VOLUMES OF FIBERED 2-FOLD BRANCHED COVERS OF 3-MANIFOLDS

SUSUMU HIROSE, EFSTRATIA KALFAGIANNI, AND EIKO KIN

Abstract

We prove that for any closed, connected, oriented 3-manifold M, there exists an infinite family of 2-fold branched covers of M that are hyperbolic 3 -manifolds and surface bundles over the circle with arbitrarily large volume.

1. Introduction

Sakuma [17] proved that every closed, connected, oriented 3-manifold M with a Heegaard splitting of genus g admits a 2-fold branched cover of M that is a genus g surface bundle over the circle S^{1}. See also Koda-Sakuma [11, Theorem 9.1]. Brooks [3] showed that the 2 -fold branched cover of M in Sakuma's theorem can be chosen to be hyperbolic if $g \geq \max (2, g(M))$, where $g(M)$ is the Heegaard genus of M.

Montesinos gave different proofs of results by Sakuma and Brooks by using open book decompositions of M. To state his theorem, let $\Sigma=\Sigma_{g, m}$ be a compact, connected, oriented surface of genus g with m boundary components, and let $\Sigma_{g}=\Sigma_{g, 0}$. The mapping class group $\operatorname{MCG}(\Sigma)$ is the group of isotopy classes of orientationpreserving self-homeomorphisms on Σ. By the Nielsen-Thurston classification, elements in $\operatorname{MCG}(\Sigma)$ fall into three types: periodic, reducible, pseudo-Anosov [21]. For $f \in \operatorname{MCG}(\Sigma)$, we consider the mapping torus

$$
T_{f}=\Sigma \times[-1,1] /_{(x, 1) \sim(f(x),-1)} .
$$

We call Σ the fiber of T_{f}. The 3 -manifold T_{f} is a Σ-bundle over the circle S^{1} with the monodromy f. It is known by Thurston [22] that T_{f} admits a hyperbolic structure of finite volume if and only if f is pseudo-Anosov. The following result is a starting point of our paper.

Theorem 1 (Montesinos [15]). Let M be a closed, connected, oriented 3-manifold containing a hyperbolic fibered knot of genus $g_{0} \geq 1$. Then there exists a 2 -fold branched cover of M branched over a 2-component link that is a hyperbolic 3manifold and a $\Sigma_{2 g_{0}}$-bundle over S^{1}.

In this paper, building on the approach of Montesinos, we prove the following result. Here $\operatorname{vol}(W)$ denotes the volume of a hyperbolic 3-manifold W.

[^0]Theorem 2. Let M be a closed, connected, oriented 3-manifold containing a hyperbolic fibered knot of genus $g_{0} \geq 2$. Then for any $g \geq g_{0}$ and $j \in\{1,2\}$, there exists an infinite family $\left\{N_{\ell}\right\}_{\ell \in \mathbb{N}}$ of hyperbolic 3-manifolds such that
(a) N_{ℓ} is a $\Sigma_{2 g+j-1}$-surface bundle over S^{1},
(b) N_{ℓ} is a 2 -fold branched cover of M branched over a $2 j$-component link, and
(c) the inequalities

$$
\frac{1}{2} g<\operatorname{vol}\left(N_{\ell}\right)<\operatorname{vol}\left(N_{\ell+1}\right) \quad \text { for } \ell \in \mathbb{N}
$$

hold.
By Soma [18], every closed oriented, connected 3-manifold M contains a hyperbolic fibered knot of genus g_{0} for some $g_{0} \geq 1$. Equivalently there exists an open book decomposition ($\Sigma_{g_{0}, 1}, h$) of M, where the monodromy h is isotopic to a pseudoAnosov homeomorphism. By stabilizing open book decompositions along suitable arcs, one may assume that M contains a hyperbolic fibered knot of genus g for some $g \geq 2$, see Colin-Honda [4], Detcherry-Kalfagianni [5] for example. Hence Theorem 2 applies to all 3 -manifolds M.

Let $\mathcal{D}_{g}(M)$ be the subset of $\operatorname{MCG}\left(\Sigma_{g}\right)$ on the closed surface of genus g consisting of elements f such that its mapping torus T_{f} is homeomorphic to a 2 -fold branched cover of M branched over a link. The above result by Sakuma tells us that $\mathcal{D}_{g}(M) \neq$ \emptyset if $g \geq g(M)$, and there exist infinitely many pseudo-Anosov elements in $\mathcal{D}_{g}(M)$ if $g \geq \max (2, g(M))$, see [3]. For a study of stretch factors of pseudo-Anosov elements of $\mathcal{D}_{g}(M)$, see [10]. As an immediate corollary of Theorem 2, we have following.

Corollary 3. Let M be a closed, connected, oriented 3-manifold containing a hyperbolic fibered knot of genus $g_{0} \geq 2$. Then there exists an infinite family $\left\{\phi_{g}\right\}_{g=1}^{\infty}$ of pseudo-Anosov elements $\phi_{g} \in \mathcal{D}_{2 g_{0}+g-1}(M)$ such that the volume $\operatorname{vol}\left(T_{\phi_{g}}\right)$ of the mapping torus of ϕ_{g} goes to ∞ as $g \rightarrow \infty$.

We ask the following question.
Question 4. For g sufficiently large, does the set $\mathcal{D}_{g}(M)$ contain an infinite family of pseudo-Anosov elements whose mapping tori have arbitrarily large volume?

Note that Futer, Purcell and Schleimer [8] give a positive answer to Question 4 when $M=S^{2} \times S^{1}$. Using the results of [8], in Corollary 11, we also obtain a positive answer to Question 4 when $M=S^{3}$ and g is even.

2. Fathi's theorem and volume variation

This section is devoted to the proof of a result which is a generalization of a theorem by Fathi [6]. Given a surface $\Sigma=\Sigma_{g, m}$ of genus g with m boundary components, let $\operatorname{MCG}(\Sigma)$ be the group of isotopy classes of orientation preserving self-homeomorphisms of Σ. In this section, we do not require that the maps and isotopies fix the boundary $\partial \Sigma$ of Σ pointwise. In Sections 3 and 4, we restrict our attention to the open book decompositions (Σ, h) of closed 3 -manifolds, where the monodromy $h: \Sigma \rightarrow \Sigma$ preserves $\partial \Sigma$ pointwise. By abuse of notations, we denote a representative of a mapping class $f \in \operatorname{MCG}(\Sigma)$ by the same notation f.

A simple closed curve γ in Σ is essential if it is not homotopic to a point or a boundary component. For simplicity, we may not distinguish between a simple closed curve γ and its isotopy class [$\gamma]$. Let τ_{γ} denote the positive (i.e. right-handed) Dehn twist about γ.

Let $\gamma_{1}, \ldots, \gamma_{k}$ be essential simple closed curves in Σ. We say that the set $\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$ fills Σ if for each essential simple closed curve γ^{\prime} in Σ, there exists some $j \in\{1, \ldots, k\}$ such that $i_{\Sigma}\left(\gamma^{\prime}, \gamma_{j}\right)>0$, where $i_{\Sigma}(\cdot, \cdot)$ is the geometric intersection number on Σ. In this case, we also say that $\gamma_{1}, \ldots, \gamma_{k}$ fill Σ.

Given $f \in \operatorname{MCG}(\Sigma)$, we call $O_{f}(\gamma)=\left\{f^{\ell}(\gamma) \mid \ell \in \mathbb{Z}\right\}$ the orbit of γ under f. Strictly speaking, this is the set of isotopy classes $\left[f^{\ell}(\gamma)\right]$ of simple closed curves $f^{\ell}(\gamma)$. We say that orbits of $\gamma_{1}, \ldots, \gamma_{k}$ under f are distinct if $O_{f}\left(\gamma_{i}\right) \neq O_{f}\left(\gamma_{j}\right)$ for any $i, j \in\{1, \ldots, k\}$ with $i \neq j$. Notice that $O_{f}\left(\gamma_{i}\right)=O_{f}\left(\gamma_{j}\right)$ if and only if there exists an integer $\ell \in \mathbb{Z}$ such that $f^{\ell}\left(\gamma_{i}\right)=\gamma_{j}$. We say that the orbits of $\gamma_{1}, \ldots, \gamma_{k}$ under f fill Σ if there exists an integer $n>0$ such that the set $\left\{f^{\ell}\left(\gamma_{j}\right) \mid j \in\right.$ $\{1, \ldots, k\}, \ell \in\{0, \pm 1, \ldots, \pm n\}\}$ fills Σ.

Suppose that $\partial \Sigma \neq \emptyset$. A properly embedded arc α in Σ is essential if it is not parallel to $\partial \Sigma$. As in the case of simple closed curves, we do not distinguish between an arc α and its isotopy class $[\alpha]$. We allow that endpoints of the arcs are free to move around $\partial \Sigma$, and an arc α^{\prime} that is isotopic to α may have the different endpoints from the ones of α. Given $f \in \operatorname{MCG}(\Sigma)$, we call $O_{f}(\alpha)=\left\{f^{\ell}(\alpha) \mid \ell \in \mathbb{Z}\right\}$ the orbit of α under f.

Let $\alpha_{1}, \ldots, \alpha_{k}$ be essential arcs. We say that the orbits of $\alpha_{1}, \ldots, \alpha_{k}$ under f are distinct if $O_{f}\left(\alpha_{i}\right) \neq O_{f}\left(\alpha_{j}\right)$ for any $i, j \in\{1, \ldots, k\}$ with $i \neq j$.

Theorem 5. Let $\gamma_{1}, \ldots, \gamma_{k}$ be essential simple closed curves in $\Sigma=\Sigma_{g, m}$, where $k \geq 1$ and $3 g-3+m>0$ (possibly $m=0$). For any mapping class $f \in \operatorname{MCG}(\Sigma)$, suppose that the orbits of $\gamma_{1}, \ldots, \gamma_{k}$ under f are distinct and fill Σ. (i.e. $O_{f}\left(\gamma_{i}\right) \neq$ $O_{f}\left(\gamma_{j}\right)$ for any $i, j \in\{1, \ldots, k\}$ with $i \neq j$, and the orbits of $\gamma_{1}, \ldots, \gamma_{k}$ under f fill Σ.) Then there exists $n \in \mathbb{N}$ which satisfies the following.
(a) For any $\boldsymbol{n}=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{Z}^{k}$ with $\left|n_{i}\right| \geq n$ for $i=1, \ldots, k$, the mapping class

$$
f_{n}=\tau_{\gamma_{k}}^{n_{k}} \ldots \tau_{\gamma_{1}}^{n_{1}} f \in \operatorname{MCG}(\Sigma)
$$

is pseudo-Anosov.
(b) There exists a sequence $\left\{\boldsymbol{n}_{\ell}\right\}_{\ell \in \mathbb{N}}$ of the k-tuple of integers $\boldsymbol{n}_{\ell}=\left(n_{\ell_{1}}, \ldots, n_{\ell_{k}}\right) \in$ \mathbb{Z}^{k} with $\left|n_{\ell_{i}}\right| \geq n$ for $i=1, \ldots, k$ such that the mapping tori $T_{f_{n_{\ell}}}$ of $f_{\boldsymbol{n}_{\ell}}=\tau_{\gamma_{k}}^{n_{\ell_{k}}} \ldots \tau_{\gamma_{1}}^{n_{\ell_{1}}} f$ are hyperbolic 3-manifolds with strictly increasing volumes:

$$
\frac{1}{2} k<\operatorname{vol}\left(T_{f_{n_{\ell}}}\right)<\operatorname{vol}\left(T_{f_{n_{\ell+1}}}\right) \text { for } \ell \in \mathbb{N}
$$

In the case of $\partial \Sigma=\emptyset$, Theorem $5(\mathrm{a})$ is due to Fathi $[6$, Theorem 0.2]. The result by Fathi is a generalization of a theorem by Long-Morton [12]. The argument we give below follows the line of the proof in [12]. In our setting, the mapping tori of the pseudo-Anosovs obtained in Theorem 5(a) are given by the Dehn filling along hyperbolic 3-manifolds. This allows us to use results on volume variation under the Dehn filling to prove Theorem 5(b).

Proof of Theorem 5. We take numbers $0<t_{1}<t_{2}<\cdots<t_{k}<1$. Let $\delta_{i}=\gamma_{i} \times\left\{t_{i}\right\}$ be a curve lying on the fiber $F_{i}=\Sigma \times\left\{t_{i}\right\}$ for $i=1, \ldots, k$ of the mapping torus T_{f}. Now $L_{k}=\delta_{1} \cup \cdots \cup \delta_{k}$ is a link in T_{f}.

Claim 1. Let $\mathcal{N}\left(L_{k}\right)$ denote a regular neighborhood of the link L_{k}. Then the 3 -manifold $N=\overline{T_{f} \backslash \mathcal{N}\left(L_{k}\right)}$ is hyperbolic.

Proof of Claim 1. Since $\gamma_{1}, \ldots, \gamma_{k}$ are essential simple closed curves in Σ, the 3manifold N is irreducible and boundary irreducible.

We first show that N is atoroidal, i.e. N contains no essential embedded tori. Assume that there exists a torus T embedded in N that is incompressible and not peripheral. Since the fundamental group of a thickened surface $\Sigma \times I$, where I is an interval, does not contain free abelian subgroups of rank 2 , the torus T must intersect some of the fibers F_{i} of T_{f}, where the curves δ_{i} lie.

Without loss of generality, we may suppose that T intersects the fiber F_{1}, where $\delta_{1}=\gamma_{1} \times\left\{t_{1}\right\}$ lies. We identify Σ with the t_{1}-level $F_{1}=\Sigma \times\left\{t_{1}\right\}$ in T_{f}. Let W_{Σ} denote the manifold obtained by cutting T_{f} open along Σ. Since we assumed that $0<t_{1}<t_{2}<\cdots<t_{k}<1$, in the beginning of the proof, and Σ is identified with the t_{1}-level $F_{1}=\Sigma \times\left\{t_{1}\right\}$, the level surface $\Sigma \times\{1\}=\Sigma \times\{-1\}$ (as a set) is disjoint from F_{1}. We can view W_{Σ} as the identification space

$$
\begin{equation*}
W_{\Sigma}=\left(\Sigma \times\left[t_{1}, 1\right] \coprod \Sigma \times\left[-1, t_{1}\right]\right) /_{(x, 1) \sim(f(x),-1)} \tag{2.1}
\end{equation*}
$$

and T_{f} is obtained from W_{Σ} by identifying the two copies of $\Sigma \times\left\{t_{1}\right\}$ in ∂W_{Σ} by the identity map.

By using the irreducibility of T_{f} and the incompressibility of Σ, we may isotope the torus T so that all components of $T \backslash \Sigma$ are annuli, and each component A of $T \backslash \Sigma$ is either vertical with respect to the I-product (i.e. A runs around the S^{1} factor of T_{f}), or there exists an annulus \widehat{A} in one copy of $\Sigma \subset \partial W_{\Sigma}$ such that $A \cup \widehat{A}$ bounds a solid torus in W_{Σ} and ∂A lies in the same copy of Σ, where the annulus \widehat{A} sits. The former and latter annuli are called the vertical and horizontal annuli respectively. There are two types (A1), (A2) for a horizontal annulus A.
(A1) There exist no curves δ_{i} which is contained in the solid torus bounded by $A \cup \widehat{A}$.
(A2) There exists a curve δ_{i} which is contained in the solid torus bounded by $A \cup \widehat{A}$.

If A is a horizontal annulus of type (A2), then the curve δ_{i} in the condition of (A2) is unique: If δ_{i} and $\delta_{j}(i \neq j)$ are contained in the solid torus bounded by $A \cup \widehat{A}$, then δ_{i} and δ_{j} are isotopic in W_{Σ}, which implies that $O_{f}\left(\gamma_{i}\right)=O_{f}\left(\gamma_{j}\right)$. This contradicts the assumption that the orbits of $\gamma_{1}, \ldots, \gamma_{k}$ under f are distinct. Hence the curve δ_{i} in (A2) is unique. In particular ∂A consists of two curves which are parallel to $\gamma_{i} \times\left\{t_{1}\right\}$ since Σ is identified with the t_{1}-level $F_{1}=\Sigma \times\left\{t_{1}\right\}$.

Notice that each horizontal annulus of type (A1) can be removed by an isotopy of the torus T, and hence we may suppose that each component of $T \backslash \Sigma$ is a vertical annulus or a horizontal annulus of type (A2).

If there exists a horizontal annulus of type (A2), then by replacing the fiber F_{i} (containing the curve δ_{i}) with F_{1} if necessary, we have a horizontal annulus A_{1} of $T \backslash \Sigma$ whose components of ∂A_{1} are parallel to $\delta_{1}=\gamma_{1} \times\left\{t_{1}\right\}$.

Suppose that there exist no vertical annuli of $T \backslash \Sigma$. Then a horizontal annulus A_{1} can only connect to a horizontal annulus A_{2} with ∂A_{2} running parallel to $f^{ \pm 1}\left(\gamma_{1}\right) \times$ $\left\{t_{1}\right\}$. But then T will be boundary parallel (peripheral) in N, contrary to our assumption.

From the above discussion, we may suppose that $T \backslash \Sigma$ contains a vertical annulus A. Let P denote the component of ∂A on one copy of $\Sigma \times\left\{t_{1}\right\}$ on ∂W_{Σ}. By the construction of W_{Σ} in (2.1), the boundary ∂A is disjoint from the level surface in W_{Σ} resulting from the identification of $\Sigma \times\{1\}$ to $\Sigma \times\{-1\}$ via $(x, 1) \sim(f(x),-1)$. The intersection of the annulus A with the later level surface is the curve resulting from $P \times\{1\} \sim f(P) \times\{-1\}$ under above identification of $\Sigma \times\{1\}$ to $\Sigma \times\{-1\}$. Thus the component of ∂A on the second copy of $\Sigma \times\left\{t_{1}\right\} \subset \partial W_{\Sigma}$ is $f(P)$. That is A runs from P to $f(P)$ in W_{Σ}.

We have two cases.
(1) $T \backslash \Sigma$ contains a horizontal annulus A_{1}, or
(2) all of the components of $T \backslash \Sigma$ are vertical annuli.

We first consider the case (1). As discussed earlier, without loss of generality, we may assume that ∂A_{1} is formed by two curves parallel to $\gamma_{1} \times\left\{t_{1}\right\}$.

Since the case that the horizontal annulus A_{1} connects to another horizontal annulus was excluded earlier, we may now assume that A_{1} connects a vertical annulus A. Now this vertical annulus A eventually connects to another horizontal annulus A^{\prime} of type (A2) such that the solid torus bounded by $A^{\prime} \cup \widehat{A^{\prime}}$ contains a curve δ_{j} for some $j \in\{1, \ldots, k\}$.

Assume that $j=1$. Then the torus T must have a self-intersection in N, and this is a contradiction.

Next, we assume that $j \in\{2, \ldots, k\}$. Then ∂A^{\prime} is formed by two curves parallel to $\gamma_{j} \times\left\{t_{1}\right\}$. Recall that the curves $P \times\left\{t_{1}\right\}$ and $f(P) \times\left\{t_{1}\right\}$, viewed on different copies of $\Sigma \times\left\{t_{1}\right\} \subset \partial W_{\Sigma}$, form the boundary of the vertical annulus A. This implies that on $\Sigma:=\Sigma \times\left\{t_{1}\right\}$ we have $P, f(P) \in O_{f}\left(\gamma_{j}\right) \cap O_{f}\left(\gamma_{1}\right) \neq \emptyset$. This contradicts the assumption that the orbits of $\gamma_{1}, \ldots, \gamma_{k}$ under f are distinct.

We turn to the case (2). To form the torus T from vertical annuli, we have $f^{m}(P)=P$ for some $m>0$. Arguing as above, we conclude that the curves $P, f(P), \ldots, f^{m-1}(P)$ on $\Sigma \times\left\{t_{1}\right\} \subset T_{f}$ lie on the torus T. Since T is embedded in N and all of the components of $T \backslash \Sigma$ are vertical annuli, we have $\gamma_{i} \cap f^{j}(P)=\emptyset$ for any $i=1, \ldots, k$ and $j=1, \ldots, m$. Equivalently we have $f^{-j}\left(\gamma_{i}\right) \cap P=\emptyset$ for any $i=1, \ldots, k$ and $j=1, \ldots, m$. For any $n \in \mathbb{Z}$, write $n=m \ell-j$ for some $\ell \in \mathbb{Z}$ and some $j=1, \ldots, m$. For any $i=1, \ldots, k$, we obtain

$$
f^{m \ell}\left(f^{-j}\left(\gamma_{i}\right) \cap P\right)=f^{m \ell}\left(f^{-j}\left(\gamma_{i}\right)\right) \cap f^{m \ell}(P)=f^{m \ell-j}\left(\gamma_{i}\right) \cap P=f^{n}\left(\gamma_{i}\right) \cap P=\emptyset
$$

Thus for any $i=1, \ldots, k$, the curve P must be disjoint from $O_{f}\left(\gamma_{i}\right)$. However this contradicts our assumption that the orbits of $\gamma_{1}, \ldots, \gamma_{k}$ under f fill Σ. This implies that N is atoroidal.

To finish the proof of Claim 1, it is enough to show that N contains no essential annuli. Suppose that there exists an essential annulus A in N. Then N must be a

Seifert manifold (see [9, Lemma 1.16]), and the components of ∂N consist of fibers of the Seifert fibration of N. In N, we can find a copy of the fiber Σ of T_{f}, say S, that is disjoint from the components T_{1}, \ldots, T_{k} of ∂N that are created by drilling out the curves $\delta_{1}, \ldots, \delta_{k}$. Then S is a surface that is essential in the Seifert manifold N with non-empty boundary. Since we assumed that $3 g-3+m>0, S$ is not a torus or an annulus. Thus up to isotopy, we can make S horizontal which means that S must intersect all the fibers of the Seifert fibration of N transversely, see [9, Proposition 1.11]. Since S is disjoint from the components T_{1}, \ldots, T_{k} of ∂N, it cannot become horizontal. This contradiction implies that N contains no essential annuli. Thus by work of Thurston [20], the manifold N is hyperbolic. This completes the proof of Claim 1.

We now prove the claim (a). We denote by N_{n}, the mapping torus $T_{f_{n}}$ of $f_{\boldsymbol{n}}=\tau_{\gamma_{k}}^{n_{k}} \ldots \tau_{\gamma_{1}}^{n_{1}} f$ for $\boldsymbol{n}=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{Z}^{k}$. We use the fact that $N_{\boldsymbol{n}}$ is obtained from N by the Dehn filling, where the boundary component $T_{i} \subset \partial N$ corresponding to δ_{i} is filled. Given $\boldsymbol{n}=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{Z}^{k}$, let s_{i} denote the Dehn filling slope on $T_{i} \subset \partial N$ to obtain N_{n} for $i=1, \ldots, k$. Since N is hyperbolic, each torus boundary component of N corresponds to a cusp of $T_{f} \backslash L_{k}$. Taking a maximal disjoint horoball neighborhood about the cusps, each torus T_{i} inherits a Euclidean structure, well-defined up to similarity. The slope s_{i} can then be given a geodesic representative. We define the length of s_{i}, denoted by $\ell\left(s_{i}\right)$, to be the length of this geodesic representative. (Note that when $k>1$, this definition of slope length depends on the choice of maximal horoball neighborhood. See [16].)

The length $\ell\left(s_{i}\right)$ of the slope s_{i} is an increasing function of $\left|n_{i}\right|$. Let $\lambda>0$ denote the minimum length of the slopes, that is

$$
\lambda=\min \left\{\ell\left(s_{i}\right) \mid i=1, \ldots, k\right\} .
$$

By Thurston's hyperbolic Dehn surgery theorem [19], there exists $n \in \mathbb{N}$ such that for all $\boldsymbol{n}=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{Z}^{k}$ with $\left|n_{i}\right|>n$ for $i=1, \ldots, k$, the resulting manifold $N_{n}\left(=T_{f_{n}}\right)$ obtained by filling N is hyperbolic, and hence f_{n} is pseudo-Anosov. Thus the claim (a) holds.

We turn to the claim (b). As $\left|n_{i}\right| \rightarrow \infty$ for all $i=1, \ldots, k$, the volumes of the filled manifolds N_{n} 's approach the volume of the 3-manifold $T_{f} \backslash L_{k}$ from bellow. To make things more concrete, we use an effective form proved in [7, Theorem 1.1], which states that if $\lambda>2 \pi$, then N_{n} is hyperbolic and we have

$$
\begin{equation*}
\left(1-\left(\frac{2 \pi}{\lambda}\right)^{2}\right)^{3 / 2} \operatorname{vol}\left(T_{f} \backslash L_{k}\right) \leqslant \operatorname{vol}\left(N_{\boldsymbol{n}}\right)<\operatorname{vol}\left(T_{f} \backslash L_{k}\right) \tag{2.2}
\end{equation*}
$$

Since $T_{f} \backslash L_{k}$ is a hyperbolic 3-manifold with at least k cusps, we have

$$
k v_{3}<\operatorname{vol}\left(T_{f} \backslash L_{k}\right),
$$

where $v_{3}=1.01494 \ldots$ is the volume of the ideal regular tetrahedron, see $[1$, Theorem 7].

On the other hand, by taking $\boldsymbol{n}=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{Z}^{k}$ with all $\left|n_{i}\right|$ sufficiently larger than n, we can assure that

$$
\frac{1}{2}<\left(1-\left(\frac{2 \pi}{\lambda}\right)^{2}\right)^{3 / 2}
$$

By (2.2), we obtain

$$
\begin{equation*}
\frac{1}{2} k<\frac{1}{2} k v_{3}<\frac{1}{2} \operatorname{vol}\left(T_{f} \backslash L_{k}\right)<\operatorname{vol}\left(N_{\boldsymbol{n}}\right) \tag{2.3}
\end{equation*}
$$

We set $\boldsymbol{n}_{1}=\boldsymbol{n}$ with the above inequality $\frac{1}{2} k<\operatorname{vol}\left(N_{\boldsymbol{n}_{1}}\right)$. Suppose that there exists a finite sequence $\left\{\boldsymbol{n}_{\ell}\right\}_{\ell=1}^{m}$ of the k-tuple of integers $\boldsymbol{n}_{\ell} \in \mathbb{Z}^{k}$ such that

$$
\frac{1}{2} k<\operatorname{vol}\left(N_{\boldsymbol{n}_{1}}\right)<\cdots<\operatorname{vol}\left(N_{\boldsymbol{n}_{m}}\right)<\operatorname{vol}\left(T_{f} \backslash L_{k}\right)
$$

Now we choose $\boldsymbol{n}_{m+1}=\left(n_{1}^{\prime}, \ldots, n_{k}^{\prime}\right) \in \mathbb{Z}^{k}$ with all $\left|n_{i}^{\prime}\right|$ sufficiently larger than n so that if we let $\lambda=\lambda_{\boldsymbol{n}_{m+1}}$ be the minimal length of the slopes corresponding to $\boldsymbol{n}_{m+1} \in \mathbb{Z}^{k}$, then we have

$$
\lambda>\frac{2 \pi}{\sqrt{1-x_{m}^{2 / 3}}}>2 \pi, \quad \text { where } \quad x_{m}=\frac{\operatorname{vol}\left(N_{\boldsymbol{n}_{m}}\right)}{\operatorname{vol}\left(T_{f} \backslash L_{k}\right)}
$$

Hence $\left(\frac{2 \pi}{\lambda}\right)^{2}<1-x_{m}^{2 / 3}$. This tells us that

$$
\frac{\operatorname{vol}\left(N_{\boldsymbol{n}_{m}}\right)}{\operatorname{vol}\left(T_{f} \backslash L_{k}\right)}=x_{m}<\left(1-\left(\frac{2 \pi}{\lambda}\right)^{2}\right)^{3 / 2}
$$

Thus

$$
\operatorname{vol}\left(N_{\boldsymbol{n}_{m}}\right)<\left(1-\left(\frac{2 \pi}{\lambda}\right)^{2}\right)^{3 / 2} \operatorname{vol}\left(T_{f} \backslash L_{k}\right)
$$

By (2.2), we have

$$
\left(1-\left(\frac{2 \pi}{\lambda}\right)^{2}\right)^{3 / 2} \operatorname{vol}\left(T_{f} \backslash L_{k}\right) \leq \operatorname{vol}\left(N_{\boldsymbol{n}_{m+1}}\right)
$$

Putting them together, we obtain

$$
\operatorname{vol}\left(N_{\boldsymbol{n}_{m}}\right)<\left(1-\left(\frac{2 \pi}{\lambda}\right)^{2}\right)^{3 / 2} \operatorname{vol}\left(T_{f} \backslash L_{k}\right) \leq \operatorname{vol}\left(N_{\boldsymbol{n}_{m+1}}\right)
$$

and the conclusion follows inductively. This completes the proof of Theorem 5.

3. Curves on surfaces and open book decompositions

In this section, we quickly review curve graphs and open book decompositions of 3 -manifolds. We prove a lemma that is needed for the proof of Theorem 2.

Figure 1. Case $(g, m)=(3.2)$. An example of simple closed curves c_{1}, \ldots, c_{g-1} in $\Sigma_{g, m}$.
3.1. Curves on surfaces. Suppose that $g \geq 2$. The curve graph $\mathcal{C}(\Sigma)$ for $\Sigma=\Sigma_{g, m}$ is defined as follows. The set of vertices $\mathcal{C}_{0}(\Sigma)$ is the set of isotopy classes of essential simple closed curves. Two vertices in $\mathcal{C}_{0}(\Sigma)$ are connected by an edge if they can be represented by disjoint essential simple closed curves. The space $\mathcal{C}(\Sigma)$ is a geodesic metric space with the path metric $d(\cdot, \cdot)$ that assigns length 1 to each edge of the graph. The mapping class group $\operatorname{MCG}(\Sigma)$ acts on $\mathcal{C}(\Sigma)$ as isometries.

Lemma 6. Let $f \in \operatorname{MCG}(\Sigma)$ be a pseudo-Anosov mapping class defined on $\Sigma=$ $\Sigma_{g, m}$, where $g \geq 2$. Then for any $1 \leq k \leq g$, there exist mutually disjoint, essential simple closed curves $\gamma_{1}, \ldots, \gamma_{k}$ in Σ such that
(a) the orbits of $\gamma_{1}, \ldots, \gamma_{k}$ under f are distinct and fill Σ, and
(b) the surface $\Sigma \backslash\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$ obtained from Σ cutting along $\gamma_{1} \cup \cdots \cup \gamma_{k}$ is connected.

Remark 7. The curve graph $\mathcal{C}(\Sigma)$ is locally infinite, i.e. for each vertex $v \in \mathcal{C}_{0}(\Sigma)$, there exist infinitely many vertices of $\mathcal{C}_{0}(\Sigma)$ that are at distance 1 from v. It is not hard to see that if $d(a, b) \geq 3$ for $a, b \in \mathcal{C}_{0}(\Sigma)$, then $\{a, b\}$ fills Σ. Furthermore, if $f \in \operatorname{MCG}(\Sigma)$ is pseudo-Anosov, then the distance $d\left(a, f^{n}(a)\right)$ grows linearly with $|n|$ for any $a \in \mathcal{C}_{0}(\Sigma)$, see [13, Proposition 4.6]. We define the ball

$$
B_{1}(a)=\left\{b \in \mathcal{C}_{0}(\Sigma) \mid d(a, b) \leq 1\right\} .
$$

Since $d\left(a, f^{n}(a)\right) \rightarrow \infty$ as $|n| \rightarrow \infty$, a single orbit $O_{f}(a)$ of $a \in \mathcal{C}_{0}(\Sigma)$ under f fills Σ. Take any $b \in \mathcal{C}_{0}(\Sigma)$. Then the cardinality of the set $B_{1}(a) \cap O_{f}(b)$ is finite, since $d\left(b, f^{n}(b)\right) \rightarrow \infty$ as $|n| \rightarrow \infty$. Moreover $B_{1}(a) \backslash O_{f}(b)$ is an infinite set, since $\mathcal{C}(\Sigma)$ is locally infinite. Hence one can pick an element of $B_{1}(a) \backslash O_{f}(b)$ at distance 1 from a.

Proof of Lemma 6. We first take mutually disjoint, essential simple closed curves c_{1}, \ldots, c_{g-1} in Σ so that the surface obtained from Σ by cutting along $c_{1} \cup \cdots \cup c_{g-1}$ has g connected components $\Sigma^{(1)}, \ldots, \Sigma^{(g)}$, each of which is a surface of genus 1 with nonempty boundary. See Figure 1.

For each $1 \leq k \leq g$, there exists an infinite family $\left\{a_{i}^{(k)}\right\}_{i \in \mathbb{N}}$ of $\mathcal{C}_{0}(\Sigma)$ such that $a_{i}^{(k)} \neq a_{j}^{(k)} \in \mathcal{C}_{0}(\Sigma)$ if $i \neq j$ and $a_{i}^{(k)}$ is represented by a non-separating simple closed curve in the surface $\Sigma^{(k)}$. Then

$$
\begin{equation*}
d\left(a_{i}^{(k)}, a_{j}^{(\ell)}\right)=1 \text { if } k \neq \ell \text { and } i, j \in \mathbb{N} . \tag{3.1}
\end{equation*}
$$

In the family $\left\{a_{i}^{(1)}\right\}_{i \in \mathbb{N}}$, take any $a_{i_{1}}^{(1)}=\left[\gamma_{1}\right]$. Then the orbit of γ_{1} under f fills Σ by Remark 7. The statement of the lemma holds in the case $k=1$.

We turn to the case $k=2$. By (3.1), we have $\left\{a_{i}^{(2)}\right\}_{i \in \mathbb{N}} \subset B_{1}\left(\left[\gamma_{1}\right]\right)=B_{1}\left(a_{i_{1}}^{(1)}\right)$. By Remark 7, one sees that $\left\{a_{i}^{(2)}\right\}_{i \in \mathbb{N}} \cap O_{f}\left(\gamma_{1}\right)\left(\subset B_{1}\left(\left[\gamma_{1}\right]\right) \cap O_{f}\left(\gamma_{1}\right)\right)$ is finite. Hence one can pick an element $a_{i_{2}}^{(2)}=\left[\gamma_{2}\right] \in\left\{a_{i}^{(2)}\right\}_{i \in \mathbb{N}} \backslash O_{f}\left(\gamma_{1}\right)$. Then the orbits of γ_{1} and γ_{2} under f are distinct by the choice of γ_{2}. By (3.1), two curves γ_{1} and γ_{2} are disjoint. Moreover the orbits of γ_{1} and γ_{2} under f fill Σ, since a single orbit of γ_{1} under f fills Σ. Since $\gamma_{1}\left(\right.$ resp. $\left.\gamma_{2}\right)$ is non-separating in the surface $\Sigma^{(1)}\left(\right.$ resp. $\left.\Sigma^{(2)}\right)$, one sees that $\Sigma \backslash\left\{\gamma_{1}, \gamma_{2}\right\}$ is connected. Thus the statement of the lemma holds in the case $k=2$.

Similarly for $3 \leq k \leq g$, one can find the vertices $a_{i_{3}}^{(3)}=\left[\gamma_{3}\right], \ldots, a_{i_{k}}^{(k)}=\left[\gamma_{k}\right]$ such that the orbits of $\gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots, \gamma_{k}$ under f are distinct and fill Σ. By (3.1), $\gamma_{1}, \gamma_{2}, \gamma_{3} \ldots, \gamma_{k}$ are mutually disjoint. Each γ_{i} is non-separating in the surface $\Sigma^{(i)}$ for $i=1, \ldots, k$, and this implies that $\Sigma \backslash\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$ is connected. This completes the proof.
3.2. Open book decompositions of closed 3-manifolds. An open book decomposition of M is a pair (K, θ), where K is a link in M and $\theta: M \backslash K \rightarrow S^{1}$ is a fibration whose fiber is an interior of a Seifert surface of K. We call K the binding of the open book decomposition. We also call K the fibered link in M. An open book decomposition of M is determined by the closure $\Sigma=\overline{\theta^{-1}(t)} \subset M$ of a fiber $\theta^{-1}(t)\left(t \in S^{1}\right)$ of the fibration θ together with the monodromy $h: \Sigma \rightarrow \Sigma$ with $\left.h\right|_{\partial \Sigma}=\mathrm{id}$. Conversely, each pair (Σ, h) with $\left.h\right|_{\partial \Sigma}=\mathrm{id}$ gives rise to an open book decomposition of some 3 -manifold M as the relative mapping torus of h, i.e. M is homeomorphic to the quotient of the mapping torus T_{h} of h under the identification $(y, t) \sim\left(y, t^{\prime}\right)$ for all $y \in \partial \Sigma$ and $t, t^{\prime} \in[-1,1]$. We also call such a pair (Σ, h) the open book decomposition of a 3 -manifold.

By the proof of [4, Theorem 1.1] by Colin-Honda, the following result holds. See also Detcherry-Kalfagianni [5, Propositions 4.9, 4.10].

Theorem 8. Let M be a closed, connected, oriented 3-manifold containing a hyperbolic fibered knot of genus $g_{0} \geq 2$. Then for any $g \geq g_{0}$ and $j \in\{1,2\}$, the manifold M admits an open book decomposition $\left(\Sigma_{g, j}, h_{g, j}\right)$, where $\partial \Sigma_{g, j}$ has j components and $h_{g, j}$ is isotopic to a pseudo-Anosov homeomorphism.

4. Proof of Theorem 2

Theorem 2 in Section 1 follows from the following result.
Theorem 9. Let M be a closed, connected, oriented 3-manifold containing a hyperbolic fibered knot of genus $g_{0} \geq 2$. Then for any $g \geq g_{0}, j \in\{1,2\}$ and $2 \leq k \leq g$, there exists $n \in \mathbb{N}$ which satisfies the following. For any $\boldsymbol{n}=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{Z}^{k}$ with $\left|n_{i}\right| \geq n$ for $i=1, \ldots, k$, there exists a hyperbolic 3 -manifold N_{n} such that
(a) N_{n} is a $\Sigma_{2 g+j-1-s u r f a c e ~ b u n d l e ~ o v e r ~} S^{1}$,
(b) $N_{\boldsymbol{n}}$ is a 2 -fold branched cover of M branched over a $2 j$-component link, and
(c) there exists a sequence $\left\{\boldsymbol{n}_{\ell}\right\}_{\ell \in \mathbb{N}}$ of the k-tuple of integers $\boldsymbol{n}_{\ell}=\left(n_{\ell_{1}}, \ldots, n_{\ell_{k}}\right) \in$ \mathbb{Z}^{k} with $\left|n_{\ell_{i}}\right| \geq n$ for $i=1, \ldots, k$ such that

$$
\frac{1}{2} k<\operatorname{vol}\left(N_{\boldsymbol{n}_{\ell}}\right)<\operatorname{vol}\left(N_{\boldsymbol{n}_{\ell+1}}\right) \quad \text { for } \quad \ell \in \mathbb{N} .
$$

Proof. By Theorem 8, for any $g \geq g_{0}$ and $j \in\{1,2\}$, there exists an open book decomposition $\left(\Sigma_{g, j}, h_{g, j}\right)$ of M, where $h_{g, j}$ is isotopic to a pseudo-Anosov homeomorphism. We set $F_{g, j}=\Sigma_{g, j}$. Then by Lemma 6 , we have mutually disjoint, essential simple closed curves $\gamma_{1}, \ldots, \gamma_{k}$ in $F_{g, j}$ such that the orbits of $\gamma_{1}, \ldots, \gamma_{k}$ under $h_{g, j}$ are distinct and fill $F_{g, j}$. Moreover $F_{g, j} \backslash\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$ is connected.

Let $B=\partial F_{g, 1}$ when $j=1$, and let B and B^{\prime} be the components of $\partial F_{g, 2}$ when $j=2$. When $j=1$, let $\beta_{1}, \ldots, \beta_{k}$ be properly embedded, mutually disjoint arcs in $F_{g, 1} \backslash\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$ so that one of the endpoints of each β_{i} lies on γ_{i} and the other endpoint of β_{i} lies on $B=\partial F_{g, 1}$. Since $F_{g, 1} \backslash\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$ is connected, one can choose those $\operatorname{arcs} \beta_{1}, \ldots, \beta_{k} \subset F_{g, 1} \backslash\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$ so that they are mutually disjoint. When $j=2$, let $\beta_{1}, \ldots, \beta_{k}$ be properly embedded, mutually disjoint arcs in $F_{g, 2} \backslash\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$ so that one of the endpoints of each β_{i} lies on γ_{i} and the other endpoint of β_{i} lies on B (resp. B^{\prime}) if $i=1, \ldots, k-1$ (resp. $i=k$). In both cases $j=1,2$, consider a small neighborhood $\mathcal{N}=\mathcal{N}\left(\gamma_{i} \cup \beta_{i}\right)$ in $F_{g, j}$. We set α_{i} to be a component of $\partial \mathcal{N} \backslash \partial F_{g, j}$ which is not parallel to γ_{i}. See Figures $2(1), 3(1)$. Then $\alpha_{1}, \ldots, \alpha_{k}$ are mutually disjoint, essential arcs in $F_{g, j}$.

We claim that the orbits of $\alpha_{1}, \ldots, \alpha_{k}$ under $h_{g, j}$ are distinct. Assume that $O_{h_{g, j}}\left(\alpha_{i}\right)=O_{h_{g, j}}\left(\alpha_{i^{\prime}}\right)$ for some $i, i^{\prime} \in\{1, \ldots, k\}$ with $i \neq i^{\prime}$. This implies that $O_{h_{g, j}}\left(\gamma_{i}\right)=O_{h_{g, j}}\left(\gamma_{i^{\prime}}\right)$, since γ_{i} is obtained from each α_{i} by concatenating with an arc of B or B^{\prime}. This contradicts the choice of $\gamma_{1}, \ldots, \gamma_{k}$.

Let us consider the closed surface $\Sigma_{2 g+j-1}=D F_{g, j}$ of genus $2 g+j-1$ that is obtained as the double $D F_{g, j}$ of $F_{g, j}$ along $\partial F_{g, j}$. There exists an involution

$$
\iota: \Sigma_{2 g+j-1} \rightarrow \Sigma_{2 g+j-1}
$$

that interchanges the two copies of $F_{g, j}$ and $\left.\iota\right|_{\partial F_{g, j}}=$ id holds. (Notice that ι is orientation reversing.) For the above essential arc α_{i}, there is a corresponding $\operatorname{arc} \iota\left(\alpha_{i}\right)$ on the second copy of $F_{g, j}$ so that $\widehat{\gamma}_{i}=\alpha_{i} \cup \iota\left(\alpha_{i}\right)$ becomes an essential simple closed curve in $\Sigma_{2 g+j-1}$. Since $\alpha_{1}, \ldots, \alpha_{k}$ are mutually disjoint, $\widehat{\gamma}_{1}, \ldots, \widehat{\gamma}_{k}$ are mutually disjoint, essential simple closed curves in $\Sigma_{2 g+j-1}$. See Figures 2(2), $3(2)$.

Let

$$
\widehat{h}_{g, j}=h_{g, j} \# h_{g, j}^{-1}: \Sigma_{2 g+j-1} \rightarrow \Sigma_{2 g+j-1}
$$

be a homeomorphim induced by $h_{g, j}$. More precisely, $\widehat{h}_{g, j}(x)=h_{g, j}(x)$ if x is in one copy of $F_{g, j}$ and $\widehat{h}_{g, j}(\iota(x))=\iota\left(h_{g, j}^{-1}(x)\right)$ if $\iota(x)$ is in the second copy of $F_{g, j}$.

Note that $\widehat{h}_{g, j}$ is a reducible homeomorphism, since $\widehat{h}_{g, j}$ preserves the essential simple closed curves $\partial F_{g, j} \subset \Sigma_{2 g+j-1}$.

(1) $F_{g, 1}$

(2) $D F_{g, 1}$

Figure 2. Case $(g, j)=(2,1)$. (1) The arc α_{i} in $F_{g, 1}\left(=\Sigma_{g, 1}\right)$. The simple closed curve $\widehat{\gamma}_{i}$ in $\Sigma_{2 g}=D F_{g, 1}$.

(1) $F_{g, 2}$

(2) $D F_{g, 2}$

Figure 3. Case $(g, j)=(2,2)$. (1) The arc α_{k} in $F_{g, 2}\left(=\Sigma_{g, 2}\right)$. (2) The simple closed curve $\widehat{\gamma}_{k}$ in $\Sigma_{2 g+1}=D F_{g, 2}$.

Claim 1. For $j \in\{1,2\}$, the orbits of $\widehat{\gamma}_{1}, \ldots, \widehat{\gamma}_{k}$ under $\widehat{h}_{g, j}$ are distinct.
Proof of Claim 1. By the definition of $\widehat{h}_{g, j}$, we have $\left.\widehat{h}_{g, j}\right|_{\partial F_{g, j}}=\mathrm{id}$, and the orbits of the arc $\alpha_{i} \subset \widehat{\gamma}_{i}$ under $\widehat{h}_{g, j}$ are contained in one copy of $F_{g, j}$ for $i=1, \ldots, k$. Claim 1 follows, since the orbits of $\alpha_{1}, \ldots, \alpha_{k}$ under $h_{g, j}$ are distinct.
Claim 2. For $j \in\{1,2\}$, the orbits of $\widehat{\gamma}_{1}, \ldots, \widehat{\gamma}_{g}$ under $\widehat{h}_{g, j}$ fill $\Sigma_{2 g+j-1}$.
Proof of Claim 2. We prove the claim when $j=2$. (The proof for the case of $j=1$ is similar.) By the proof of Lemma 6, a single orbit of γ_{1} under $h_{g, 2}$ fill $F_{g, 2}$. This means that there exists an integer $n>0$ such that each component of $F_{g, 2} \backslash\left\{h_{g, 2}^{\ell}\left(\gamma_{1}\right) \mid \ell \in\{0, \pm 1, \ldots, \pm n\}\right\}$ is a disk or a once-holed disk. Let A (resp. A^{\prime}) be the annular component of $F_{g, 2} \backslash\left\{h_{g, 2}^{\ell}\left(\gamma_{1}\right) \mid \ell \in\{0, \pm 1, \ldots, \pm n\}\right\}$ such that one of the boundary components of A (resp. A^{\prime}) coincides with $B \subset \partial F_{g, 2}$ (resp. $\left.B^{\prime} \subset \partial F_{g, 2}\right)$. Then the annulus A is cut into disks by cutting $F_{g, 2}$ along the arc α_{1} (since $\partial \alpha_{1}$ lies on B). The other annulus A^{\prime} is also cut into disks by cutting $F_{g, 2}$ along the arc α_{k} (since $\partial \alpha_{k}$ lies on B^{\prime}). Thus the surface obtained from the double $\Sigma_{2 g+1}=D F_{g, 2}$ by cutting along all $\widehat{h}_{g, 2}^{\ell}\left(\widehat{\gamma}_{1}\right)$ and $\widehat{h}_{g, 2}^{\ell}\left(\widehat{\gamma}_{k}\right)(\ell \in\{0, \pm 1, \ldots, \pm n\})$ is a disjoint union of disks. This means that the orbits of $\widehat{\gamma}_{1}, \widehat{\gamma}_{k}$ under $\widehat{h}_{g, 2}$ fill $\Sigma_{2 g+1}$. Thus the orbits of $\widehat{\gamma}_{1}, \ldots, \widehat{\gamma}_{k}$ under $\widehat{h}_{g, 2}$ fill $\Sigma_{2 g+1}$. This completes the proof of Claim 2.

We build the mapping torus

$$
T_{\widehat{h}_{g, j}}=\Sigma_{2 g+j-1} \times[-1,1] /_{(x, 1) \sim\left(\widehat{h}_{g, j}(x),-1\right)} .
$$

Claim 3. For $j \in\{1,2\}$, the mapping torus $T_{\widehat{h}_{g, j}}$ is a 2 -fold branched cover of M branched over a $2 j$-component link.

Proof of Claim 3. The statement of Claim 3 follows from the proof of [15, Lemma 1]. Here we prove the claim for completeness. Consider the involution $u: T_{\widehat{h}_{g, j}} \rightarrow T_{\widehat{h}_{g, j}}$ defined by

$$
u(x, t)=(\iota(x),-t) \text { for }(x, t) \in \Sigma_{2 g+j-1} \times[-1,1],
$$

where ι is the previous involution on $\Sigma_{2 g+j-1}$. In the case $j=1$, u fixes $2=2 j$ curves $B \times\{1\}(=B \times\{-1\})$ and $B \times\{0\}$. In the case $j=2, u$ fixes $4=2 j$ curves $B \times\{1\}, B \times\{0\}$ and $B^{\prime} \times\{1\}, B^{\prime} \times\{0\}$.

The quotient of $T_{\widehat{h}_{g, j}}$ by the action of u is the mapping torus $T_{h_{g, j}}$ of $h_{g, j}$ under the identification $(y, t) \sim(y,-t)$ for all $(y, t) \in \partial T_{h_{g, j}}=\partial F_{g, j} \times[-1,1] /_{(y, 1) \sim(y,-1)}$. This is equivalent to identifying $\{y\} \times[-1,0]$ with $\{y\} \times[0,1]$ for all $y \in \partial F_{g, j}$. The resulting quotient is homeomorphic to the manifold obtained from $T_{h_{g, j}}$ by collapsing the set $\{y\} \times S^{1}$ to a point for all $y \in \partial F_{g, j}$. Thus the quotient of $T_{\widehat{h}_{g, j}}$ under u is the relative mapping torus of $h_{g, j}$ which is the open book decomposition $\left(F_{g, j}, h_{g, j}\right)$ of M. In other words, the mapping torus $T_{\widehat{h}_{g, j}}$ of $\widehat{h}_{g, j}$ is a 2 -fold branched cover of M branched cover the $2 j$-component link that comes from the above $2 j$ curves fixed by u.

This completes the proof of Claim 3.
By Claims 1 and 2, one can apply Theorem 5 to the orbits of $\widehat{\gamma}_{1}, \ldots, \widehat{\gamma}_{k}$ under $\widehat{h}_{g, j}$. Then we have $n \in \mathbb{N}$ given by Theorem 5 . For $\boldsymbol{n}=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{Z}^{k}$, we set

$$
f_{\boldsymbol{n}}=\tau_{\widehat{\gamma}_{k}}^{n_{k}} \ldots \tau_{\widehat{\gamma}_{1}}^{n_{1}} \widehat{h}_{g, j} \quad \text { and } \quad N_{\boldsymbol{n}}=T_{f_{\boldsymbol{n}}}
$$

By Theorem 5(a), if $\left|n_{i}\right| \geq n$ for $i=1, \ldots, k$, then f_{n} is pseudo-Anosov and N_{n} is a hyperbolic 3 -manifold which is a $\Sigma_{2 g+j-1}$-bundle over S^{1}. Thus N_{n} has a property of Theorem 9(a). By Theorem 5(b), N_{n} also has a property of Theorem 9(c).

Claim 4. For $j \in\{1,2\}$ and $\boldsymbol{n}=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{Z}^{k}$, the mapping torus $N_{\boldsymbol{n}}$ of $f_{n}=\tau_{\widehat{\gamma}_{k}}^{n_{k}} \ldots \tau_{\widehat{\gamma}_{1}}^{n_{1}} \widehat{h}_{g, j}$ is a 2 -fold branched cover of M branched over a $2 j$-component link.

Proof of Claim 4. We use Montesinos' trick [14, 15]. (cf. Auckly [2, Example 1].) See Figure 4 , which illustrates Montesinos' trick. Since $\widehat{\gamma}_{1}, \ldots, \widehat{\gamma}_{k}$ are mutually disjoint simple closed curves in $\Sigma_{2 g+j-1}$, the curves $\delta_{i}^{*}=\widehat{\gamma}_{i} \times\{0\} \subset \Sigma_{2 g+j-1} \times\{0\}$ for $i=1, \ldots, k$ are mutually disjoint. We consider the link $L_{k}^{*}=\delta_{1}^{*} \cup \cdots \cup \delta_{k}^{*}$ in $T_{\widehat{h}_{g, j}}$. Then the 3-manifold N_{n} is obtained from the mapping torus $T_{\widehat{h}_{g, j}}$ of $\widehat{h}_{g, j}$ by the Dehn surgery along the link L_{k}^{*}.

Notice that each δ_{i}^{*} is invariant under the involution $u: T_{\widehat{h}_{g, j}} \rightarrow T_{\widehat{h}_{g, j}}$. Now we do Dehn surgery along L_{k}^{*}. For $i=1, \ldots, k$, we remove the interior of a neighborhood N_{i} of δ_{i}^{*}, and replace it with a new solid torus V_{i}. The involution $u_{i}:=\left.u\right|_{\partial N_{i}}$: $\partial N_{i} \rightarrow \partial N_{i}$ extends to an elliptic involution on the solid torus V_{i} added with Dehn filling. The effect of the Dehn surgery on the quotient by the elliptic involution on

Figure 4. (1) The regular neighborhood of $\alpha_{i} \times\{0\}$ in M, which is a 3-ball. (2) The regular neighborhood of $\widehat{\gamma}_{i} \times\{0\}$ in $T_{\widehat{h}_{g, j}}$, which is a solid torus. (3) In order to obtain $T_{\tau_{\gamma_{i}}^{2} \widehat{h}_{g, j}}$, we remove the solid torus from $T_{\widehat{h}_{g, j}}$ and glue this solid torus again so that the boundary of its meridian is identified with one of the circles on the torus. (4) Isotope the circles to be invariant by the elliptic involution. (5) Take a quotient by the elliptic involution. (6) Push the arcs into the 3 -ball, then we have the branched set of the new 2-fold branched cover of M after the Dehn surgery.
V_{i} is a modification of the 3 -manifold M inside a collection of 3 -balls that changes the branched set for the 2 -fold branched cover $T_{\widehat{h}_{g, j}} \rightarrow M$, but not the ambient manifold M. Thus N_{n} is still a 2 -fold branched covers of M branched over a link with $2 j$ components. This completes the proof of Claim 3.

By Claim 4, the manifold N_{n} satisfies a property of Theorem 9(b), and we have finished the proof of Theorem 9 .

5. Large volume vs. fixed genus

In this section we discuss conditions on 3-manifolds under which Question 4 has a positive answer.

Theorem 10. Let M be a closed, connected, oriented 3-manifold containing a hyperbolic fibered knot of genus $g_{0} \geq 2$. Suppose that for any $g \geq g_{0}$ and $j \in\{1,2\}$, M contains a family $\left\{K_{r}^{j}(g)\right\}_{r \in \mathbb{N}}$ of hyperbolic fibered links of genus g with j components such that $\operatorname{vol}\left(M \backslash K_{r}^{j}(g)\right) \rightarrow \infty$ as $r \rightarrow \infty$. Then Question 4 has a positive answer for M.

Proof. For notational simplicity we will assume that $j=1$. The case $j=2$ is analogous. Fix $g \geq g_{0}$, we consider the family of the hyperbolic knots $\left\{K_{r}:=\right.$ $\left.K_{r}^{1}(g)\right\}_{r \in \mathbb{N}}$ satisfying the assumption of Theorem 10 , where $F_{r}=\Sigma_{g, 1}$ denotes the fiber of K_{r} and $h_{r}:=h_{g, 1}$ the monodromy. As in the proof of Theorem 9 , for any $r \in \mathbb{N}$, we build the 2 -fold branched cover $T_{\widehat{h}_{r}}$ of M with fiber $\Sigma_{2 g}=D F_{r}$ and monordomy $\widehat{h}_{r}=h_{r} \# h_{r}^{-1}$. We apply the process in the proof of Claims 1-4 of the proof of Theorem 9: For $1<k \leq g$, say for $k=2$, we take simple closed curves ${\widehat{\gamma^{r}}}_{1},{\widehat{\gamma^{r}}}_{2}$ on $\Sigma_{2 g}$ so that Theorem 5 can be applied. By pushing ${\widehat{\gamma^{r}}}_{1},{\widehat{\gamma^{r}}}_{2}$, we get a hyperbolic link L^{r} in $T_{\widehat{h}_{r}}$. Recall that for $\boldsymbol{n}=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$ with n_{1}, n_{2} large enough, the mapping class $f_{\boldsymbol{n}}^{r}:=\tau \frac{n_{2}}{\gamma^{r}} \tau^{\frac{\gamma_{1}}{\gamma_{1}}} \widehat{h}_{r}$ defined on $\Sigma_{2 g}$ is pseudo-Anosov and its mapping torus N_{n}^{r} is hyperbolic. Furthermore, N_{n}^{r} is obtained by Dehn filling of $\overline{T_{\widehat{h}_{r}} \backslash \mathcal{N}\left(L^{r}\right)}$, and we have

$$
\begin{equation*}
\frac{1}{2} \operatorname{vol}\left(T_{\widehat{h}_{r}} \backslash L^{r}\right)<\operatorname{vol}\left(N_{\boldsymbol{n}}^{r}\right) \tag{5.1}
\end{equation*}
$$

where (5.1) follows from (2.3). To finish the proof of the theorem, we need to show that $\operatorname{vol}\left(N_{\boldsymbol{n}}^{r}\right) \rightarrow \infty$ as $r \rightarrow \infty$. This follows immediately from (5.1) and the following.

Claim 1. We have $\operatorname{vol}\left(T_{\widehat{h}_{r}} \backslash L^{r}\right) \rightarrow \infty$ as $r \rightarrow \infty$.
Proof of Claim 1. For any orientable 3 -manifold X with ∂X empty or ∂X consisting only of tori, let $\|X\|$ denote the Gromov norm of X. See [19, Definition 6.1 .2 , the beginning of Section 6.5]. If X is closed and hyperbolic, or if ∂X consists only of tori and the interior of X is hyperbolic, then $v_{3}\|X\|=\operatorname{vol}(X)$, where v_{3} is the volume of the ideal regular tetrahedron. (See [19, Theorem 6.2, Lemma 6.5.4].) By construction, $M \backslash K_{r} \simeq M \backslash \mathcal{N}\left(K_{r}\right)$ is a submanifold of $T_{\widehat{h}_{r}}$ and $\partial\left(M \backslash K_{r}\right)$ is an incompressible torus in $T_{\widehat{h}_{r}}$. Indeed, we can think of $T_{\widehat{h}_{r}}$ as obtained by identifying two copies of $M \backslash K_{r}$ along their torus boundary. By [19, Theorem 6.5.5], we have

$$
v_{3}\left\|T_{\widehat{h}_{r}}\right\| \geq \operatorname{vol}\left(M \backslash K_{r}\right)
$$

which implies that $\left\|T_{\widehat{h}_{r}}\right\| \rightarrow \infty$ as $r \rightarrow \infty$. Since $T_{\widehat{h}_{r}}$ is obtained from $T_{\widehat{h}_{r}} \backslash L^{r}$ by adding solid tori, by [19, Proposition 6.5.2] we obtain

$$
\operatorname{vol}\left(T_{\widehat{h}_{r}} \backslash L^{r}\right)=v_{3}\left\|T_{\widehat{h}_{r}} \backslash L^{r}\right\| \geq v_{3}\left\|T_{\widehat{h}_{r}}\right\|
$$

and $\operatorname{vol}\left(T_{\widehat{h}_{r}} \backslash L^{r}\right) \rightarrow \infty$ as $r \rightarrow \infty$.
For $M=S^{3}$, families of knots satisfying the assumption of Theorem 10 are constructed in Futer-Purcell-Schleimer [8, Theorem 1]. Thus we have the following result.

Corollary 11. For any $g \geq 2$, the set $\mathcal{D}_{2 g}\left(S^{3}\right)$ contains an infinite family of pseudoAnosov elements whose mapping tori have arbitrarily large volume.

Acknowledgement. This work started from a discussion of the authors during the conference "Classical and quantum 3-manifold topology" held at Monash University (Melbourne, Australia) in December of 2018. We thank the organizers (D. Futer, S. Garoufalidis, C. Hodgson, J. Purcell, H. Rubinstein, S. Schleimer, P. Wedrich) for inviting us to participate and for ensuring excellent working conditions during the conference. We thank M. Sakuma for explaining his work [11] and for pointing out a relation between our results and [11, Question 9.7]. We thank Y. Koda for helpful comments. We thank D. Futer for explaining his work [8] with J. S. Purcell and S. Schleimer.

References

[1] C. Adams, Volumes of N-cusped hyperbolic 3-manifolds, J. London Math. Soc. (2) 38 (1988), no. 3, 555-565.
[2] D. Auckly, Two-fold branched covers, J. Knot Theory Ramifications 23 (2014), no. 3, 1430001, 29.
[3] R. Brooks, On branched coverings of 3-manifolds which fiber over the circle, J. Reine Angew. Math. 362 (1985), 87-101.
[4] V. Colin and K. Honda, Stabilizing the monodromy of an open book decomposition, Geom. Dedicata 132 (2008), 95-103.
[5] R. Detcherry and E. Kalfagianni, Cosets of monodromies and quantum representations, Indiana Univ. Mathematics Journal 71 (2022), no. 3, 1101-1129.
[6] A. Fathi, Dehn twists and pseudo-Anosov diffeomorphisms, Invent. Math. 87 (1987), no. 1, 129-151.
[7] D. Futer, E. Kalfagianni, and J.S. Purcell, Dehn filling, volume, and the Jones polynomial, J. Differential Geom. 78 (2008), no. 3, 429-464.
[8] D. Futer, J. S. Purcell, and S. Schleimer, Large volume fibred knots of fixed genus, Preprint, 2022.
[9] A. Hatcher, Notes on basic 3-manifold topology, http://www.math.cornell.edu/ ~hatcher/3M/3Mdownloads.html.
[10] S. Hirose and E. Kin, On hyperbolic surface bundles over the circle as branched double covers of the 3-sphere, Proc. Amer. Math. Soc. 148 (2020), no. 4, 1805-1814.
[11] Y. Koda and M. Sakuma, Homotopy motions of surfaces in 3-manifolds, Quart. J. Math. (2022), 1-43.
[12] D. D. Long and H. R. Morton, Hyperbolic 3-manifolds and surface automorphisms, Topology 25 (1986), no. 4, 575-583.
[13] H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103-149.
[14] J. M. Montesinos, Surgery on links and double branched covers of S^{3}, Knots, groups, and 3manifolds (Papers dedicated to the memory of R. H. Fox), 1975, pp. 227-259. Ann. of Math. Studies, No. 84.
[15] , On 3-manifolds having surface bundles as branched coverings, Proc. Amer. Math. Soc. 101 (1987), no. 3, 555-558.
[16] J. S. Purcell, Hyperbolic knot theory, Graduate Studies in Mathematics, vol. 209, American Mathematical Society, Providence, RI, [2020] © 2020.
[17] M. Sakuma, Surface bundles over S^{1} which are 2 -fold branched cyclic coverings of S^{3}, Math. Sem. Notes Kobe Univ. 9 (1981), no. 1, 159-180.
[18] T. Soma, Hyperbolic, fibred links and fibre-concordances, Math. Proc. Cambridge Philos. Soc. 96 (1984), no. 2, 283-294.
[19] W. P. Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Notes, 1979.
[20] , Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357-381.
[21] , On the geometry and dynamics of diffeomorphisms of surfaces., Bull. Amer. Math. Soc. 19 (1988), no. 2, 417-431.
[22] , Hyperbolic structures on 3-manifolds ii: Surface groups and 3-manifolds which fiber over the circle, arXiv preprint arXiv.math/9801045 (1998).

Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan

Email address: hirose_susumu@ma.noda.tus.ac.jp
Department of Mathematics, Michigan State University, 619 Red Cedar Road, East Lansing, MI 48824, USA

Email address: kalfagia@msu.edu
Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan

Email address: kin.eiko.celas@osaka-u.ac.jp

[^0]: Date: January 24, 2023.
 Hirose's research was partially supported by JSPS KAKENHI Grant Numbers JP16K05156 and JP20K03618. Kalfagianni's research was partially supported by NSF grants DMS-1708249 and DMS-2004155. Kin's research was partially supported by JSPS KAKENHI Grant Numbers JP21K03247.

