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There are several zeta functions associated with a quadratic form, or a
vector space of quadratic forms, partly defined rather classically by Epstein
or Siegel or Koecher and Maass, and partly defined in the theory of the
prehomogeneous vector spaces. In recent years, we found that the explicit
shapes of these zeta functions are unexpectedly simple and gave very concrete
formulas. In this short note, we shall illustrate this kind of results for three
kinds of general zeta functions with some related results. Some part of these
results is a joint work with Hiroshi Saito, or some with Hidenori Katsurada.

1 Zeta functions of symmetric matrices

The zeta functions associated with the vector space of symmetric matrices
were defined by Shintani as a part of zeta functions of prehomogeneous vector
spaces invented by Mikio Sato. These are very interesting zeta functions,
partly because their values at negative integers give the part of the dimension
formula of Siegel modular forms (that is, the contribution of central unipotent
conjugacy classes). This fact was proved by Shintani in 1976. But except for
the case of degree one or two, concrete special values of the zeta functions
were not known until 1992 (cf.citeibusaitoduke). Many people imagined that
the special values should be simple objects but it was overlooked for a long
time that the zeta functions themselves are simple objects. Here we explain
a part of our results. (As a whole result, cf. [4].) For any ring R, we denote
by Symn(R) the set of n × n symmmetric matrices, and denote by L∗ the
lattice of half integral symmetric matrices, that is,

L∗
n = {x = (xij) ∈ Symn(Q); xij ∈ (1/2)Z, xii ∈ Z}.
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We denote by L∗,+
n the set of positive definite matrices in L∗

n. For any x ∈
L∗,+

n , we put
Aut(x) = {γ ∈ GL2(Z); tgxg = x}.

This is obviously a finite set, and we denote its cardinality by #(Aut(x)).
The group GLn(Z) of unimodular matrices acts on L∗,+ by x → tgxg. We
define the zeta function associated with L∗,+

n by

ζ(s, L∗,+
n ) =

∑
x∈L∗,+

n /GLn(Z)

1

det(x)s#(Aut(x))
.

To describe this function explicitly, we introduce several notations. We de-
note by ζ(s) the Riemann zeta function. For each non-negative integer m,
we denote by Bm the Bernoulli number defined by:

tet

et − 1
=

∞∑
m=0

Bm
tm

m!
.

For each fundamental discriminant dK of a quadratic field K over Q, we
denote by χdK the Kronecker symbol of Q(

√
dK): χdK (a) =

(
dK
a

)
. We include

the case dK = 1 and in this case χdK means the trivial (primitive) character.
We denote by L(s, χdK ) the Dirichlet L-function. When n is even, we need
two Dirichlet series D∗

n(s) and Dn(s) defined below. Using Cohen’s notation,
for each non negative integer d, we define a rational number H(n

2
, d) as

follows: When (−1)n/2d ≡ 2 or 3 mod 4, put H(n
2
, d) = 0. When d = 0, put

H(n
2
, 0) = ζ(1 − n). When (−1)n/2d ≡ 1 or 0 mod 4, then (−1)n/2d = dKf

2

for some positive integer f and the fundamental discriminant dK or dK = 1.
In this case, we put

H(
n

2
, d) = L(1− n

2
, χdK )

∑
m|f

µ(m)χdK (m)m
n
2
−1σn−1(f/m).

Then, the Dirichlet series we need are defined by:

D∗
n(s) =

∞∑
d=1

H(
n

2
, d)d−s.

The following theorem is a joint work with Hiroshi Saito.

Theorem 1.1 ([4]) When n is an odd integer n ≥ 3, we get
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ζ(s, L∗,+
n ) =

2(n−1)s|B2B4 · · ·Bn−1|
2n−1(n−1

2
)!

×{ζ(s− n− 1

2
)ζ(2s− 1)ζ(2s− 3) · · · ζ(2s− n+ 2)

+(−1)(n
2−1)/8ζ(s)ζ(2s− 2)ζ(2s− 4) · · · ζ(2s− n+ 1)}.

When n is an even integer n ≥ 4, we get

ζ(s, L∗,+
n ) =

(−1)[
n
4
]2ns|B2B4 · · ·Bn−2|
2n−1(n−2

2
)!

×{D∗
n(s)ζ(2s− 2)ζ(2s− 4) · · · ζ(2s− n+ 2)

+δn,4 ×
2|Bn/2|

n
ζ(2s− 1)ζ(2s− 3) · · · ζ(2s− n+ 1)}

where δn,4 = 0, or 1 if n ≡ 2 mod 4 or n ≡ 0 mod 4, respectively.

The proof consists of very long calculation, using a kind of mass formula,
Jordan splitting of local quadratic forms, a kind of q-analogue, and careful
reconstruction of the global zeta functions from the local data. We omit the
details.

As a corollary, we can write values of ζ(1−m,L∗,+
n ) for all positive integers

m explicitly by using the usual Bernoulli numbers (cf. [4] II). This leads us
to an explicit conjecture on dimensions of Siegel modular forms of any degree
belonging to torsion free congruence subgroup.

2 Zeta functions of an indefinite quadratic

form

In the previous section, we explained the results on zeta functions associated
with vector spaces of quadratic forms. In this section, we treat another type
of zeta function associated with a single quadratic form. We take a non-
degenerate m × m half integral symmetric matrix S of size bigger than 3
with signature (p, q), that is, with p positive and q negative eigenvalues. So,
m = p+ q. We define a cone Ω(S) by

Ω(S) = {x ∈ Rm;S[x] > 0},

where we use the traditional notation txSx = S[x]. A zeta function associ-
ated with S was defined by Siegel.
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To define a zeta function associated with S, there are several difficult
points. Firstly, for natural number n, there are infinitely many solutions of
integral vectors x ∈ Zm such that S[x] = n. In most cases, you can overcome
this in the following way. We put Γ(S) = {g ∈ GLm(Z); tgSg = s}. By
reduction theory, we know that the number of Γ(S)-orbits of the solutions
is finite. We defnote by Γ(S, x) the stabilizer of x in Γ(S). We put O(S) =
{g ∈ GLm(R); tgSg = S} and O(S, x) = {g ∈ O(S); gx = x}. If S is positive
definite, the number of solution of S[x] = n can be also written as∑

y

#(Γ(S))

#(Γ(S, y))
,

where y runs over representatives of Γ(S) orbit of solutions of S[x] = n. So,
in our case where S is indefinite, one idea is to replace #(Γ(S)) or #(Γ(S, y))
in the above definite case by vol(O(S)/Γ(S))−1

or vol(O(S, y)/Γ(S, y))−1 respectively, if each is finite. In some rare cases,
either of these volumes might be infinite, but we omit such pathological cases.
Then, roughly speaking, we can define the zeta function by

ζ(s, S) = vol(O(S)/Γ(S))−1
∑

x∈Ω(S)/Γ(S)

vol(O(S, x)/Γ(S, x))S[x]−s.

But still, this definition has not been well defined yet as we explain below.
We must fix a measure to give each volume above. Of course we should take
the Haar measure of O(S, x), but this is determined only up to constant and
we must give a unified way how to choose this for each x simultaneously.
Here it is essential that our vector space is a prehomogeneous vector space.
If we put G = GL(1)×O(S), then G(C) acts transitively on Cm −S, where
S = {x ∈ Cm;S[x] = 0}. Here GL(1) acts as the scalar multiple. Now, we
fix a Haar measure of G(R). For each x ∈ Rm, G(R)/G(R, x) is identified
with an open subset of Rm, where G(R, x) is the stabilizer of x. On Rm we
can fix a G-invariant measure, still up to constant. For example, we can take
S[x]−m/2 dx in our case. So, if we fix each G invariant measure dg on G(R)
and Rm, we can define the measure dgx uniquely on each G(R, x) so that
the quotient measure dg/dgx is the measure on Rm. Still dgx depends on the
choice of dg and the measure of Rm, but there is no ambiguity depending
on the choice of x. Actually Siegel’s definition is more complicated, since
he often gave measures as concretely as possible, but the essence may be
explained in the above way. Also, we must fix measures of G and Rm to
give a real definition of zeta functions specifying constant. Since this is more
involved, we omit the explanation in detail. We just annouce here that we
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take Siegel’s definition of ζ(s, S) exactly as in [7]. (Please note that Siegel
himself often used the different definitions in various papers.)

Now, our theorem can be stated.

Theorem 2.1 We take an m×m half integral indefinite symmetric matrix
S. We assume that m is even and m ≥ 4. Besides, when m = 4, we exclude
the case where S is either a zero form or det(S) is a square. Then the zeta
function ζ(s, S) is a Q linear combination of the following zeta functions

a−sL(s, χ1)L(s−m/2 + 1, χ2),

where a runs over several positive rational numbers and (χ1, χ2) are pairs
of real characters (i.e. χ2

1 = χ2
2 = 1) such that χ1χ2 = χS. Here χS(n) =(

(−1)m/2 det(S)
n

)
.

Corollary 2.2 Assumptions and notation being same as above, but here we
do not assume that m is even. Then, each value ζ(1 − n, S) is rational for
each natural number n.

3 Koecher Maass series of Siegel Eisenstein

series

In the previous section, we treated the zeta function to count the representa-
tion number of n by S. The natural generalization is to count something like
a number of solution X ∈ Mmn(Z) of S[X] = T for each symmetric matrix
T of size n ≤ m. Indeed, Siegel also defined this type of zeta functions. It
seems complicated to obtain the general explicit formula of zeta functions
in this case, but an explicit result is obtained in the following case where
S = Hk is the 2k × 2k matrix defined by

Hk =

(
0 1
1 0

)
+ · · ·+

(
0 1
1 0

)
.

Here the notation plus means to arrange the small matrices diagonally. On
the other hand, for k > n+1, we can define the Siegel Eisenstein series Ek(Z)
of weight k belonging to the full modular group of degree n by

Ek(Z) =
∑
{C,D}

det(CZ +D)k,
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where {C,D} runs over the so called non-associated coprime symmetric pairs
and Z is in the Siegel upper half space of degree n. We have the Fourier
expansion

E
(n)
k (Z) =

∑
T

a(T )e2πitr(TZ)

of this function, where T runs over n× n half integral positive semi-definite
symmetric matrices T and a(T ) is the Fourier coefficients at T . The formula
to connect the Fourier coefficients a(T ) with the product of local densities∏

p

αp(Hk, T )

is known by Siegel. By this relation, we can regard the Siegel zeta function
associated with Hk representing size n symmetric matrices as the Koecher
Maass series of Ek(Z), which is defined to be the following series

ξn,k(s) =
∑

T∈L∗,+
n /GLn(Z)

a(T )

det(T )s#(Aut(T ))
.

To state the theorem, we prepare notation. We define convolution product
of D∗

n(s) and D∗
2k−n(s) by

D∗
n(s)⊗D∗

2k−n(s) = ζ(2s− k + 1)
∑
d

H(
n

2
, d)H(

2k − n

2
, d)d−s.

The following theorem is a joint work with H. Katsurada.

Theorem 3.1 (cf. [2]) When n is odd, then

ξn,k(s)

= (−1)nk/22(n−1)s

∏(n−1)/2
i=0 (k − i)

(n−1
2
)!

×
∏(n−1)/2

i=1 |B2i|
|Bk|

∏(n−1)/2
i=1 |B2k−2i|

× {ζ(s)ζ(s− k + 1)

(n−1)/2∏
i=1

((ζ(2s− 2i)ζ(2s− 2k + 2i+ 1))

+ (−1)(n
2−1)/8ζ(s− n− 1

2
)ζ(s− k +

n+ 1

2
)

(n−1)/2∏
i=1

(ζ(2s− 2i+ 1)ζ(2s− 2k + 2i))}.
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When n is even and n ≥ 4, we get

ξn,k(s)

= (−1)nk/22ns+n/2 ×
∏n/2

i=0(k − i)
∏n/2−1

i=1 |B2i|
(n
2
− 1)!|Bk|

∏n/2
i=1 |B2k−2i|

× {(−1)(n+k)/2(D∗
n(s)⊗D∗

2k−n(s))

n/2−1∏
i=1

ζ(2s− 2i)ζ(2s− 2k + 2i+ 1)

+ δ4,n(−1)n(n+2)/8 ×
|Bn/2Bk−n/2|

(n/2)(k − n/2)

n/2∏
i=1

ζ(2s− 2i+ 1)ζ(2s− 2k + 2i)},

where δn,4 = 0, or 1 if n ≡ 2 mod 4 or n ≡ 0 mod 4, respectively.
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