RECONSTRUCTION OF FIELDS FROM

ABSOLUTE GALOIS GROUPS

Ido Efrat
Ben Gurion University of the Negev
Be'er-ShevaГIsrael

Part I: Local Fields
A joint work with Ivan Fesenko
Math. Res. Letters 6 (1999)Г345-356

Part II: Global Aspects

Problem: K, K_{0} fields ΓK_{0} local

$$
G_{K} \cong G_{K_{0}} \quad \Longrightarrow \quad K=? ?
$$

(0) $K_{0}=\mathbb{C}$
$G_{K} \cong G_{\mathbb{C}} \quad \Longleftrightarrow \quad K$ separably closed
(the fundamental theorem of algebra)
(1) $K_{0}=\mathbb{R}$
$G_{K} \cong G_{\mathbb{R}} \quad \Longleftrightarrow \quad K$ real closed
E. Artin - O. Schreier 1927
(2) $\quad G_{K} \cong G_{K_{0}} \Gamma\left[K_{0}: \mathbb{Q}_{p}\right]<\infty$
$\Longleftrightarrow K$-adically closed
$\stackrel{\text { def }}{\longleftrightarrow} \exists$ henselian valuation v on K such that
$\left|\bar{K}_{v}\right|<\infty \Gamma \operatorname{char} \bar{K}_{v}=p \Gamma$
$0 \rightarrow \mathbb{Z} \rightarrow \Gamma_{v} \rightarrow \Delta \rightarrow 0$ exact
$v(p) \quad$ divisible
Neukirch '69, Pop '88,'95, E. ('95; p $\neq 2$), Koenigsmann ('95; all p)
(3) $\quad G_{K} \cong G_{\mathbb{F}_{q}((t))}, q=p^{m} \quad \Longleftrightarrow \quad K=? ?$

Expect: \exists henselian valuation v on K with

- value group Γ_{v} "close" to \mathbb{Z} and
- residue field \bar{K}_{v} "close" to \mathbb{F}_{q}

Example (Koch '67):

$$
G_{\mathbb{F}_{q}((t))} \cong \hat{F}_{\aleph_{0}}(p) \rtimes\left\langle\sigma, \tau \mid \sigma \tau \sigma^{-1}=\tau^{q}\right\rangle_{\text {profinite }}
$$

\uparrow
universal action

Example (A): Construct inductively (K_{r}, u_{r}) as follows:
$\left(K_{1}, u_{1}\right)=$ henselization of $\mathbb{F}_{q}\left(t_{0}\right)$ at $\left(t_{0}\right)$
$\left(K_{r}^{*}, u_{r}^{*}\right)=$ maximal totally tamely ramified extension of
$\left(K_{r}, u_{r}\right)$
$\left(K_{r+1}, u_{r+1}\right)=$ henselization of $K_{r}^{*}\left(t_{r}\right)$ at $\left(t_{r}\right)$

u_{r} henselian $\Gamma \Gamma_{u_{r}} \cong \mathbb{Z}$

$$
\begin{aligned}
& \left(\overline{K_{r+1}}\right)_{u_{r+1}}=K_{r}^{*} \quad \text { non-perfect! } \\
& G_{K_{r}^{*}} \cong \hat{F}_{\aleph_{0}}(p) \rtimes \hat{\mathbb{Z}} \not \approx \hat{\mathbb{Z}}
\end{aligned}
$$

Example (B):

Take $\left(K_{r}, u_{r}\right)$ as in Example (A)

$$
\text { Set } \quad w_{r}^{*}=u_{1}^{*} \circ u_{2}^{*} \circ \cdots \circ u_{r-1}^{*} \circ u_{r}^{*}
$$

$$
w_{r}=\operatorname{Res}_{K_{r}}\left(w_{r}^{*}\right)
$$

$\Longrightarrow \quad\left(K_{r}, w_{r}\right)$ henselian

$$
\left(\overline{K_{r}}\right)_{w_{r}}=\mathbb{F}_{q} \Gamma
$$

$$
\Gamma_{w_{r}} / l \cong \begin{cases}\mathbb{Z} / l & \text { for } l \neq p \text { prime } \\ (\mathbb{Z} / p)^{r} & \text { for } l=p \text { prime }\end{cases}
$$

Example (C): Examples in characteristic 0 [E., '95]
$F=$ arbitrary field of characteristic p
$E=\left(W\left(F_{\text {ins }}\right)\right)$
\exists split epimorphism $G_{E} \rightarrow G_{F_{\text {ins }}} \cong G_{F}$
(Kuhlmann-Pank-Roquette)
$K=$ fixed field of the image of a section
$\Longrightarrow \quad \operatorname{char} K=0 \Gamma \quad G_{K} \cong G_{F}$

Example (D):

Fields of Norms (Fontaine - Winterberger)
$E=$ finite extension of \mathbb{Q}_{p} with residue field \mathbb{F}_{q}
$K=$ arithmetically profinite extension of E
$\Longrightarrow \quad G_{K} \cong G_{\left.\mathbb{F}_{q}(t)\right)}$.

THEOREM 1:

Suppose: $\quad G_{K} \cong G_{\mathbb{F}_{q}((t))} \quad$.
Then there exists a henselian valuation v on K s.t.:
(1) $\quad \forall l \neq p$ prime: $\quad \Gamma_{v} / l \cong \mathbb{Z} / l$
(2) $\quad \operatorname{char} \bar{K}_{v}=p$
(3) $G_{\bar{K}_{v}}\left(p^{\prime}\right) \cong \hat{\mathbb{Z}}\left(p^{\prime}\right)\left(=\prod_{l \neq p} \mathbb{Z}_{l}\right)$
(4) $\operatorname{Syl}_{p}\left(G_{\bar{K}_{v}}\right)$ is a non-trivial free pro- p group of rank $\leq\left|\bar{K}_{v}\right|$
(5) \quad char $K=0 \quad \Longrightarrow \quad \Gamma_{v} / p=0$ and \bar{K}_{v} is perfect

Construction of valuations from K-theory

Jacob '81, Ware '81, Arason-Elman-Jacob '87, Hwang-Jacob '95, E. '99

Alternative approaches: Bogomolov '92, Koenigsmann '95

Theorem: Suppose: E field $\Gamma l \neq$ char E prime Γ $\left\langle-1,\left(E^{\times}\right)^{l}\right\rangle \leq T \leq E^{\times} ;$
(a) $\forall x \in E \backslash T \forall y \in T \backslash\left(E^{\times}\right)^{l}:\{x, y\} \neq 0$ in $K_{2}^{M}(E)$
(b) $\forall x, y \in E^{\times}: x, y \mathbb{F}_{l}$-linearly independent $\bmod T$
$\Longrightarrow \quad\{x, y\} \neq 0$ in $K_{2}^{M}(E)$.
Then: $\quad \exists$ valuation v on E such that:

- char $\bar{E}_{v} \neq l$
- $\operatorname{dim}_{\mathbb{F}_{p}}\left(\Gamma_{v} / l\right) \geq \operatorname{dim}_{\mathbb{F}_{l}}\left(E^{\times} / T\right)-1$
- either $\operatorname{dim}_{\mathbb{F}_{l}}\left(\Gamma_{v} / l\right)=\operatorname{dim}_{\mathbb{F}_{l}}\left(E^{\times} / T\right)$ or $\bar{E}_{v} \neq \bar{E}_{v}^{l}$.

Corollary: Suppose :
E a field $\Gamma l \neq \operatorname{char} E$ prime $\Gamma-1 \in\left(E^{\times}\right)^{l} \Gamma$ and
$\bigwedge^{2}\left(E^{\times} / l\right) \xrightarrow{\sim} K_{2}^{M}(E) / l \quad$ naturally.
Then \exists valuation v on E such that:

- char $\bar{E}_{v} \neq l$
- $\operatorname{dim}_{\mathbb{F}_{l}}\left(\Gamma_{v} / l\right) \geq \operatorname{dim}_{\mathbb{F}_{l}}\left(E^{\times} / l\right)-1$
- either $\operatorname{dim}_{\mathbb{F}_{l}}\left(\Gamma_{v} / l\right)=\operatorname{dim}_{\mathbb{F}_{l}}\left(E^{\times} / l\right)$ or $\bar{E}_{v} \neq \bar{E}_{v}^{l}$

The construction of v :

One chooses $T \leq H \leq E^{\times}$appropriately
(in the Corollary: $T=\left(E^{\times}\right)^{l}$)
$O^{-}=\{x \notin H \mid 1-x \in T\}$
$O^{+}=\left\{x \in H \mid x O^{-} \subseteq O^{-}\right\}$
$O=O^{-} \cup O^{+}$is a valuation ring with the desired
properties!

In our case:

Suppose $\sigma: G_{K} \xrightarrow{\sim} G_{\mathbb{F}_{q}((t))} \Gamma q=p^{m}$.
Take $l \neq p$ prime and E_{l} / K finite and separable with $\mu_{l} \subseteq E_{l}, E_{l}^{\prime}\left(\mu_{4} \subseteq E_{l}, E_{l}^{\prime}\right.$ if $\left.l=2\right)$.
Then: $\quad G_{E_{l}}(l) \cong\left\langle\sigma, \tau \mid \sigma \tau \sigma^{-1}=\tau^{q}\right\rangle_{\text {pro-l }}$

$$
\begin{gathered}
\Longrightarrow H^{1}\left(G_{E_{l}}(l), \mathbb{Z} / l\right) \cong(\mathbb{Z} / l)^{2} \\
H^{2}\left(G_{E_{l}}(l), \mathbb{Z} / l\right) \cong \bigwedge^{2} H^{1}\left(G_{E_{l}}(l), \mathbb{Z} / l\right)(\text { via } \cup) \\
\Longrightarrow E_{l}^{\times} / l \cong(\mathbb{Z} / l)^{2} \quad \text { (Kummer theory) } \\
K_{2}^{M}\left(E_{l}\right) / l \cong \bigwedge^{2}\left(E_{l}^{\times} / l\right) \\
\text { (Merkur'ev-Suslin) }
\end{gathered}
$$

$\Longrightarrow \exists$ valuation u_{l} on E_{l} such that $\operatorname{char}\left(\overline{E_{l}}\right)_{u_{l}} \neq l \Gamma$
$\operatorname{dim}_{\mathbb{F}_{l}}\left(\Gamma_{u_{l}} / l\right)=1 \Gamma\left(\overline{E_{l}}\right)_{u_{l}} \neq\left(\overline{E_{l}}\right)_{u_{l}}^{l}$.
$\Longrightarrow u_{l}$ is henselian
$\Longrightarrow v_{l}=\operatorname{Res}_{K} u_{l}$ is henselian
$\Longrightarrow O_{v}=\bigcap_{l \neq p} O_{v_{l}}$ is henselian and
$\forall l \neq p: \operatorname{char} \bar{K}_{v} \neq l$ and $\operatorname{dim}_{\mathbb{F}_{l}}\left(\Gamma_{v} / l\right)=1$

Proposition (E., '95):
Suppose: (E, u) valued field
$l \neq \operatorname{char} E, 2$ prime (or $l=2 \Gamma \sqrt{-1} \in E)$
$\bar{E}_{u} \neq \bar{E}_{u}^{l}$
$\sup _{[F: E]<\infty} \operatorname{rank} G_{F}(l)<\infty \quad$.
Then u is henselian .

Proposition (Endler-Engler '77):
Suppose: v, v^{\prime} valuations on a field K
v henselian
$\bar{K}_{v^{\prime}}$ not algebraically closed .
Then either $O_{v} \subseteq O_{v^{\prime}}$ or $O_{v} \subseteq O_{v^{\prime}}$.

Claim: $\operatorname{char} \bar{K}_{v}=p$

Key Fact:
The (first) ramification group V of $G_{\mathbb{F}_{q}((t))}$ intersects every non-trivial normal closed subgroup of $G_{\mathbb{F}_{q}((t))}$.

Let $T=G_{K_{v, \text { ur }}}$ and take $l \neq p$, char \bar{K}_{v} prime.
Then: $\quad \operatorname{Syl}_{l}(T) \cong \mathbb{Z}_{l}$
$\Longrightarrow T \neq 1$ and is normal in G_{K}
$\Longrightarrow \sigma(T) \neq 1$ and is normal in $G_{\mathbb{F}_{q}((t))}$
$\Longrightarrow \sigma(T) \cap V \neq 1$ and is normal in $V\left(\cong \hat{F}_{\aleph_{0}}(p)\right)$
$\Longrightarrow \quad \sigma(T) \cap V$ non-abelianГpro- p
$\Longrightarrow \operatorname{Syl}_{p}(T)$ non-abelian
$\Longrightarrow \quad \operatorname{char} \bar{K}_{v}=p$

II. FINITELY GENERATED FIELDS

Grothendieck's anabelian conjecture - 0-dim case:

Theorem (Pop):
Let K, K^{\prime} be finitely generated infinite fields.
Let $\sigma: G_{K} \xrightarrow{\sim} G_{K^{\prime}}$.
Then there is a unique $\varphi: \tilde{K}^{\prime} \xrightarrow{\sim} \tilde{K}$ inducing σ.

- K, K^{\prime} global - Neukirch '69, Ikeda '77, Iwasawa

Uchida '77+

- K, K^{\prime} of transcendence degree 1 over \mathbb{Q} - Pop '90,

Spiess '96

- K, K^{\prime} arbitrary - Pop '95 +

Definition:

$$
\operatorname{dim}(K)= \begin{cases}\operatorname{tr} \cdot \operatorname{deg}\left(K / \mathbb{F}_{p}\right) & \text { if } \operatorname{char} K=p>0 \\ \operatorname{tr} \cdot \operatorname{deg}(K / \mathbb{Q})+1 & \text { if } \operatorname{char} K=0\end{cases}
$$

A valuation v on K is 1 -defectless if

$$
\operatorname{dim}(K)=\operatorname{dim}\left(\bar{K}_{v}\right)+1
$$

The Local Correspondence:

Let L, L^{\prime} be separable extensions of K, K^{\prime} 「respectively Γ with $\sigma\left(G_{L}\right)=G_{L^{\prime}}$.
Then:
L is a henselization of K with
respect to a 1-defectless valuation
\Uparrow
L^{\prime} is a henselization of K^{\prime} with
respect to a 1-defectless valuation

Earlier Approaches:

Hasse Principles + Model Theory
(Brauer-Hasse-Noether, Tate-Lichtenbaum-Saito,
Kato - Jannsen)
An "algebraic" proof ??

Definition: Let L be a field of dimension d and $p \neq \operatorname{char} L$ a prime number. L is p-divisorial if there exist $L \subseteq E \subseteq M \subseteq L_{\text {sep }}$ such that:
(1) M / L is Galois
(2) $\operatorname{Syl}_{p}\left(G_{M}\right) \cong \mathbb{Z}_{p}$
(3) ${ }_{p}\left(G_{L}\right)=d+1$
(4) Either $d=1$ or $\operatorname{Gal}(M / L)$ has no normal
pro-solvable closed subgroups $\neq 1$
(5) $\forall F / E$ finite separable:
$H^{1}\left(G_{F}, \mathbb{Z} / p\right) \cong(\mathbb{Z} / p)^{d+1}$
$H^{2}\left(G_{F}, \mathbb{Z} / p\right) \cong \bigwedge^{2} H^{1}\left(G_{F}, \mathbb{Z} / p\right)$ via \cup.

Theorem 2:

Suppose :
K finitely generated field Γ
L / K separable algebraic extension Γ
$p \neq \operatorname{char} K$.
TCAE :
(a) L is a henselization of K with respect to a

1-defectless valuation
(b) L is a minimal p-divisorial separable algebraic extension of K.

Condition (b) is Galois-theoretic!

References

[1] J.K. ArasonГR. Elman and B. JacobГRigid elements, valuations, and realization of Witt rings, J. Algebra 110 (1987)Г449-467.
[2] F.A. Bogomolovए Abelian subgroups of Galois groups, Izv. Akad. Nauk SSSR Γ Ser. Mat. 55 (1991)Г32-67 (Russian); Math. USSR Izvestiya 38 (1992)Г27-67 (English translation).
[3] I. EfratГA Galois-theoretic characterization of p-adically closed fields, Israel J. Math. 91 (1995) Г273-284.
[4] I. EfratГConstruction of valuations from K-theory, Math. Res. Lett. 6 (1999)Г335344.
[5] I. Efrat and I. Fesenko FFields Galois-equivalent to a local field of positive characteristic, Math. Res. Lett. 6 (1999)Г345-356.
[6] I. EfratГThe local correspondence over absolute fields - an algebraic approach, preprintI Ben Gurion UniversityГ1999.
[7] O. Endler and A.J. Engler Г Fields with Henselian valuation rings, Math. Z. 152 (1977)Г191-193.
[8] Y.S. Hwang and B. JacobГ Brauer group analogues of results relating the Witt ring to valuations and Galois theory, Canad. J. Math. 47 (1995)Г527-543.
[9] H. KochГ Über die Galoissche Gruppe der algebraischen Abschliessung eines Potenzreihenkörpers mit endlichem konstantenkörper, Math. Nachr. 35 (1967)Г323-327.
[10] J. KoenigsmannएFrom p-rigid elments to valuations (with a Galois-characterisation of p-adic fields) (with an appendix by F. Pop) Г J. reine angew. Math. 465 (1995) Г 165-182.
[11] F. Pop Γ On Grothendieck's conjecture of birational anabelian geometry, Ann. Math. 139 (1994)Г145-182.
[12] F. Pop Γ On Grothendieck's conjecture of birational anabelian geometry II, Preprint Γ Heidelberg 1995.
[13] F. PopГAlterations and anabelian birational geometry, PreprintГ1999.
[14] M. Spiess Γ An arithmetic proof of Pop's Theorem concerning Galois groups of function fields over number fields, J. reine angew. Math. 478 (1996)Г107-126.
[15] J.-P. Wintenberger L Le corps des normes de certaines extensions infinies des corps locaux, applications, Ann. Sc. Ec. Norm. Sup. 16 (1983)Г59-89.

