Strong Koszulness of the toric ring associated to a cut ideal

Kazuki Shibata (Rikkyo University)*

Let G be a finite simple graph on the vertex set $[n] = \{1, \ldots, n\}$ with the edge set $E(G)$. For two subsets A and B of $[n]$ such that $A \cap B = \emptyset$ and $A \cup B = [n]$, the $(0, 1)$-vector $\delta_{A|B}(G) \in \mathbb{Z}^{E(G)}$ is defined as

$$\delta_{A|B}(G)_{ij} = \begin{cases} 1 & \text{if } |A \cap \{i, j\}| = 1, \\ 0 & \text{otherwise,} \end{cases}$$

where ij is an edge of G. Let

$$X_G = \left\{ \left(\delta_{A_1|B_1}(G) \right), \ldots, \left(\delta_{A_N|B_N}(G) \right) \right\} \subset \mathbb{Z}^{E(G)}_{N = 2^{n-1}}.$$

Let K be a field and

$$K[q] = K[q_{A_1|B_1}, \ldots, q_{A_N|B_N}],$$
$$K[s, T] = K[s, t_{ij} | ij \in E(G)]$$

be two polynomial rings over K. Then the ring homomorphism π_G is defined as follows:

$$\pi_G : K[q] \to K[s, T], \quad q_{A_l|B_l} \mapsto s \cdot \prod_{ij \in E(G), |A_l \cap \{i, j\}| = 1} t_{ij}$$

for $1 \leq l \leq N$. The cut ideal I_G of G is the kernel of π_G and the toric ring R_G of X_G is the image of π_G [2]. In [2], Sturmfels and Sullivant introduced a cut ideal and posed the problem of relating properties of cut ideals to the class of graphs.

On the other hand, the notion of strongly Koszul algebras was introduced by Herzog, Hibi and Restuccia [1]. A strongly Koszul algebra is a stronger notion of Koszulness.

In this talk, we introduce a sufficient condition for cut ideals to have quadratic Gröbner bases and characterization of the class of graphs such that R_G is strongly Koszul.

References

*The author is a Research Fellow of Japan Society for the promotion of Science. This work is supported by Grant-in-Aid for JSPS Fellows 26-4365.

e-mail: k-shibata@rikkyo.ac.jp