Galois Actions and Geometry MSRI, October 11-15, 1999

Fields of Definition and Families of Covers

PIERRE DÈBES

Université Lille 1

Part 1: Fields of Definition? models of covers?

- \rightarrow Descent Theory
- \rightarrow Weil, Grothendieck et al.
- \leftarrow Regular Inverse Galois Problem

<u>Typical question</u>: If action of G_K leaves invariant the set of models of a given K_s -cover f - K is called the *field of moduli* —, is there a model of f over K?

Part 2: Moduli Spaces of covers Existence of Families of Covers?

<u>Typical question</u>: Given a moduli space \mathcal{H} of covers, is there a family above \mathcal{H} ? [Action of $\pi_1(\mathcal{H})$ leaves invariant the set of local

families above \mathcal{H} (defined above an étale cover).]

Part 3: Covers, Families and Gerbes

Fields of definition of covers

Category: covers $f : X \to B$ a priori defined over the separable closure K_s of a given field K; B is a given algebraic variety defined over K.

Main example:

covers $f: X \to \mathbb{P}^1$ defined over $\overline{\mathbb{Q}}$

Two situations:

• G-covers: Galois covers f given an isomorphism $\operatorname{Aut}(f) \simeq G$

• mere covers: not necessarily Galois covers, given without automorphisms

k-model of $f \ (K \subset k \subset K_s)$: k-cover $f_k : X_k \to B$ such that $f_k \otimes_k K_s \underset{K_s}{\simeq} f$

Some problems

Problem 1: If a K_s -cover $f : X \to B$ is isomorphic to each of its conjugates $f^{\tau} : X^{\tau} \to B$ ($\tau \in G_K$), is it defined over K? [No in general]

Problem 2: If a $\overline{\mathbb{Q}}$ -cover $f: X \to B$ is defined over each \mathbb{Q}_p , is it defined over \mathbb{Q} ?

Problem 3: An intersection of fields of definition need not be a field of definition.

Field of moduli

The field of moduli $K_{\rm m}$ of a $K_{\rm s}$ -cover $f: X \to B$ is the fixed field in $K_{\rm s}$ of the subgroup

$$M(f) = \{ \tau \in \mathcal{G}_K \mid f^\tau \simeq_{\overline{K}_s} f \}$$

That is, $K_{\rm m}$ is the smallest subfield of $K_{\rm s}$ such that ${\rm Gal}(K_{\rm s}/K_{\rm m})$ maps f to an isomorphic copy of itself.

Basic observation: The field of moduli $K_{\rm m}$ is contained in each field of definition k of f. Thus it is the smallest field of definition if it *is* a field of definition.

Problem 1: Is the field of moduli a field of definition?

Weil's descent criterion

Theorem (Weil) — For each $\tau \in \text{Gal}(K_s/K_m)$, we have $f \simeq f^{\tau}$, *i.e.*, there exists an isomorphism $\chi_{\tau} : X \to X^{\tau}$ such that $f^{\tau} \circ \chi_{\tau} = f$.

Then $K_{\rm m}$ is a field of definition of f iff there exists such isomorphisms χ_{τ} s such that

 $\chi_{uv} = \chi_v^u \chi_u \qquad (\text{cocycle condition})$

 \rightarrow <u>first results</u>:

for mere covers of \mathbb{P}^1 : K_{m} is a field of definition if

- $\operatorname{Aut}(f) = \{1\}$ (Fried)
- $f: X \to \mathbb{P}^1$ is Galois (Coombes-Harbater)

for G-covers of \mathbb{P}^1 : K_{m} is a field of definition if

- $Z(G) = \{1\}$ (Belyi et al.)
- G is abelian (-)

 \rightarrow cohomological problem $\rightarrow H^2(K_{\mathrm{m}}, \mathrm{Aut}(f)) \dots$

Cohomological approach

 $\begin{array}{cccc} k\text{-cover} & \longleftrightarrow & \text{representation} \\ f:X \to B & \phi:\pi_1(B_k^*) \twoheadrightarrow G \subset S_d \\ \text{étale above } B^* & \end{array}$

for G-covers: $\operatorname{Nor}_{S_d}(G) \leftrightarrow G$; $\operatorname{Cen}_{S_d}(G) \leftrightarrow Z(G)$

Theorem (D. - Douai) — Assume λ has some lifting Λ . Then there is, explicitly attached to Λ , a 2-cocycle

 $\Omega_{\Lambda} \in H^2(K_{\mathrm{m}}, Z(G))$

such that K_m is a field of definition of f iff

$$\Omega_{\Lambda} \in \delta^1 \left(H^1(K_{\mathrm{m}}, \operatorname{Cen}_{S_d}(G)/Z(G)) \right)$$

where

 $\delta^{1}: H^{1}(K_{\mathrm{m}}, \operatorname{Cen}_{S_{d}}(G)/Z(G)) \to H^{2}(K_{\mathrm{m}}, Z(G))$ is the connecting morphism associated with sequence $1 \to Z(G) \to \operatorname{Cen}_{S_{d}}(G) \to \operatorname{Cen}_{S_{d}}(G)/Z(G) \to 1$

for G-covers: the *iff* condition is that Ω_{Λ} vanishes in $H^2(K_{\rm m}, Z(G))$

Consequences

• <u>No obstruction</u> to field of moduli being a field of definition

- if $Z(G) = \{1\}$
- if G_{K_m} projective, e.g. $cd(K_m) \leq 1$
- for Galois covers of \mathbb{P}^1

• The field of moduli of a cover is the intersection of its fields of definition.

• (For covers of \mathbb{P}^1). There exists a field of definition K_d with degree $[K_d : K_m]$ over the field of moduli K_m bounded as follows.

(for G-covers):
$$[K_{\rm d}:K_{\rm m}] \leq \frac{|G|}{|Z(G)|}$$

(for mere covers): $[K_{d}: K_{m}] \leq \frac{|\operatorname{Nor}_{S_{d}}G|}{|\operatorname{Cen}_{S_{d}}G|}$

More recent progress

Data: $f: X \to \mathbb{P}^1$ $\overline{\mathbb{Q}}$ -cover of field of moduli \mathbb{Q}

Q need not be a field of definition.
(Coombes-Harbater / Couveignes-Granboulan)

• f is defined over \mathbb{Q}_p for all but finitely many p. [essentially because the map

$$\begin{split} H^2(\mathbb{Q},Z(G)) \to \prod_p H^2(\mathbb{Q}_p,Z(G)) \\ \text{has values in the direct sum } \coprod_p H^2(\mathbb{Q}_p,Z(G))] \end{split}$$

f is defined over Q_p if
p does not divide |G|, and
the branch points do not coalesce modulo p.

- (D. Harbater / Emsalem)
- (Local-global principle for G-covers f : X → B):
 f is defined over Q iff f is defined over each Q_p.
 (D. / Douai)

The local-global principle

$$f: X \to \mathbb{P}^1 \qquad G\text{-cover over } \overline{\mathbb{Q}}$$

defined over each \mathbb{Q}_p

• The field of moduli $K_{\rm m}$ is contained in each \mathbb{Q}_p , thus equals \mathbb{Q} .

• Obstruction to \mathbb{Q} being a field of definition lies in $H^2(\mathbb{Q}, Z(G))$, more precisely in kernel of the map

$$H^2(\mathbb{Q}, Z(G)) \to \prod_p H^2(\mathbb{Q}_p, Z(G))$$

• This map is injective:

- restrict to the case $Z(G) = \mathbb{Z}/n$

- from the Tate-Poitou duality theorem, the above kernel is in duality with the kernel of the map

equiv.

$$H^{1}(\mathbb{Q}, \mu_{n}) \to \prod_{p} H^{1}(\mathbb{Q}_{p}, \mu_{n})$$

$$\mathbb{Q}^{*}/(\mathbb{Q}^{*})^{n} \to \prod_{p} \mathbb{Q}^{*}_{p}/(\mathbb{Q}^{*}_{p})^{n}$$

which is clearly injective.

or,

Further questions

• How "often" is the field of moduli a field of definition? Hurwitz spaces make this more precise: how big is the subset of a given Hurwitz space of points/covers defined over their f.o.m.?

• Under assumptions of the local case result, does the cover f have a model over the field \mathbb{Q}^{tp} of algebraic totally p-adic numbers (and not just over \mathbb{Q}_p)?

• Where do mysterious cocycle calculations come from?

 \Rightarrow need for more structure: moduli spaces, gerbes ...

Families of covers

Notation: Given r > 2, G and $\mathbf{C} = (C_1, \ldots, C_r)$

• $\mathcal{H}_G(\mathbf{C})$: Hurwitz space of covers of \mathbb{P}^1 with r branch points, group G and inertia invariant \mathbf{C}

• \mathcal{H} : an irreducible component of $\mathcal{H}_G(\mathbf{C})$ defined over a field k

Main question: Does there exist a Hurwitz family above \mathcal{H} , *i.e.* a finite flat morphism

$$\mathcal{F}:\mathcal{T}
ightarrow\mathcal{H} imes\mathbb{P}^{1}$$

with $\mathcal{F} : \mathcal{T} \to \mathcal{H}$ smooth, projective and with irreducible generic fiber,

such that, for each $h = [f] \in \mathcal{H}$, the fiber cover

$$\mathcal{F}:\mathcal{T}_h o \mathbb{P}^1$$

is isomorphic to the cover f?

Variants: Hurwitz families of G-covers, with ordered branch points, etc.

 \rightarrow more structure in definition...

Observations:

• If \mathcal{H} is a given Hurwitz space, assumed irreducible and defined over k, then, for $h = [f_h] \in \mathcal{H}$

residue field k(h) of $h \in \mathcal{H} = \text{f.o.m.}$ of f_h <u>If</u> there is a family \mathcal{F} above \mathcal{H} , f_h does have a model over its f.o.m. k(h): namely the fiber cover \mathcal{F}_h .

• Families exist locally, for the complex topology (Fried), or for the étale topology [DeDoEm].

• If covers have no automorphism $(\operatorname{Cen}_{S_d}(G) = \{1\})$, local families can be glued to provide a global family above \mathcal{H} : \mathcal{H} is a *fine* moduli space.

• cohomological pb. $\rightarrow H^2(\pi_1(\mathcal{H}), \operatorname{Cen}_{S_d}(G)) \dots$

Cohomological approach

 $\begin{array}{ccc} k\text{-family} & \longleftrightarrow & \text{representation} \\ \mathcal{F}: \mathcal{T} \to \mathcal{H} \times \mathbb{P}^1 & \Phi: \pi_1((\mathcal{H} \times \mathbb{P}^1)^*_k) \twoheadrightarrow G \subset S_d \\ \text{étale above } (\mathcal{H} \times \mathbb{P}^1)^* & \end{array}$

for G-covers: $\operatorname{Nor}_{S_d}(G) \leftrightarrow G$; $\operatorname{Cen}_{S_d}(G) \leftrightarrow Z(G)$

Theorem (D. - Douai - Emsalem) — Assume λ has some lifting Λ . Then there is a 2-cocycle

$$\Omega_{\Lambda} \in H^2(\pi_1(\mathcal{H}), Z(G))$$

such that there is a family above \mathcal{H} iff

$$\Omega_{\Lambda} \in \delta^1 \left(H^1(\pi_1(\mathcal{H}), \operatorname{Cen}_{S_d}(G) / Z(G)) \right)$$

with

 $\delta^{1}: H^{1}(\pi_{1}(\mathcal{H}), \operatorname{Cen}_{S_{d}}(G)/Z(G)) \to H^{2}(\pi_{1}(\mathcal{H}), Z(G))$ the connecting morphism associated with the sequence $1 \to Z(G) \to \operatorname{Cen}_{S_{d}}(G) \to \operatorname{Cen}_{S_{d}}(G)/Z(G) \to 1$

for G-covers: the *iff* condition is that

 Ω_{Λ} vanishes in $H^2(\pi_1(\mathcal{H}), Z(G))$

Consequences

• <u>No obstruction</u> to existence of family

- above Hurwitz space \mathcal{H} if $Z(G) = \{1\}$

- above any affine \overline{k} -curve $C \subset \mathcal{H}$

- above $\mathcal{H}_{\overline{k}}$, in the situation of Galois covers with ordered branch points

• The function field $\overline{\mathbb{Q}}(\mathcal{H})$ of the Hurwitz space \mathcal{H} is the intersection of all function fields of étale covers of \mathcal{H} over which there exists a family.

• (For covers with ordered branch points). There exists a family above an étale cover $\widetilde{\mathcal{H}} \to \mathcal{H}_{\overline{\mathbb{Q}}}$ whose degree D can be bounded as follows.

(for G-covers):
$$D \leq \frac{|G|}{|Z(G)|}$$

(for mere covers): $D \leq \frac{|\operatorname{Nor}_{S_d}G|}{|\operatorname{Cen}_{S_d}G|}$

Gerbes, Covers and Families

Gerbe: a fibered category \mathcal{G} above an étale site \mathcal{S} , satisfying the following conditions

1. \mathcal{G} is a prestack: given any open subset $U \subset \mathcal{S}$ and two objects/sections $x, y \in \mathcal{G}(U)$, $\operatorname{Hom}(x, y)$ is a sheaf. [local-global condition on morphisms]

2. \mathcal{G} is a stack: ...

[local-global condition on objects locally given with compatible isomorphisms]

3. Locally, *i.e.*, up to shrinking open subset U, the fiber $\mathcal{G}(U)$ is non-empty.

4. Locally, any two objects in $\mathcal{G}(U)$ are isomorphic.

Patching data: $(U_i, x_i, \chi_{ij})_{i,j \in I}$ where:

- $(U_i)_{i \in I}$ is an open covering of S,
- for $i \in I$, x_i is an object of the category $\mathcal{G}(U_i)$,
- for $i, j \in I$, χ_{ij} isomorphism of category $\mathcal{G}(U_i \cap U_j)$ between restrictions to $U_i \cap U_j$ of x_i and x_j .

 \mathcal{G} is **neutral** if global sections exist, *i.e.* $\mathcal{G}(\mathcal{S}) \neq \emptyset$.

The gerbe \mathcal{G}_f of models of a cover $f: X \to \mathbb{P}^1$

Etale site:	$\operatorname{Spec}(K_{\mathrm{m}})_{\mathrm{et}}$
Open subsets:	$U = \operatorname{Spec}(E) / \operatorname{Spec}(K_{\mathrm{m}})$ with E / K_{m} finite Galois extension
Fiber $\mathcal{G}_f(U)$:	Category of E -models of f
Condition 1:	•••
Condition 2:	Weil's descent criterion (cocycle condition)
Condition 3:	f has a E -model over suitably large Galois extension $E/K_{\rm m}$
Condition 4:	Two models become isomorphic over suitably large Galois extension $E/K_{\rm m}$
Patching data:	$K_{\rm m}$ field of moduli of f
\mathcal{G}_f neutral:	$K_{\rm m}$ field of definition of f

The Hurwitz gerbe \mathcal{G}

Etale site:	${\cal H}_{ m et}$
Open subsets:	étale Galois cover $U = \widetilde{\mathcal{H}} \to \mathcal{H}$
Fiber $\mathcal{G}(U)$:	Category of families above $\widetilde{\mathcal{H}}$
Condition 1:	• • •
Condition 2:	Grothendieck's faithfully flat descent theorem
Condition 3:	Hurwitz families exist locally above \mathcal{H}
Condition 4:	Hurwitz families above \mathcal{H} are locally isomorphic
Patching data:	${\cal H}$ moduli space
\mathcal{G}_f neutral:	There exists a family above \mathcal{H}

Applications of theory of gerbes

Natural approach to previous problems:
→ conceptual support to cocycle calculations

• **Theorem** (D. -Douai-Emsalem) — With \mathcal{H} as above, if $|\operatorname{Cen}_{S_d}(G)|$ is prime to $|\operatorname{Tor}(H^3(\mathcal{H}(\mathbb{C}),\mathbb{Z}))|$, then there exists a family above a Zariski open subset of $\mathcal{H}_{\overline{k}}$.

• **Theorem** (D. -Douai-Emsalem / Wewers) — Let \mathcal{H} be as above and h = [f] be a closed point of \mathcal{H} . The gerbe $\mathcal{G}(f)$ of models of f is the pull-back of the Hurwitz gerbe \mathcal{G} along the map $\operatorname{Spec}(k(h)) \to \mathcal{H}$.

In general, there exists a specialization morphism

$$\operatorname{Sp}_h : H^2(\mathcal{H}_{et}, \mathcal{L}) \to H^2(k(h)_{et}, \mathcal{L}(\mathcal{G}(f)))$$

What is the kernel of $\prod_h \operatorname{Sp}_h$? If no family above \mathcal{H} , subset of points/covers $h \in \mathcal{H}(\overline{k})$ not defined over their f.o.m.? • From *p*-adic to totally *p*-adic models.

Theorem (D. -Douai) Let $f : X \to \mathbb{P}^1$ be a cover defined over $\overline{\mathbb{Q}}$ with field of moduli \mathbb{Q} . If p does not divide |G| and branch points do not coalesce mod. p, then f has a model over \mathbb{Q}^{tp} (and not only over \mathbb{Q}_p).

Proof. Consider the gerbe $\mathcal{G}(f)$ of models of f. It is a gerbe over $\operatorname{Spec}(\mathbb{Q})$. From the local case result, this gerbe has sections over $\operatorname{Spec}(\mathbb{Q}_p)$. From recent work of Moret-Bailly, the Pop/Moret-Bailly result on totally p-adic points on varieties extends to stacks and gerbes (under suitable conditions). Conclude that the gerbe $\mathcal{G}(f)$ has sections over $\operatorname{Spec}(\mathbb{Q}^{tp})$, that is, that f has a model over \mathbb{Q}^{tp} .

References

P. Dèbes and J-C. Douai, "Algebraic covers: field of moduli versus field of definition", Annales Sci. E.N.S., 30, (1997), 303–338.

P. Dèbes and J-C. Douai, "Local-global principles for algebraic covers", Isr. J. Math., 103, (1998).

P. Dèbes and D. Harbater, "Field of definition of p-adic covers", J. fur die reine und angew. Math., 498, (1998), 223–236.

P. Dèbes and M. Emsalem, "On fields of moduli of curves", J. Algebra, **211**, (1999), 42–56.

P. Dèbes and J-C. Douai, "Gerbes and covers", *Comm.* in Algebra, **27/2**, 577–594, (1999).

P. Dèbes, J-C. Douai and M. Emsalem, "Familles de Hurwitz et cohomologie non-abélienne", Ann. Inst. Fourier, (to appear in 2000).