the following equality holds.
∞∑

k=3,j=0
j :even

dim S+
k−1/2,j (Γ0(4))tksj

= h(t, s)

(1 − t3)(1 − t4)(1 − t5)(1 − t6)(1 − s4)(1 − s6)(1 − s10)(1 − s12)
∞∑

k=3,j=0
j :even

dim S+
k−1/2,j (Γ0(4), ψ)tksj

= hψ(t, s)

(1 − t3)(1 − t4)(1 − t5)(1 − t6)(1 − s4)(1 − s6)(1 − s10)(1 − s12)

Here we define

h(t, s) =
s32t3 + (s18 + s20 + s24 + s26 − s30)t4

+ (s12 + s14 + s16 + s18 + s20)t5

+ (s8 + s10 + s12 + s14 + s16 + s18 + s20 − s32)t6

+ (s6 + s8 + s10 + 2s12 + 2s14 + s16 − s18 − s24 − s26 + s30 − s32)t7

+ (s2 + s4 + s6 + s8 + s10 + s12 − s18 − s20 − s24 − s26 + s30 − s32)t8

+ (s4 + 2s6 + 2s8 + s10 − s16 − 3s18 − 3s20 − s24 − s26 + s30 − s32)t9
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+ (1 + s2 + s4 + s6 + s8 − 2s12 − 2s14 − 2s16 − 3s18

− 4s20 − s24 − s26 + s30 + s32)t10

+ (1 + s2 + s4 − 4s12 − 4s14 − 3s16 − s18 − 3s20 − s22 + s24 + s26 − s30 + s32)t11

+ (1 + s2 + s4 − 2s8 − 2s10 − 4s12 − 4s14 − 3s16

− s18 − s20 + s24 + s26 − s30 + 2s32)t12

+ (1 + s2 − 2s6 − 2s8 − 2s10 − 4s12 − 4s14 − 2s16

+ 2s18 + s20 + 2s24 + 2s26 − 2s30 + s32)t13

+ (−s6 − 2s8 − 2s10 − 2s12 − 2s14 − s16 + s18 + 2s20 + 2s24 + 2s26 − s30 + s32)t14

+ (−1 − s6 − 2s8 − s10 + s12 − s14 − s16 + 2s18

+ 4s20 + s24 + 2s26 + s28 − s30 − s32)t15

+ (−1 − s2 − s4 + 2s12 + 2s14 + s16 + 2s20 + s28 + s30 − s32)t16

+ (−1 + 2s12 + s14 + s16 + 2s20 + s22 + s30 − s32)t17

+ (−1 − s2 + s6 + s8 + s10 + 3s12 + 2s14 − s18 − s24 + s28 + s30 − s32)t18

+ (s6 + s8 + s14 + s16 − s18 − s20 + s22 − s26 + s30)t19

+ (s8 + s10 − s20)t20 + (1 − s12 − s20 + s32)t21

hψ(t, s) =
s32t3 + (s18 + s20 + s24 + s26 − s30)t4

+ (s12 + s14 + s16 + s18 + s20)t5

+ (s8 + s10 + s12 + s14 + s16 + s18 + s20 − s32)t6

+ (s6 + s8 + s10 + 2s12 + 2s14 + s16 − s18 − s24 − s26 + s30 − s32)t7

+ (s6 + s8 + s10 + 2s12 + 2s14 + s16 − s18 − s20 − 2s24 − 2s26 + s30 − s32)t8

+ (s4 + 2s6 + 2s8 + s10 − s16 − 3s18 − 3s20 − s24 − s26 + s30 − s32)t9

+ (s4 + s6 + s8 + s10 − s14 − 2s16 − 3s18 − 4s20

− s22 − 2s24 − s26 + s30 + s32)t10

+ (s4 + s6 + s8 + s10 − 2s12 − 3s14 − 4s16 − 3s18 − 4s20 − 2s22

+ s26 + s28 + s32)t11

+ (s2 + s4 − s8 − s10 − 3s12 − 4s14 − 3s16

− 2s18 − 2s20 − s22 + s24 + s26 + 2s32)t12

+ (s2 + s4 − s6 − s8 − s10 − 3s12 − 5s14 − 4s16

− s22 + 2s24 + 3s26 + s28 − s30 + s32)t13
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+ (−s8 − 2s10 − 2s12 − 2s14 − 2s16 − s18 + s20 + 2s24 + 2s26 + s28 + s32)t14

+ (s2 − s6 − 2s8 − 2s10 − s12 − 2s14 − s16 + 2s18

+ 4s20 + s22 + 2s24 + 2s26 + s28 − s30 − s32)t15

+ (−s8 − s10 + s18 + 3s20 + s22 + s24 + s26 + s28 − s32)t16

+ (−s8 − s10 + s12 + s14 + s16 + s18 + 3s20 + 2s22 − s32)t17

+ (s12 + s14 + s16 + s18 + s20 + s22 − s32)t18

+ (s14 + 2s16 + s18 + s22 − s26 − s28)t19

+ (s8 + s10 − s20)t20

+ (1 − s4 − s6 − s12 + s14 + 2s16 + s18 − s20 − s26 − s28 + s32)t21

The numerator hψ(t, s) of the generating function is also written in [12], but we re-
produce it here for the readers convenience. Now about Tsushima’s conjecture above, we
can prove the following results.

THEOREM 3.2 ([16]). The above formula for Sk−1/2,j (Γ
(2)

0 (4)) is true for even k ≥
8, and the formula for Sk−1/2,j (Γ

(2)
0 (4), ψ) is true for odd k ≥ 9.

In order to evaluate the part for liftings, we need the generating function of
dim S2k−4(Γ1) × dim S2k+2j−2(Γ1). By the classical formula of dimensions of elliptic
cusp forms, for even k ≥ 0, we have

dim Sk(Γ1) = k − 1

12
+ 1

4
(−1)k/2 + 1

3
[1, 0,−1; 3]k − 1

2
+ δk2 ,

where δk2 = 1 if k = 2 and = 0 otherwise, and the notation [1, 0,−1; 3]k means that if
k ≡ 0, 1 and 2 mod 3, then it takes values 1, 0 and −1, respectively. By using this, by
routine but lengthy calculation, we can show

∞∑
k,j=0
j :even

dim S2k−4(Γ1)× dim S2k+2j−2(Γ1)t
ksj

= t10 + s2(t8 − t9)+ s4(t12 − t13)− s6t11

(1 − t)(1 − t3)(1 − t6)(1 − s2)(1 − s6)

Here we note that j is assumed to be even. If j is odd, it is easy to see that Sk,j (Γ2) = 0 and
Sk−1/2,j (Γ0(4)) = Sk−1/2,j (Γ0(4), ψ) = 0. When j is even, the dimension of dimSk,j (Γ2)

was obtained by Igusa for j = 0 and Tsushima for k > 4 for any even j > 0 (See [18],
[19], [22]). The conjecture that the same formula for Sk,j (Γ2) should be true even for k ≥ 3
was given in [17], and I heard recently that Dan Petersen proved this conjecture([21]).

THEOREM 3.3. Assume that k and j are integers such that j is even, j ≥ 0, and
k ≥ 3. Assuming the above conjectural formulas of Tsushima on dimensions, we have

dim S+
k−1/2,j (Γ

(2)
0 (4))− dim S2k−4(Γ1)× dim S2k+2j−2(Γ1)

= dim S+
k−1/2,j (Γ

(2)
0 (4), ψ) = dim Sj+3,2k−6(Γ2) .
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This claim surely supports our Conjecture 1.1, 1.2, 1.3 and 1.4 strongly.

4. Numerical examples on L functions and congruences

In this section, we give numerical examples of liftings, correspondences and congru-
ences in the conjectures we already mentioned.

4.1. General set up
The structures of Sk−1/2,j (Γ

(2)
0 (4), χ) for χ = ψ or χ trivial are known for small j

(see [24], [14]), but the subspace S+
k−1/2,j (Γ

(2)
0 (4), χ) is much more smaller and it is very

hard to determine elements of this subspace from Sk−1/2,j (Γ
(2)

0 (4), χ), as we can see in
[12]. But now we have a better strategy in case when the weight and the character have
good parity since the structure of holomorphic Jacobi forms of degree two of index one are
now known in [16] and these correspond Siegel modular forms of half integral weight in
the plus subspace of Haupt type when k is even. For readers convenience and to clarify
the meaning of the plus space, we review here the isomorphisms between Siegel modular
forms of half integral weight and Jacobi forms. First we define Jacobi forms of general
degree. We define the Jacobi modular group Γ Jn by the following subgroup of Γn+1:

Γ Jn =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
A 0 B 0
0 1 0 0
C 0 D 0
0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1n 0 0 tμ

λ 1 μ κ

0 0 1n −t λ

0 0 0 1

⎞
⎟⎟⎠ ;

(
A B

C D

)
∈ Γn, λ,μ ∈ Z

n, κ ∈ Z

}
.

We identify Γn as a subgroup of Γ Jn by taking the first factor of the above definition.
Let (ρ0, V ) be an irreducible representation of GL(n,C) without determinant factor. Let
F(τ, z) be a holomorphic function F : Hn × C

n → V . When n ≥ 2, we say that F is a
holomorphic Jacobi form of weight detk ⊗ρ0 of index one of Γ Jn if it satisfies the following
conditions (1) and (2);

(1) F (γ τ, z(Cτ +D)−1) = e(z t (Cτ + d)−1Cz) det(CZ +D)k

× ρ0(Cτ +D)F(τ, z),

(2) F (τ, z + λτ + μ) = e(−λτλ− 2λ tz)F (τ, z) ,

for any γ =
(
A B

C D

)
∈ Γn and λ, μ ∈ Z

n. The Fourier expansion of F is written as

F(τ, z) =
∑

(N, r)∈L∗
n×Zn

C(N, r)e(Tr(Nτ))e(r t z)

For the definition when n = 1, we need the extra condition that C(N, r) = 0 unless 4N −
t rr ≥ 0 for the definition. (When n ≥ 2, this condition is satisfied always by the Koecher
principle proved by Ziegler.) For general n, if C(N, r) = 0 unless 4N − t rr is positive
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definite, we say that F is a Jacobi cusp form. We denote this space of holomorphic Jacobi
forms of index one by J(k,ρ0),1(Γ

J
n ) and Jacobi cusp forms of index one by J cusp(k,ρ0),1

(Γ Jn ).
For a real analytic function F : Hn×C

n → V , we say that F is a skew holomorphic Jacobi
form of index one if it satisfies the condition (2) above and the following relation

(1∗) F (γ τ, z(Cτ +D)−1) = e(z(Cτ +D)−1C tz)

× det(Cτ +D)
k−1| det(Cτ +D)| ρ0(Cτ +D)F(τ, z),

for any γ ∈ Γn, where the bar is the complex conjugation, and besides the condition (3)
that F has the Fourier expansion of the shape

F =
∑

(N, r)∈L∗
n×Zn

C(N, r)e

(
Tr

(
Nτ − 1

2
i(N − t rr)Y

))
e(r t z) ,

where (N, r) runs overL∗
n×Z

n such that t rr−4N is positive semi-definite. IfC(N, r) = 0
unless t rr−4N is positive definite, we say that F is a skew holomorphic Jacobi cusp form.
We denote by J skew(k,ρ0),1

(Γ Jn ) and J skew,cusp(k,ρ0),1
(Γ Jn ) the space of skew holomorphic Jacobi

forms of index one and skew holomorphic Jacobi cusp forms of index one, respectively.
The following theorem is known.

THEOREM 4.1 ([10],[4], [9], [20]). We have the following Hecke equivariant iso-
morphism.

A+
k−1/2,ρ0

(Γ
(n)

0 (4), ψl) ∼=
{
J(k,ρ0),1(Γ

J
n ) if k + l is even ,

J skew(k,ρ0),1
(Γ Jn ) if k + l is odd ,

S+
k−1/2,ρ0

(Γ
(n)

0 (4), ψl) ∼=
⎧⎨
⎩
J
cusp

(k,ρ0),1
(Γ Jn ) if k + l is even ,

J
skew,cusp

(k,ρ0),1
(Γ Jn ) if k + l is odd .

Throught these isomorphisms, we defined the Hecke operators at 2.
In case ρ0 = Sym(j), we write (k, ρ0) = (k, j). Together with the conjecture 1.3, we

should have

CONJECTURE 4.2. Let j be an even integer with j ≥ 0. For any even integer k ≥ 3,
there exists an injective linear isomorphism

J skew(k,j),1(Γ
J

2 ) → J(k,j),1(Γ
J

2 ) ,

and for any odd integer k ≥ 3, there exists an injective linear isomorphism

J(k,j),1(Γ
J

2 ) → J skew(k,j),1(Γ
J

2 ) ,

which commute with the action of Hecke operators. The kernels correspond with the lifting
parts from S2k−4(Γ1)× S2k+2j−2(Γ1).

Since we do not know how to describe the structure of skew holomorphic Jacobi forms
directly, we consider here only the case of holomorphic Jacobi forms. For simplicity, we
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assume that k is even from now on until the end of the paper. Then the above theorem
means in this case that

A+
k−1/2,j (Γ

(2)
0 (4)) ∼= J(k,j),1(Γ

J
2 ) ,

S+
k−1/2,j (Γ

(2)
0 (4)) ∼= J

cusp

(k,j),1(Γ
J

2 ) .

We note that for k > 5, we have

dim J(k,j),1(Γ
J

2 ) = dim J cusp(k,j),1(Γ
J

2 )+ dim S2k+2j−2(Γ1) ,

where S2k+2j−2(Γ1) ∼= S+
k+j−1/2(Γ

(1)
0 (4)) ∼= J

cusp
k+j,1(Γ

J
1 ). (We use the characterization of

Jacobi cusp forms of index 1 by Jacobi-Siegel ΦJ operator and the surjectivity of ΦJ for
k > 5 to J cuspk+j,1(Γ

J
1 ). The details will be explained in [16].)

Now we explain first how to construct elements of A+
k−1/2,j (Γ

(2)
0 (4)) from Jacobi

forms in J(k,j),1(Γ J2 ) for even k. For m = (m1,m2) ∈ (Z/2Z)2 and (τ, z) ∈ H2 × C
2, we

define

ϑm(τ, z) =
∑
p∈Z2

e

((
p + m

2

)
τ t
(
p + m

2

)
+ 2

(
p + m

2

)
t z

)
.

Then for F ∈ J(k,j),1(Γ
J

2 ), there exist holomorphic functions cij (τ ) (0 ≤ i, j ≤ 1),
uniquely determined by F , such that

F(τ, z) = c00(τ )ϑ00(τ, z)+ c01(τ )ϑ01(τ, z)+ c10(τ )ϑ10(τ, z)+ c11(τ )ϑ11(τ, z) .

We call this expression the theta expansion. If we put

h(τ) = c00(τ )+ c01(τ )+ c10(τ )+ c11(τ ) ,

then we have h(4τ ) ∈ A+
k−1/2,j (Γ

(2)
0 (4)) and this gives an isomorphism between

J(k,j),1(Γ
J

2 ) and A+
k−1/2,j (Γ

(2)
0 (4)). By this map, Jacobi cusp forms correspond to cusp

forms. Now we can describe elements in J(k,j),1(Γ J2 ) by using the coefficients of the
Taylor expansion along z = 0, and we can describe those coefficients by vector valued
Siegel modular forms as we shall see in [16]. From that paper, we extract here the nec-
essary result only in the case j = 2 under some special assumptions since the general
theory is much more complicated. We omit all the proofs here. The Taylor expansion of
F(τ, z) ∈ J(k,j),1(Γ J2 ) along z = (z1, z2) = (0, 0) has no terms of odd degrees as we can
see by the action of −14, and it is written as

F(τ, z) = f0(τ )+ f20(τ )z
2
1 + f11(τ )z1z2 + f02(τ )z

2
2 +O(z4) .

We can show that the mapping of F to (f0, f20, f11, f02) is injective. The reason is as
follows. We write ∂ij = 1

2πi
∂
∂τij

where we write τ = (τij ) for τ ∈ H2. We denote by
ϑij (τ ) the theta constants ϑij (τ ) = ϑij (τ, 0). It is easy to see that 2(1 + δij )∂ij ϑm(τ) =

1
(2πi)2

∂2ϑm(τ,z)
∂zi∂zj

∣∣
z=0 for any m ∈ (Z/2Z)2, where δij is the Kronecker delta. If we put
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(1) Θ(τ) =

⎛
⎜⎜⎝

ϑ00(τ ) ϑ01(τ ) ϑ10(τ ) ϑ11(τ )

∂11ϑ00(τ ) ∂11ϑ01(τ ) ∂11ϑ10(τ ) ∂11ϑ11(τ )

∂12ϑ00(τ ) ∂12ϑ01(τ ) ∂12ϑ10(τ ) ∂12ϑ11(τ )

∂22ϑ00(τ ) ∂22ϑ01(τ ) ∂22ϑ10(τ ) ∂22ϑ11(τ )

⎞
⎟⎟⎠ ,

then we have

(2) Θ(τ)

⎛
⎜⎜⎝
c00(τ )

c01(τ )

c10(τ )

c11(τ )

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

f0(τ )

1
2(2πi)2

f20(τ )

1
2(2πi)2

f11(τ )

1
2(2πi)2

f02(τ )

⎞
⎟⎟⎟⎟⎟⎠

and since we can show that det(Θ(τ)) �= 0, the functions cij (τ ) are uniquely determined
by f0, f20, f11 and f02. In fact, if we put χ5(τ ) = det(Θ(τ)), then χ5 is the unique non-
zero cusp form of weight 5 (up to constant) of Γ2 with character sgn : Sp(2,F2) ∼= S6 →
S6/A6 ∼= {±1}, where S6 and A6 are the symmetric group and the alternating group on six
letters, respectively. Now we see necessary conditions on f0(τ ) and fij (τ ). It is easy to see
that f0(τ ) ∈ Ak,j (Γ2). Now for the sake of simplicity, we write

f2(τ, z) = 1

2(2πi)2
(f20(τ )z

2
1 + f11(τ, z)z1z2 + f02(τ )z

2
2) .

Then f2 takes values in

Vj,2 = C[u1, u2]j ⊗ (Cz2
1 + Cz1z2 + Cz2

2) ,

that is, the space of polynomials in ui and zi of degree j with respect to u and of degree 2
with respect to z. On Vj,2, the group GL(2) acts naturally by P(u, z) → P(uU, zU) for
polynomials P(u, z) and U ∈ GL2(C), but this action is not irreducible. The irreducible
decomposition of Vj,2 is given by

Vj,2 = Sym(j + 2)⊕ detSym(j)⊕ det 2 Sym(j − 2) ,

if j ≥ 2. We can show that if we add to f2(τ, z) a certain polynomials in zi of degree
two whose coefficients are certain derivatives of f0(τ ) by τij , which are polynomials in
u of degree j , then the result is regarded as an element of Ak,j+2(Γ1) ⊕ Ak+1,j (Γ2) ⊕
Ak+2,j−2(Γ2). Since the general case is slightly complicated (and will be explained in [16]
in details), here, for simplicity, we assume that j = 2 and Ak,2(Γ2) = Ak+1,2(Γ2) = 0.
This is satisfied when k = 8 and 12, for example. Under this assumption, we have f0 = 0,
so there is no correction term from f0, and hence f2 itself is written as follows. We write
an element A(τ) ∈ Ak,4(Γ2) by

∑4
i=0 ai(τ )u

4−i
1 ui2 ∈ Ak,4(Γ2), where we identify the

representation space of Sym(4) by polynomials in u1, u2 of degree 4. For A(τ), we put

A(τ, u, z) = 6a0(τ )u
2
1z

2
1 + 3a1(τ )(u1u2z

2
1 + u2

1z1z2)

+ a2(τ )(u2z
2
1 + 4u1u2z1z2 + u2

1z
2
2)

+ 3a3(τ )(u
2
2z1z2 + u1u2z

2
2)+ 6a4(τ )u

2
2z

2
2) .
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Then we have
f2(τ, z) = A(τ, u, z)+ (u1z2 − u2z1)

2c(τ )

for some A(τ) ∈ Ak,4(Γ2) and c(τ ) ∈ Ak+2(Γ2). On the other hand, put f0 = 0 and define
f20, f11, f02 for any A(τ) ∈ Ak,4(Γ2) and c(τ ) ∈ Ak+2(Γ2) by the above relation, that is,

f20(τ )/2(2πi)
2 =(6a0(τ )u

2
1 + 3a1(τ )u1u2 + a2(τ )u

2
2)+ c(τ )u2

2 ,

f11(τ )/2(2πi)2 =(3a1(τ )zu
2
1 + 4a2(τ )u1u2 + 3a3(τ )u

2
2)− 2c(τ )u1u2 ,

f02(τ )/2(2πi)2 =(a2(τ )u
1
1 + 3a3(τ )u1u2 + 6a4(τ )u

2
2)+ c(τ )u2

1 .

For these f0(τ ) and fij (τ ), we can show that the solution cij (τ ) of the simultaneous equa-
tion (2) are holomorphic if and only if W(f11) = 0, where W is the Witt operator which
means

W(f )(τ11, τ22) = f

(
τ11 0
0 τ22

)
.

Since W(a1) and W(a3) are products of elliptic cusp forms of odd weights, we have
W(a1) = W(a3) = 0, so the only condition is

(3) W(4a2 − 2c) = 0 .

As a whole, we have

PROPOSITION 4.3. Let k be an even positive integer and assume that Ak,2(Γ2) =
Ak+1,2(Γ2) = 0. We write

ATk,2(Γ2) = {
(A(τ), c(τ )) ∈ Ak,4(Γ2)× Ak+2(Γ2); 2W(a2) = W(c).

}
STk,2(Γ2) = {(A(τ), c(τ )) ∈ ATk,2(Γ2); A(τ) ∈ Sk,4(Γ2)} .

Then J(k,2),1(Γ J2 ) can be identified with the spaceATk,2(Γ2), and J cusp(k,2),1(Γ
J

2 )with STk,2(Γ2).

Let Θ(τ) be as in (1) and denote by Bij (τ ) the (i, j)-cofactor of Θ(τ), that is, (−1)i+j
times the determinant of the matrix obtained by removing the i-th row and the j -th column
of Θ(τ). We write

Bi(τ ) = Bi1(τ )+ Bi2(τ )+ Bi3(τ )+ Bi4(τ ) .

Then the solution (cij (τ )) of (2) is given by

χ5(τ )c00(τ ) = B11(τ )f0(τ )+ (B21(τ )f20(τ )+ B31(τ )f11(τ )+ B41(τ )f02(τ ))/2(2πi)
2 ,

χ5(τ )c01(τ ) = B12(τ )f0(τ )+ (B22(τ )f20(τ )+ B32(τ )f11(τ )+ B42(τ )f02(τ ))/2(2πi)2

χ5(τ )c10(τ ) = B13(τ )f0(τ )+ (B23(τ )f20(τ )+ B33(τ )f11(τ )+ B43(τ )f02(τ ))/2(2πi)2

χ5(τ )c11(τ ) = B14(τ )f0(τ )+ (B24(τ )f20(τ )+ B34(τ )f11(τ )+ B44(τ )f02(τ ))/2(2πi)2

So, for each element (A(τ), c(τ )) ∈ ATk,2(Γ2) with A(τ) = ∑4
i=0 ai(τ )u

4−i
1 ui2, the associ-

ated element h(4τ ) = ∑
0≤i,j≤1 cij (4τ ) ∈ S+

k−1/2,2(Γ
(2)

0 (4)) is given by((
6a0(4τ )B2(4τ )+ 3a1(4τ )B3(4τ )+ a2(4τ )B4(4τ )

)
u2

1(4)

+ (
3a1(4τ )B2(4τ )+ 4a2(4τ )B3(4τ )+ 3a3(4τ )B4(4τ )

)
u1u2
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+ (
a2(4τ )B2(4τ )+ 3a3(4τ )B3(4τ )+ 6a4(4τ )B4(4τ )

)
u2

2

+ c(4τ )
(
B4(4τ )u2

1 − 2B3(4τ )u1u2 + B2(4τ )u2
2

))
/χ5(4τ ) .

4.2. The eigenvalues in the case k = 8 and k = 12
For j = 2, we give a table of dimensions for small k below.

k 2 4 6 8 10 12 14 16 18 20

dim J(k,2),1(Γ J2 ) 0 0 0 2 2 3 6 8 10 16

dim J cusp(k,2),1(Γ
J

2 ) 0 0 0 1 1 2 4 6 8 13

dim S2k−4(Γ1)× dim S2k+2(Γ1) 0 0 0 1 1 1 4 4 4 9

dim S2k+2(Γ1) 0 0 0 1 1 1 2 2 2 3

In this section, we describe the space J cusp(8,2),1(Γ
J

2 )
∼= S+

15/2,2(Γ
(2)

0 (4)) and J(12,2),1(Γ
J

2 )
∼=

A+
23/2,2(Γ

(2)
0 (4)) and give the Euler 2 factors explicitly. We sometimes denote an element

T =
(
t1 t12/2

t12/2 t2

)
∈ L∗

2 by (t1, t2, t12) and the Fourier coefficient a(T ) of a form F by

a(t1, t2, t12) = a(t1, t2, t12;F). First we assume that k = 8. Then we have dimA8,4(Γ2) =
1, dim S8,4(Γ2) = 0 and dimA10(Γ2) = 2. We denote by φl the Siegel Eisenstein series
of weight l normalized so that the constant term of the Fourier expansion is 1. For any
A(τ) = ∑4

i=0 ai(τ )u
4−i
1 ui2 ∈ A8,4(Γ2), we know thatW(a2) should be a product of elliptic

cusp form of weight 10, but since S10(Γ1) = 0, we have W(a2) = 0. On the other hand
A10(Γ2) is spanned by χ10 and φ4φ6. where χ10 = χ2

5 is the unique cusp form in S10(Γ2)

such that the Fourier coefficient at (1, 1, 1) is 1. Since W(χ10) = 0 and W(φ4φ6) �= 0, we
haveAT8,2(Γ2) = A8,4(Γ2)×S10(Γ2) and ST8,2(Γ2) = {0}×S10(Γ2). Let F8−1/2 = F15/2 be

the element in S+
15/2,2(Γ

(2)
0 (4)) corresponding to (0, χ10) ∈ ST8,2(Γ2). Then since χ10 = χ2

5 ,
we have

F15/2 = B4(4τ )χ5(4τ )u2
1 − 2B3(4τ )χ5(4τ )u1u2 + B2(4τ )χ5(4τ )u2

2 .

Then by using the concrete Fourier coefficients of F15/2 (which we omit here), we can show
that the Euler 2 factor of L(s, F15/2) is given by

(1 − 24 · 23−s + 217−2s)(1 + 528 · 2−s + 217−2s) .

Actually in this case we can show directly that the concrete lifting map L from S12(Γ1)×
S18(Γ1) to S+

15/2,2(Γ
(2)

0 (4)) in [15] does not vanish and we can prove that

L(s, F15/2) = L(s − 3,Δ12)L(s,Δ18) ,

whereΔ12 and Δ18 are primitive elliptic eigenforms of weight 12 and 18, respectively.
Next we see the case k = 12. Then we have dimA12,4(Γ2) = 2, dimA14(Γ2) = 2.

For A(τ) = ∑4
i =0 ai(τ )u

4−i
1 ui2 ∈ A12,4(Γ2), W(a2) is a product of elliptic cusp forms of

weight 14, which is zero. So the condition that (A(τ), c(τ )) ∈ AT12,2(Γ2) is thatW(c(τ)) =
0. Since A14(Γ2) is spanned by φ2

4φ6 and φ4χ10, and W(φ2
4φ6) �= 0, W(φ4χ10) = 0, we
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have

AT12,2(Γ2) = {(A(τ), c(τ ));A(τ) ∈ A12,4(Γ2), c(τ ) ∈ Cφ4χ10} ,
ST12,2(Γ2) = {(A(τ), c(τ ));A(τ) ∈ S12,4(Γ2), c(τ ) ∈ Cφ4χ10} .

Now, we have dimA12,4(Γ2) = 2 and dim S12,4(Γ2) = 1. The space S12,4(Γ2) is
spanned by {φ4, φ6}det 2Sym(4), which is a kind of Rankin-Cohen bracket explicitly defined
as follows (See [13]). We define differential operatorsm and Δ by

m = u2
1
∂

∂τ11
+ u1u2

∂

∂τ12
+ u2

2
∂

∂τ22
,

Δ =

∣∣∣∣∣∣∣∣

∂

∂τ11

1

2

∂

∂τ12

1

2

∂

∂τ12

∂

∂τ22

∣∣∣∣∣∣∣∣
.

Then

{φ4, φ6}det2 Sym(4) = − 924(Δφ4)(m
2φ6)+ 2156((Δm)φ4)(mφ6)− 924(Δφ4)(m

2φ6)

− 210(φ4)(Δm
2φ6)+ 945(mφ4)(Δmφ6)− 756(m2φ4)(Δφ6)

+ 1155

4

(
∂φ4

∂τ22

∂(m2φ6)

∂τ11
− 1

2

∂φ4

∂τ12

∂(m2φ6)

∂τ12
+ ∂φ4

∂τ11

∂(m2φ6)

∂τ22

)

− 924

(
∂(mφ4)

∂τ22

∂(mφ6)

∂τ11
− 1

2

∂(mφ4)

∂τ12

∂(mφ6)

∂τ12
+ ∂(mφ4)

∂τ11

∂(mφ6)

∂τ22

)

+ 539

(
∂(m2φ4)

∂τ22

∂φ6

∂τ11
− 1

2

∂(m2φ4)

∂τ12

∂φ6

∂τ12
+ ∂(m2φ4)

∂τ11

∂φ6

∂τ22

)
.

We denote by F12−1/2 = F23/2 ∈ S+
23/2,2(Γ

(2)
0 (4)) the Siegel cusp form corresponding

to
(
{φ4, φ6}det2 Sym(4), 0

)
∈ ST12,2(Γ2). We also denote by G23/2 ∈ S+

23/2,2(Γ
(2)

0 (4)) the

Siegel cusp form corresponding to (0, φ4χ10) ∈ ST12,2(Γ2). We will calculate the Euler

2 factors of eigenforms in S+
23/2,2(Γ

(2)
0 (4)). Now we review how to calculate the eigen-

values of the Hecke operators. For F(τ) ∈ A+
k−1/2,j (Γ

(2)
0 (4)) for even k, let F(τ) =∑

T ∈L∗
2
a(T )e(Tr(T τ)) be the Fourier expansion. We denote by a(Ti(p); T ) = a(Ti(p);

(t1, t2, t12)) the Fourier coefficient of Ti(p)F at (t1, t2, t12). Then we have

a(T1(2); (3, 3, 2)) =ρj
(

2 0

0 1

)
a(3, 12, 4)+ ρj

(
2 −1

0 1

)
a(8, 12, 16)

+ ρj

(
0 1

2 0

)
a(3, 12, 4)− 2k+j−2a(3, 3, 2) ,

a(T2(2); (3, 3, 2)) =2j a(12, 12, 8)
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− 2k+j−3

(
ρj

(
2 0

0 1

)
a(3, 12, 4)+ ρj

(
0 1

2 0

)
a(3, 12, 4)

)

+ 22k+2j−6a(3, 3, 2) ,

a(T1(2); (3, 4, 0)) =ρj
(

2 0

0 1

)
a(3, 16, 0)+ ρj

(
2 −1

0 1

)
a(7, 16, 16)

+ ρj

(
0 −1

2 0

)
a(4, 12, 0) ,

a(T2(2); (3, 4, 0)) =22k+j−5ρj

(
0 1

4 −2

)
a(4, 12, 12)+ 2j a(12, 16, 0)

+ 2k+j−3

(
−ρj

(
2 0

0 1

)
a(3, 16, 0)+ ρj

(
2 −1

0 1

)
a(7, 16, 16)

)

− 22k+2j−6a(3, 4, 0) .

In the following explanation, we identify the representation space C
j+1 of ρj =

Sym(j) with the space C[u1, u2]j of homogeneous polynomials in u1, u2 of degree j .
Then the Fourier coefficients a(T ) are polynomials a(T )(u1, u2) ∈ C[u1, u2]j in u1, u2
and the action of ρj = Sym(j) is given by ρj (U)a(T )(u1, u2) = a(T )((u1, u2)U) for
U ∈ GL2(R). We denote the Fourier coefficient of F23/2 and G23/2 by A(T ) and B(T ),
respectively. Then by computer calculation we have

A(3, 3, 2) = −u2
1 − 2u1u2 − u2

2 = −(u1 + u2)
2

A(3, 4, 0) = −18u2
1 + 4u2

2

A(3, 12, 4) = −1328u2
1 − 3872u1u2 − 1664u2

2

A(3, 16, 0) = −5472u2
1 − 11264u2

2

A(4, 12, 0) = 1280u2
1 − 9600u2

2

A(4, 12, 12) = 4u2
1 + 12u1u2 + 12u2

2

A(7, 16, 16) = 19488u2
1 − 5376u1u2 − 5376u2

2

A(8, 12, 16) = 6144u2
1 + 12288u1u2 + 5760u2

2

A(12, 12, 8) = 6017024u2
1 + 11247616u1u2 + 6017024u2

2

A(12, 16, 0) = 74686464u2
1 − 41369600u2

2 .

B(3, 3, 2) = −1

2
u1u2

B(3, 4, 0) = −u2
2

B(3, 12, 4) = −788u1u2 − 564u2
2
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B(3, 16, 0) = 4328u2
2

B(4, 12, 0) = 112u2
1 + 24u2

2

B(4, 12, 12) = −u2
1 − 3u1u2 − 3u2

2

B(7, 16, 16) = 240u2
1 − 4056u1u2 − 4056u2

2

B(8, 12, 16) = −12u2
1 − 24u1u2 − 36u2

2

B(12, 12, 8) = 359232u2
1 − 1355456u1u2 + 359232u2

2

B(12, 16, 0) = 10668672u2
1 − 374656u2

2.

By these Fourier coefficients, we see that

A(T1(2); (3, 3, 0)) = −2880(−u2
1 − 2u1u2 − u2

2) = −2880A(3, 3, 2) ,

A(T1(2); (3, 4, 0)) = −2880(−18u2
1 + 4u2

2) = −2880A(3, 4, 0) ,

B(T1(2); (3, 3, 0)) = 360(u2
1 − 3u1u2 + u2

2) = 3600B(3, 3, 2)− 360A(3, 3, 2) ,

B(T1(2); (3, 4, 0)) = 720(9u2
1 − 7u2

2) = 3600B(3, 4, 0)− 360A(3, 4, 0) .

So we have

(T1(2)F, T1(2)G) = (F,G)

(
−2880 −360

0 3600

)
.

So F23/2 and F23/2 − 18G23/2 are eigenforms, and eigenvalues of T1(2) are given by
λ∗(2, F23/2) = −2880 and λ∗(2, F23/2 − 18G23/2) = 3600, respectively. Actually again

we can show that the concrete lift L in [15] from S20(Γ1) × S26(Γ1) into S+
23/2,2(Γ

(2)
0 (4))

does not vanish and the image is spanned by F23/2 − 18G23/2. We have

L(s, F23/2 − 18G23/2) = L(s − 3,Δ20)L(s,Δ26) ,

where Δ20 and Δ26 are the unique primitive cusp form of weight 20 and 26 of Γ1, re-
spectively. Calculating the action of T2(2) on F23/2 in the same way, we see that ω(2) =
−34160640 and the Euler 2-factor of L(s, F23/2) is given by

H2(F23/2, u) = 1 + 2880u− 26378240u2 + 2880 · 225u3 + 250u4

where u = 2−s . We have dim S23/2,2(Γ
(2)

0 (4), ψ) = dim S5,18(Γ2) = 1, and we denote

each basis by Fψ23/2 and F5,18. Then by the calculation in [12] p. 123, we see that

H2(F23/2, u) = H2(F
ψ
23/2, u) = H2(F5,18, u) .

Similarly we can show the same equaliy for the Euler 3 factors:

H3(F23/2, u) = H3(F
ψ

23/2, u) = H3(F5,18, u) .

These support Conjecture 1.3 and 1.2. (Note the correction of the typo in the previous paper
at the end of this paper.) The calculation for the Euler 3-factors can be done by using the
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following Fourier coefficients and the relations for either (3, 3, 2) or (3, 4, 0). We omit the
details.

A(3, 27, 6) = 115182u2
1 + 230364u1u2 − 295002u2

2

A(3, 27,−6) = 115182u2
1 − 230364u1u2 − 295002u2

2

A(4, 3, 4) = A(4, 3,−4) = −u2
2

A(8, 11, 8) = 227988u2
1 + 227988u1u2 − 51219u2

2

A(19, 4, 4) = −681201u2
1 + 36864u1u2 + 36864u2

2

A(27, 27, 18) = 15501347379u2
1 − 21240081306u1u2 + 15501347379u2

2

A(3, 36, 0) = 1010394u2
1 + 3204684u2

2

A(7, 36, 24) = −660492u2
1 − 1820880u1u2 − 2011608u2

2

A(19, 36, 48) = −851220u2
1 − 2202336u1u2 − 2011608u2

2

A(4, 27, 0) = 87624u2
1 − 3972132u2

2

A(27, 36, 0) = 440392060944u2
1 − 200717867808u2

2

A(T1(3); (3, 3, 2)) = ρj

(
2 −1

1 1

)
A(8, 11, 8)+ ρj

(
3 0

0 1

)
A(3, 27, 6)

+ ρj

(
0 −1

3 0

)
A(3, 27,−6)+ ρj

(
1 −2

1 1

)
A(19, 4, 4)

A(T2(3); (3, 3, 2)) = 3jA(27, 27, 18)

+ 32k+j−5

(
ρj

(
3 −3

2 1

)
A(4, 3, 4)+ ρj

(
2 −1

3 3

)
A(4, 3,−4)

)

+ 3k+j−3

(
ρj

(
2 −1

1 1

)
A(8, 11, 8)− ρj

(
1 −2

1 1

)
A(19, 4, 4)

)

− 32k+2j−6A(3, 3, 2)

A(T1(3), (3, 4, 0)) = ρj

(
3 0

0 1

)
A(3, 36, 0)+ ρj

(
3 −1

0 1

)
A(7, 36, 24)

+ ρj

(
3 −2

0 1

)
A(19, 36, 48)+ ρj

(
0 −1

3 0

)
A(4, 27, 0)

− 3k+j−2A(3, 4, 0) ,

A(T2(3), (3, 4, 0)) = 3jA(27, 36, 0)− 3k+j−3(ρj
(

3 −1

0 1

)
A(7, 36, 24)
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+ ρj

(
3 −2

0 1

)
A(19, 36, 48)+ ρj

(
0 −1

3 0

)
A(4, 27, 0)

)

+ 2 · 32k+2j−6A(3, 4, 0) .

4.3. The congruence
Now we explain an example of the half-integral version of Harder’s congruences. For

any prime p, let λ∗(p) and ω(p) be the eigenvalues of T1(p) and T2(p) of F23/2 respec-
tively, and a26(p) the eigenvalue at p of the unique primitive elliptic cusp formΔ26 of level
1.

THEOREM 4.4. Notations being as above, for any prime p, we have the following
congruence.

1 − λ∗(p)u+ (pω(p) + p23(p2 + 1))u2 + λ∗(p)p25u3 + p50u4

≡ (1 − p3u)(1 − p22u)(1 − a26(p)u+ p25u2) mod 43 .

In particular, we have

λ∗(p) ≡ p3 + p22 + a26(p) mod 43

for all primes p.

It seems to the author that, even in the case of integral weight, there had been no
known example such that such congruence holds for all the Euler p factors for a fixed
congruence prime, since this type of theorem for all p cannot be checked just by calculating
the examples of eigenvalues at finitely many p. By the way, if we believe Conjecture 1.2,
this congruence means the congruence between eigenvalues of the cusp form of weight
det5 Sym(18) and the quantity as above coming from Δ26, which is the original Harder’s
conjecture.

We note that 43|Lalg(23,Δ26) (see [3]) and that there exists the Klingen type Eisen-

stein series E23/2 ∈ A+
23/2,2(Γ

(2)
0 (4)) such that

L(s,E23/2) = ζ(s − 3)ζ(s − 22)L(s,Δ26)

and the right hand side of the first congruence in the above theorem gives the Euler p factor
of L(s,E23/2). So this theorem gives an example of Conjecture 1.4.

Now in order to give E23/2 explicitly and prove the above theorem, we consider a

non-cusp form in A+
23/2,2(Γ

(2)
0 (4)). First we define a non-zero non-cusp form H15/2 ∈

A+
15/2,2(Γ

(2)
0 (4)). We define H15/2 from a certain Jacobi form in J(8,2),1(Γ J2 ) correspond-

ing to (A(τ), 0) ∈ AT8,2(Γ2) with A(τ) ∈ A8,4(Γ2). The space A8,4(Γ2) is spanned
by {φ4, φ4}Sym(4). (See [13].) Here for any f ∈ Ak(Γ2) and g ∈ Al(Γ2), the form
{f, g}Sym(4) ∈ Ak,4(Γ2) is the Rankin-Cohen type bracket defined by

(2πi)2{f, g}Sym(4) =
(
l(l + 1)

2

∂2f

∂τ 2
11

g − (l + 1)(k + 1)
∂f

∂τ11

∂g

∂τ11
+ k(k + 1)

2
f
∂2g

∂τ 2
11

)
u4

1
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+
(
l(l + 1)

∂2f

∂τ11∂τ12
g − (k + 1)(l + 1)

(
∂f

∂τ12

∂g

∂τ11
+ ∂f

∂τ11

∂g

∂τ12

)

+ k(k + 1)f
∂2g

∂τ11∂τ12

)
u3

1u2 +
(
l(l + 1)

2

∂2f

∂τ 2
12

g + l(l + 1)
∂2f

∂τ11∂τ22
g

−(k + 1)(l + 1)
∂f

∂τ22

∂g

∂τ11
− (k + 1)(l + 1)

∂f

∂τ12

∂g

∂τ12

+k(k + 1)

2
f
∂2g

∂τ 2
12

− (k + 1)(l + 1)
∂f

∂τ11

∂g

∂τ22
+ k(k + 1)f

∂2g

∂τ11∂τ22

)
u2

1u
2
2

+
(
l(l + 1)

∂2f

∂τ12∂τ22
g − (k + 1)(l + 1)

(
∂f

∂τ22

∂g

∂τ12
+ ∂f

∂τ12

∂g

∂τ22

)

+k(k + 1)f
∂2g

∂τ12∂τ22

)
u1u

3
2

+
(
l(l + 1)

2

∂2f

∂τ 2
22

g − (k + 1)(l + 1)
∂f

∂τ22

∂g

∂τ22
+ k(k + 1)

2
f
∂2g

∂τ 2
22

)
u4

2 .

For {φ4, φ4}Sym(4)/14400 = ∑4
i=0 ai(τ )u

4−i
1 ui2, the form H15/2 ∈ A+

15/2,2(Γ
(2)

0 (4)) is de-
fined as in (4) with c(τ ) = 0. This is a non-cusp form. Examples of the Fourier coefficients
of H15/2 are given by

A(3, 0, 0;H15/2) = u2
1 ,

A(4, 0, 0;H15/2) = −2u2
1 ,

A(3, 3, 2;H15/2) = (−1/2)u1u2 ,

A(3, 4, 0;H15/2) = −u2
2 .

Now we put H23/2(τ ) = φ4(4τ )H15/2(τ ). Then it is clear that H23/2 is also a non-cusp

form in A+
23/2,2(Γ

(2)
0 (4)), though this is not an eigenform. Next we determine a Hecke

eigen non-cusp form. Since there exists the Klingen-type Eisenstein series E23/2 such that

L(s,E23/2) = ζ(s − 3)ζ(s − 22)L(s,Δ26) ,

and we have dimA+
23/2,2(Γ

(2)
0 (4)) − dim S+

23/2,2(Γ
(2)

0 (4)) = 3 − 2 = 1, we see that

T1(2)H23/2 − c(2)H23/2 ∈ S+
23/2,2(Γ

(2)
0 (4)) where c(2) = 23 + 222 + a26(2) = 4194264,

and a26(2) = −48 is the eigenvalue of Δ26 at 2. We denote the Fourier coefficients of
H23/2 by C(T ). Then by computer calculation we have

C(3, 3, 2) = 27u2
1 + 58u1u2 + 27u2

2

C(3, 4, 0) = 552u2
1 − 104u2

2

C(3, 12, 4) = 1775979u2
1 + 2431012u1u2 + 541596u2

2

C(3, 16, 0) = 100608456u2
1 − 24084608u2

2

C(4, 12, 0) = −9827008u2
1 + 1756896u2

2



100 T. IBUKIYAMA

C(7, 16, 16) = 2559648u2
1 + 7944384u1u2 + 7944384u2

2

C(8, 12, 16) = −167688u2
1 − 335376u1u2 − 331392u2

2

By this table we can calculate the coefficient of T1(2)H23/2 as follows.

C(T1(2); (3, 3, 2)) = 72(100049u2
1 + 131646u1u2 + 100049u2

2) ,

C(T1(2); (3, 4, 0)) = 192(2117109u2
1 − 288793u2

2) .

Then the coefficients of T1(2)H23/2 − c(2)H23/2 at (3, 3, 2) and (3, 4, 0) are given respec-
tively as follows.

(3, 3, 2) −67200(1578u2
1 + 3479u1u2 + 1578u2

2) ,

(3, 4, 0) −134400(14202u2
1 − 2833u2

2) .

So by comparing the coefficients at (3, 3, 2) and (3, 4, 0), we easily see that

T1(2)H23/2 − c(2)H23/2 = 134400(789F23/2 + 323G23/2) .

So we have⎛
⎜⎝
T1(2)H23/2

T1(2)G23/2

T1(2)F23/2

⎞
⎟⎠=

⎛
⎜⎝

23 · (219 + 1)− 48 (134400) · (323) (134400) · (789)

0 3600 −360

0 0 −2880

⎞
⎟⎠
⎛
⎜⎝
H23/2

G23/2

F23/2

⎞
⎟⎠

and the eigenform E23/2 corresponding to the eigenvalue c(2) = 23(219 + 1)− 48, that is,
the Klingen type Eisenstein series, is given by

E23/2 = 7508273H23/2 + 77778400G23/2 + 189691200F23/2 .

We know already that E23/2 and F23/2 are eigenforms for any Hecke operators. We denote
by λ(Ti(p), F ) the eigenvalue of Ti(p) for any eigenform F for each i = 1, 2. Then we
have

λ(T1(p),E23/2) = p3(1 + p19)− a26(p) ,

λ(T2(p),E23/2) = p2(1 + p19)a26(p)+ p22 + p24 ,

and these are integers. We have

Ti(p)E23/2 =7508273Ti(p)H23/2 + 77778400Ti(p)G23/2

+ 189691200Ti(p)F23/2 ,

λ(Ti(p),E23/2)E23/2 =7508273λ(Ti(p),E23/2)H23/2 + λ(Ti(p),E23/2)G23/2

+ 189691200λ(Ti(p),E23/2)F23/2 .

Since we have Ti(p)E23/2 = λ(Ti(p),E23/2)E23/2, subtracting both sides of the above
equalities, we have

(5) 189691200

(
λ(Ti(p), F23/2)− λ(Ti(p),E23/2)

)
F23/2 =
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7508273

(
λ(Ti(p),E23/2)H23/2 − Ti(p)H23/2

)

+ 77778400

(
λ(Ti(p),E23/2)G23/2 − Ti(p)G23/2

)
.

We have 7508273 = 43 · 283 · 617 and 77778400 = 25 · 52 · 7 · 17 · 19 · 43, both divisible
by 43, but 189691200 = 26 · 33 · 52 · 4391, which is not divisible by 43. Now we see that
the Fourier coefficients of H23/2, G23/2 (and F23/2) are 43-adically integral. First we see
that the Fourier coefficients of φ4, φ6 and χ10 are all integral since these are obtained by the
Maass lift (or the Saito-Kurokawa lift) of Jacobi forms with integral coefficients given by
E4,1, E6,1, χ10,1 of degree one of weight 4, 6, 10 (See [2]). Then Rankin-Cohen operators
are integral except for the power of 2. The normalizing constants 14400 = 26 · 32 · 52

and 24449040 = 24 · 34 · 5 · 73 · 11 used as the denominator in the definition of Jacobi
forms corresponding with H15/2 and F23/2 does not contain 43 as a prime factor. Now the
cofactors Bij (τ ) have integral coefficients, since all ϑij do so, and all χ5(τ )cij (τ ) have
43-integral Fourier coefficients. Now in the final stage, we must divide χ5(4τ )cij (4τ ) by
χ5(4τ ). This calculation can be done by using the Fourier expansion by induction with
respect to the orders of e(τ11) and e(τ22). By definition, we see that the Fourier coefficients
of χ5 are integral, and since we have

χ5(4τ ) = e(2τ11)e(2τ22)(e(2τ12)− e(−2τ12))+ higher terms ,

and the lowest order term has coefficient 1, the quotients by this have also 43-integral
Fourier coefficients. By the formula of Fourier coefficients of Ti(p)F for F ∈ A+

k−1/2,j

(Γ
(2)

0 (4)) (see [12] pp.127–128), we see that if F has l-adically integral Fourier coefficients
for a prime l, then Ti(p)F also. So we see that the Fourier coefficients of the right hand side
of (5) are all divisible by 43 locally, and hence the Fourier coefficients of (λ(Ti(p), F23/2)−
λ(Ti(p),E23/2))F/43 are all 43-adically integral. So, seeing the Fourier coefficient −(u1+
u2)

2 at (3, 3, 2) of F23/2, we have

λ(Ti(p), F23/2) ≡ λ(Ti(p),E23/2) mod 43

for i = 1 and 2 for any prime p. This proves Theorem 4.4.

Correction. There are following typos in [12].
In p. 111, l.5, |φ(Z)| = | det(CZ +D)|1/2 should read
|φ(Z)| = (det(g))−1/4| det(CZ +D)|1/2.
In p. 123, l.6 from the bottom, two 538970 should read 538920.

In p. 129, l. 10, ρj

(
0 −1

0 3

)
should read ρj

(
0 −1

3 0

)
.

In p. 134, l.7 from the bottom, “holomorphic Jacobi form φ(τ1, z1) ∈ Jk+j,1” should read
“holomorphic Jacobi cusp form φ(τ1, z1) ∈ J

cusp

k+j,1. In p. 134, l.2 from the bottom, “For

φ ∈ J skewk+j,1” should read “For φ ∈ J skew,cuspk+j,1 ”.
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