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1. Preface

This is joint work with Makoto Matsumoto.
We have a general program to understand the
Zariski closure of the image of certain rep-
resentations of the absolute Galois group on
various completions of fundamental groups of
algebraic varieties. In our two talks, we aim
to sketch a proof of one part of the Deligne-
Ihara Conjecture on the action of the abso-
lute Galois group on the fundamental group of
Pl —{0,1,00}.



2. Preliminaries

The algebraic fundamental group of a scheme
(geometrically connected and finite type) over
a field k will be denoted by

T (X, x)arith

Fix a separable closure K of k. Set
m1(X,2)9%°M = 71 (X @, K,2)?",
There is an exact sequence

)geom )arith

1—>7T1(X,£IZ —>7T1(X,£IZ

where Gj = Gal(K/k). We therefore have a
representation

¢ G — Outmy (X, z)9%°M,

This representation is independent of z € X.
If k£ is a sub-field of C, then

m1(X,2)9%°M = w1 (X (C), z)

the profinite completion of the topological fun-
damental group of the complex points of X.
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This homomorphism generalizes to many func-
torially defined completions of n1(X(C), z).

Pro-/ Completion: Fix a prime number /.
The pro-¢£ completion

r(4)

of a group I is, by definition, the inverse limit
of all finite quotients of I of /-power order.
We view M'Y) as a topological group. When k
is a number field, we set

m1(X, )98 = 7 (X(C), z)®

It is also the topological pro-¢ completion of
m1(X,2)9°M,  Consequently, the representa-
tion ¢ induces

by Gi — Out w1 (X(C),z)®



Filtrations of Out mq(X)9¢°M

Denote the lower central series of
() -— 7T1(X)91eom(€)
by
7Tl(X)geom(Z) — 71 > 1,2 > 7,3 O ...

This is a filtration by characteristic subgroups
and can thus be used to induce filtrations

I°>Lt'>I?>--.
on Autm(X)9¢°MW) and Out 71 (X)9eeME) | De-
fine
L™ Aut =0 =
{¢p € Aut=(® : ¢ is trivial mod LT 1x(O1.

One then defines

L™ Outmy (X)9%°ME) =
im{L"™ Aut =) - out w(g)}.
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4. The Deligne-Ihara Conjecture

Here we take X = P! — {0,1,00} and k£ = Q.
We have the representation

¢ : Gg — Outmy (P! — {0, 1,00})9%0mM®)
and the filtration
°>tor?o--.

of Outmy (P! — {0,1,00})98°M&)  We can pull
back this filtration along ¢ to obtain the Ihara
filtration

Go=I°21'21°D--.
of GQ. Specifically,
I"Gg = ¢, LL" Out w1 (P! — {0,1, 00})9%°M(®),
This filtration depends on /.



We have Gr, Gg = Z, and the exact sequence

1—>11GQ—>GQ—>GF(I)GQ—> 1.

Conjecture (Deligne-Ihara): The associ-
ated graded Lie algebra

(GI’?O GQ) ® Qp := ( @ GI’? GQ> ®Z£ Qy
n>0

is freely generated by elements s3, sg, s7, ...
where

Son+1 € GI’?TL_I—1 GQ

The fact that it is a Lie algebra is easily estab-
lished. Modulo the commutator subalgebra of
(Gr7° Gp)®Qy, the element s, 41 is to be dual
to the image of a generator of Ky,41(Z)/tors
under the regulator

chopt1 @ Kapn+1(Z) @7 Qp at Hl(G@,@e(Qn + 1)).

The reasons for this should become clearer
during the lecture.



Some General Comments about our Ap-
proach:

e T he conjecture is expressed in terms of
graded objects.

e \We will generally work with filtered objects,
and only pass to the associated graded mod-
ule at the last step — cf. homological al-
gebra where often it is best to work with
complexes and pass to homology at the last
step.

e [ he property of morphisms of filtered mod-
ules that will be crucial in the argument is
strictness.



5. Strictness

A linear mapping f : (V1,We) — (Vo,Ws) be-
tween two filtered vector spaces is said to be
strict with respect to the filtrations W, if it is
filtration preserving and if

imfNWnpVy = f(Wmvl)
for all m € Z.
Natural examples of categories of filtered vec-

tor spaces where the morphisms are strict in-
clude:

e the category of (variations of) mixed Hodge
structures (Hodge or weight filtrations);

e the category of ¢-adic local systems of ge-
ometric origin (weight filtration);

e the (conjectural) category of mixed mo-
tives (weight filtration).



A consequence:

A filtration on a vector space V induces one
on every subspace (by intersection) and on ev-
ery quotient (by projection). In particular, the
kernel and image of a filtration preserving map-
ping f: (V1,We) — (Vo, Ws) have natural filtra-
tions. If f is strict with respect to W,, then
there are natural isomorphisms

ker Gr¥V £ =2 GrlV ker £
and
imGrY r=2GrVimy.

This consequence of strictness is key in our
argument.

Goal: To replace certain w1(X,z)3"th py a
proalgebraic group, each of whose modules has
a natural weight filtration such that equivariant
maps between modules are strictly compatible
with it.
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Example: Let
V =V'=C" where n > 2.
Define
W,V =W, _1V' = {(z1,...,24,0,...,0)} 2 .

The filtrations We of V and V' are increasing.
The identity C* — C" induces a filtration pre-
serving mapping

f : (V7 W‘) — (Vla W‘)

Note that f : V — V' is an isomorphism and
that

Gr}/VV — Gr}/v 1%
Is trivial for all 4. That is:
Grfvf =0
so that
GrW v =kerGr¥ £ £ GrlV ker f =0
and
O:imGrYnyé Grfvimf: GrYVV.
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6. /-adic Relative Completion

This is our first attempt at finding such a
proalgebraic group. It is an obvious variant of
the relative unipotent (or Malcev) completion
of a discrete group suggested by Deligne.

Setup:

e [ is a profinite group;

e S is a reductive algebraic group defined
over Qp;

e p: I — S(Qy) is a continuous, Zariski dense
homomorphism.
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Examples:
1. S is the trivial group, I any profinite group.

2. S=Gm, T =17Z;, and p: Z; — Q is the
inclusion.

3. S:Gm,

[ = Gf = Wl(SDeCZ[l/e]) L= Gal(Knr/Q)a

where K" is the maximal algebraic exten-
sion of Q unramified outside ¢, and p is the
composite

X/ X X

where x, is the cyclotomic character.

4. S = Spg/Qe, [T is the profinite completion
of any mapping class group associated to
genus g curves, and p is the natural repre-
sentation.
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The definition: The /-adic completion of I
relative to p consists of:

e a proalgebraic Qy-group G which is an ex-
tension of S by a prounipotent group U,

e a continuous homomorphism g: " — G(Qyp)
which lifts p:

1 — UWQp) — G(Qy) — S(Qp) — 1

|

— B
It is required to satisfy the following universal
mapping property:
If G is a proalgebraic Qy-group which is an ex-
tension of S by a prounipotent group, and if
¢ I — G(Qp) is a continuous homomorphism
which lifts p, then there is a unique homomor-
phism of proalgebraic groups ¢ : G — G that
commutes with the projections to S and such
that ¢ = Pp.
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Remarks:

We view G as a topological group — the neigh-
bourhoods of the identity are the kernels of the
homomorphisms to its finite dimensional quo-
tients. Give U the induced topology.

Denote the Lie algebras of S, G and U by s, g
and u. Then we have an exact sequence

O—-u—9g—s—0.

The Lie algebras g and u are topological Lie
algebras — they inherit their topology from
those of G and U.

We can therefore define the continuous coho-
mology groups

Héts(g) and Héts(u).
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6. Computation of Relative Completions

Let {Vo} be a set of representatives of the iso-
morphism classes of irreducible representations
of S.

Theorem 1 Ifeach Hgts(l‘, Va) is finite dimen-
sional when 3 = 1,2, then

Hc::Lts(u) — @ Héts(ra Vo) @ Vy
(8
and there is a natural injection

HZs(w) = P HZ(T, Va) @ V2
(0%

To some extent, this reduces the computation
of relative completions to cohomology compu-
tations. Although this is usually not possible,
it is often easier than understanding the actual
group [ .
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Recall: The exponential and logarithm map-
pings give a bijective correspondence between
a prounipotent group U and its Lie algebra u.
So there is no loss of information if we work
with the Lie algebra u of the prounipotent rad-
ical U.

Example 1: If we take S to be the trivial
group, G = U is just the standard unipotent
completion. One can show that if [ is a finitely
generated group, and if U is its unipotent com-
pletion over Q, then U ®q Qy is the unipotent
completion of its profinite and pro-¢ comple-
tions.

For example, suppose that F = (x1,...,xn) iS
a free group on n generators. The Lie algebra
of its unipotent completion is the free Q-Lie
algebra on n-generators.

The completion of its pro-¢ (or profinite) com-
pletion [, has Lie algebra the completion of a
free QQy-Lie algebra with n generators.
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Example 2: Here S = Gp, [ = Z; and p is
the inclusion Z; — Ql?(. Denote the nth power
of the standard representation of Gy, by T™.
We have

0 n #* 0O,
Q n=0

and H2.(Z),T™) = 0 for all n. This can be
seen using the spectral sequence associated to
the extension

0 —Zy — Z; — (ZNL)" — 1

when ¢ % 2, and its analogue when ¢ = 2.

HL (ZX,T™) = {

It follows that U4 = G, and that the relative
completion of Z, with respect to p is

Gm X Gyg.

The homomorphism p is p on the first factor,
and

x Projn
ZE — Zg — Qg

on the second.
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Example 3: Take S = Gy,
=Gy =nm1(SpecZ[1/4]) = Gal(K""/Q)
and p to be the composite
Gy 25 7) — QY

where xy is the cyclotomic character.

We skip this example for the time being as we
do not know

HZ, (Gy, Qy(n))

for all n when 53 = 1,2. Note that the groups
that are most interesting are those when n > j,
which are known. Later we shall define the
weighted completion, which is more relevant
to our problem and is computable for this ex-
ample.
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Example 4: Here S = Spg/(@ﬁ, [ is the profinite
completion of the mapping class group

[y = mo Diff T F
where F'is a compact oriented surface of genus
g.

Here the relative completion G4 is completely
known when g > 6. It is the Qy-points of the
corresponding relative completion of 'y, which
is a proalgebraic Q-group:

where ug4 is the completion of the graded Lie
algebra

L(V)/(T)
where
V = N3Hy(F)/H1(F)
and
T CLy(V) = A3(V)

IS the orthogonal complement of the part with
highest weight 2X-.
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7. Weighted Completion

There is a modified version of relative comple-
tion which, in retrospect, is more natural.

The setup:

e [ is a profinite group;

e S is a reductive algebraic group defined
over Qy;

o w: Gy — S is a central cocharacter of S;

e p: I — S(Qy) is a continuous, Zariski dense
homomorphism.
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Notation: Denote by T" the 1-dimensional
representation of G,, on which it acts via the
nth power of the standard character. Denote
the T™ isotypical component of a G,,-module
V by V,.

Negatively weighted extensions: If

l1—-U—-G—5S—~1

is an extension of Qy-groups, where U is unipo-
tent, then H1(U) is an S-module. It can be re-
garded as a G;,-module via w, SO we can write

Hi(U) = &P H1(U)n.
nez

We say that this extension is negatively weighted
if H1(U)n = 0 whenever n > 0.
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The definition: The weighted completion of
[ with respect to p and w consists of:

e a pro-algebraic Qy,-group G which is an ex-
tension of S by a prounipotent group U;

e a continuous homomorphism g: " — G(Qyp)
which lifts p:

1 — UWQy) — Q) — S(Qp) — 1

| |
r B
It is required to satisfy the following universal

mapping property:

23



Given ¢ : ' — G(Qp), where G is a negatively
weighted extension of S such that

r % GQ)

d |
S(Qp) — S(Qp)

commutes, then we have a unique homomor-
phism & : G — G of Qy-groups such that:

~

r 2% 6(Q) — S(Q)

el

r j G(Qp) — S(Q)

commutes.
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The weight filtration:

If G is a negatively weighted extension of S,
then every G-module V has a natural weight
filtration

o C Wy 1V C WV C WV C -

It is constructed as follows:

Choose any lifting w : G, — G of the central
cocharacter w : G, — S. Now any G-module V
can be regarded as a G,,-module via w, and can
thus be decomposed as a Gy,-module. Define

WmV = @ Va.

n<m

Naturality: For a fixed lift w, the weight fil-
tration is clearly preserved by every G-module
mapping f:V — V.
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It is well defined:

1. First, fix a lift w, and use it to put a weight
filtration on every G-module.

2. Using the adjoint action, put a weight fil-
tration on g and u. The facts that w is central
and the extension is negatively weighted imply
that

g = Wpg and that u= W_qg.

3. It is not hard to see that We behaves well
with respect to tensor products. This can be
used to show that the infinitesimal action

gV -V

preserves the weight filtration.

4. Since u=W_1g, we haveu-W,V C W,,_1V,
which implies that g preserves W, and that it
acts trivially on GriV v.
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5. Basic facts about the Levi decomposition
imply that any two lifts w are conjugate by an
element w of U. This implies that « carries
the weight filtration of @ onto that of uwwu L.
Since U preserves the weight filtration, We is
independent of w.

Strictness: By fixing a lift w of w, it is clear
that every G-equivariant mapping f : V — V' is
strict with respect to the weight filtration and
that the functor

Ger

IS exact on the category of G-modules. It is
also clear that it behaves well with respect to
Hom and X.
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8. Computation of Weighted Completions

Let {Vo} be a set of representatives of the iso-
morphism classes of irreducible representations
of S. Schur’'s Lemma implies that for each ¢,
there is an integer n(a) such G, acts on V, via
w by the n(a)th power of the standard charac-
ter.

Theorem 2 If each Hgts(l‘, Va) is finite dimen-

sional when j = 1,2 and n(a) < 0, then
Hep(u) = P HL (M V) @ VY
{ain(a)<—1}
and there is a natural injection

cts(u) — $ Cts(l_ Vo) @ VX
{an(a)<-2}

We shall need the stronger (and true) state-
ment: If H ts(l’ Va) = 0 when —d < n(a) < O,
then

HCQtS(u) C @ Hc2ts(r7 Va) @V
{a:n(a)<-2d}
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Example 1: Take S = Gy, w : Gy — Gy, to
be the (—2)th power of the standard character,
=7, and p to be the inclusion Z; — Q.

As before, we have HL (Z),T™) = 0 except

when n =0, and H2(Z;,T") =0 for all n. It

follows from this that U/ is trivial and that the
weighted completion of Z; with respect to p
and w is just Gyy,.

Why take w=( )72 7

We want representation theoretic weights to
equal Galois theoretic weights. The fact that

Xe(Fp) — D

then forces us to define w = ( )~ 2.

29



Example 2: This example is key. Here we
take £ =2, S = Gm, w: Gy — Gy, to be the
(—2)th power of the standard character,

[ = Gg = 7T1(SD€C Z[l/f])
and p to be the composite
Gg ﬁ Z; — @2( .
where xy is the cyclotomic character. We shall
denote the weighted completion of G, with re-
spect to xy and w by Ay, and its unipotent
radical by Cy:

1—>Kg—>.x4g—>@m—>l.

Their Lie algebras will be denoted by a, and &,:

O—¢ —a— Q— 0.
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Computation of ¢,: The pullback of T~" along
w is Qp(n). Thanks to Soulé, we know that
when n > 1 and ¢ # 2,

Q m=2m-+41,m >0;
O otherwise,

HEs (G, Qp(n)) = {

and that HZ2

&< (G, Qp(n)) vanishes when n > 2.

This implies that

Hs(8) = @ Hes(Ge, Qo(n)) @ Qp(—n)
n>0

P Q(—2m —1).

m>0
Taking duals, this implies that

Hi(t) = [[ HLs(Gr Qu(n))* © Qp(n)
n>0

= I @2m+1).

m>0

The vanishing of H2..(Gy¢, Qu(n)) for all n > 2

implies that H2..(¢) = 0, and that & is free.
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Theorem 3 If ¢ = 2, the Lie algebra €, is a
free pro-nilpotent Lie algebra over Q. It is

(un-naturally) isomorphic to the completion of
its associated graded

GrJ ¢ = P G, &,
n>0
which is a free Lie algebra:

GrlVe, = L( GrlV Hl(eg)) — ]L( an @£(2m+1)).
m>0
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9. Philosophy

Belief: (due to Deligne and/or Beilinson?) To
each scheme X, there should be a proalgebraic
Q-group Tx which is an extension of Gy, by a
prounipotent group. Denote its Lie algebra
by txy. The one-dimensional Tx-module cor-
responding to the nth power of the standard
representation of Gy, will be denoted by Q(n).
The Lie algebra tx should have the property
that

M (ty, Q(n)) = Kop_pm (X)W
the weight n part of

= Kop_m(X) ® Q under
the Adams operations

Heuristic: The category of representations of
Tx should be equivalent to the category 7T(X)
of mixed Tate motives over X, and so

H™(tx,Q(n)) & ExtT y(Qx, Qx (1))
should hold. Motivic philosophy says the RHS
is the weight n part of Ko,,_,,,(X).
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Is ap = tspecz1/g ®Q Qe 7
An easy spectral sequence argument shows that

(QE m = n = O’
H% (a;,Qy(n)) ={Q, m=1,n>1 odd;
0 otherwise.

\

Computations of Borel show that

(Q m = 0;
Kn(Z[1/]) ={Q m=1 mod 4;
|0 otherwise

By results of Soulé, Beilinson and Gillet, we
have

Kan41(Z[1/0]) @ Qp = K4n_|_1(Z[1/£])((@2g”+1)

= HL(Gy, Qu(2n + 1)).
chop41

Thus the regulator induces an isomorphism

m(ag, Qp(n)) 2 Koy (X)) ©7Q
for all m and n, and is thus a candidate for the
Qp-form of the motivic Lie algebra of SpecZ[1/4].
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