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1. Preface

This is joint work with Makoto Matsumoto.

We have a general program to understand the

Zariski closure of the image of certain rep-

resentations of the absolute Galois group on

various completions of fundamental groups of

algebraic varieties. In our two talks, we aim

to sketch a proof of one part of the Deligne-

Ihara Conjecture on the action of the abso-

lute Galois group on the fundamental group of

P1 � f0;1;1g.
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2. Preliminaries

The algebraic fundamental group of a scheme

(geometrically connected and �nite type) over

a �eld k will be denoted by

�1(X; x)
arith

Fix a separable closure K of k. Set

�1(X; x)
geom = �1(X 
k K;x)

arith:

There is an exact sequence

1! �1(X; x)
geom ! �1(X; x)

arith ! Gk ! 1;

where Gk := Gal(K=k): We therefore have a

representation

� : Gk !Out�1(X; x)
geom:

This representation is independent of x 2 X.

If k is a sub-�eld of C , then

�1(X; x)
geom = �1(X(C ); x)̂

the pro�nite completion of the topological fun-

damental group of the complex points of X.
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This homomorphism generalizes to many func-

torially de�ned completions of �1(X(C ); x).

Pro-` Completion: Fix a prime number `.

The pro-` completion

�(`)

of a group � is, by de�nition, the inverse limit

of all �nite quotients of � of `-power order.

We view �(`) as a topological group. When k

is a number �eld, we set

�1(X; x)
geom(`) = �1(X(C ); x)

(`)

It is also the topological pro-` completion of

�1(X; x)
geom. Consequently, the representa-

tion � induces

�` : Gk ! Out�1(X(C ); x)
(`)
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Filtrations of Out�1(X)
geom

Denote the lower central series of

�(`) := �1(X)
geom(`)

by

�1(X)
geom(`) = L1 � L2 � L3 � � � �

This is a �ltration by characteristic subgroups

and can thus be used to induce �ltrations

L0 � L1 � L2 � � � �

on Aut�1(X)
geom(`) and Out�1(X)

geom(`). De-

�ne

LnAut�(`) =

f� 2 Aut�(`) : � is trivial mod Ln+1�(`)g:

One then de�nes

LnOut�1(X)
geom(`) =

imfLnAut�(`) !Out�(`)g:

5



4. The Deligne-Ihara Conjecture

Here we take X = P1 � f0;1;1g and k = Q .

We have the representation

�` : GQ ! Out�1(P
1 � f0;1;1g)geom(`)

and the �ltration

L0 � L1 � L2 � � � �

of Out�1(P
1 � f0;1;1g)geom(`). We can pull

back this �ltration along � to obtain the Ihara

�ltration

GQ = I0 � I1 � I2 � � � �

of GQ . Speci�cally,

InGQ := ��1` LnOut�1(P
1 � f0;1;1g)geom(`):

This �ltration depends on `.
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We have Gr0W GQ
�= Z�` and the exact sequence

1! I1GQ ! GQ ! Gr0I GQ ! 1:

Conjecture (Deligne-Ihara): The associ-

ated graded Lie algebra

(Gr>0I GQ )
 Q ` :=
� M
n>0

GrnI GQ

�

Z`

Q `

is freely generated by elements s3, s5, s7, : : :

where

s2n+1 2 Gr2n+1
I GQ :

The fact that it is a Lie algebra is easily estab-

lished. Modulo the commutator subalgebra of

(Gr>0I GQ )
Q `, the element s2n+1 is to be dual

to the image of a generator of K4n+1(Z)=tors

under the regulator

ch2n+1 : K4n+1(Z) 
Z Q `
�
! H1(GQ ; Q `(2n+1)):

The reasons for this should become clearer

during the lecture.
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Some General Comments about our Ap-

proach:

� The conjecture is expressed in terms of

graded objects.

� We will generally work with �ltered objects,

and only pass to the associated graded mod-

ule at the last step | cf. homological al-

gebra where often it is best to work with

complexes and pass to homology at the last

step.

� The property of morphisms of �ltered mod-

ules that will be crucial in the argument is

strictness.
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5. Strictness

A linear mapping f : (V1;W�) ! (V2;W�) be-

tween two �ltered vector spaces is said to be

strict with respect to the �ltrations W� if it is

�ltration preserving and if

im f \WmV2 = f(WmV1)

for all m 2 Z.

Natural examples of categories of �ltered vec-

tor spaces where the morphisms are strict in-

clude:

� the category of (variations of) mixed Hodge

structures (Hodge or weight �ltrations);

� the category of `-adic local systems of ge-

ometric origin (weight �ltration);

� the (conjectural) category of mixed mo-

tives (weight �ltration).
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A consequence:

A �ltration on a vector space V induces one

on every subspace (by intersection) and on ev-

ery quotient (by projection). In particular, the

kernel and image of a �ltration preserving map-

ping f : (V1;W�)! (V2;W�) have natural �ltra-

tions. If f is strict with respect to W�, then

there are natural isomorphisms

kerGrW� f �= GrW� ker f

and

imGrW� f �= GrW� im f:

This consequence of strictness is key in our

argument.

Goal: To replace certain �1(X; x)
arith by a

proalgebraic group, each of whose modules has

a natural weight �ltration such that equivariant

maps between modules are strictly compatible

with it.
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Example: Let

V = V 0 = C n where n � 2:

De�ne

WjV =Wj�1V
0 = f(z1; : : : ; zj;0; : : : ;0)g

�= C j :

The �ltrations W� of V and V 0 are increasing.

The identity C n ! C n induces a �ltration pre-

serving mapping

f : (V;W�)! (V 0;W�):

Note that f : V ! V 0 is an isomorphism and

that

GrWj V ! GrWj V 0

is trivial for all j. That is:

GrW� f = 0

so that

GrW� V = kerGrW� f 6= GrW� ker f = 0

and

0 = imGrW� f 6= GrW� im f = GrW� V:
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6. `-adic Relative Completion

This is our �rst attempt at �nding such a

proalgebraic group. It is an obvious variant of

the relative unipotent (or Malcev) completion

of a discrete group suggested by Deligne.

Setup:

� � is a pro�nite group;

� S is a reductive algebraic group de�ned

over Q `;

� � : �! S(Q `) is a continuous, Zariski dense

homomorphism.
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Examples:

1. S is the trivial group, � any pro�nite group.

2. S = G m, � = Z�` , and � : Z�` ! Q �` is the

inclusion.

3. S = G m,

� = G` = �1(SpecZ[1=`]) := Gal(Knr=Q );

where Knr is the maximal algebraic exten-

sion of Q unrami�ed outside `, and � is the

composite

G`
�`�! Z�` ,! Q �` ;

where �` is the cyclotomic character.

4. S = Spg=Q `
, � is the pro�nite completion

of any mapping class group associated to

genus g curves, and � is the natural repre-

sentation.
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The de�nition: The `-adic completion of �

relative to � consists of:

� a proalgebraic Q `-group G which is an ex-

tension of S by a prounipotent group U,

� a continuous homomorphism ~� : �! G(Q `)
which lifts �:

1 �! U(Q `) �! G(Q `) �! S(Q `) �! 1

~�

x???
x???�

� �

It is required to satisfy the following universal

mapping property:

If G is a proalgebraic Q `-group which is an ex-

tension of S by a prounipotent group, and if

� : � ! G(Q `) is a continuous homomorphism

which lifts �, then there is a unique homomor-

phism of proalgebraic groups � : G ! G that

commutes with the projections to S and such

that � = �~�.
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Remarks:

We view G as a topological group | the neigh-

bourhoods of the identity are the kernels of the

homomorphisms to its �nite dimensional quo-

tients. Give U the induced topology.

Denote the Lie algebras of S, G and U by s, g

and u. Then we have an exact sequence

0! u ! g! s ! 0:

The Lie algebras g and u are topological Lie

algebras | they inherit their topology from

those of G and U.

We can therefore de�ne the continuous coho-

mology groups

H�
cts(g) and H�

cts(u):
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6. Computation of Relative Completions

Let fV�g be a set of representatives of the iso-

morphism classes of irreducible representations

of S.

Theorem 1 If each H
j
cts(�; V�) is �nite dimen-

sional when j = 1;2, then

H1
cts(u) =

M
�
H1
cts(�; V�)
 V �

�

and there is a natural injection

H2
cts(u) ,!

M
�
H2
cts(�; V�)
 V �

�

To some extent, this reduces the computation

of relative completions to cohomology compu-

tations. Although this is usually not possible,

it is often easier than understanding the actual

group �.
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Recall: The exponential and logarithm map-

pings give a bijective correspondence between

a prounipotent group U and its Lie algebra u.

So there is no loss of information if we work

with the Lie algebra u of the prounipotent rad-

ical U.

Example 1: If we take S to be the trivial

group, G = U is just the standard unipotent

completion. One can show that if � is a �nitely

generated group, and if U is its unipotent com-

pletion over Q , then U 
Q Q ` is the unipotent

completion of its pro�nite and pro-` comple-

tions.

For example, suppose that F = hx1; : : : ; xni is

a free group on n generators. The Lie algebra

of its unipotent completion is the free Q -Lie

algebra on n-generators.

The completion of its pro-` (or pro�nite) com-

pletion �, has Lie algebra the completion of a

free Q `-Lie algebra with n generators.
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Example 2: Here S = G m, � = Z�` and � is

the inclusion Z�` ,! Q �` . Denote the nth power

of the standard representation of G m by Tn.

We have

H1
cts(Z

�
` ; T

n) =

8<
:
0 n 6= 0;

Q ` n = 0

and H2
cts(Z

�
` ; T

n) = 0 for all n. This can be

seen using the spectral sequence associated to

the extension

0! Z` ! Z�` ! (Z=`Z)� ! 1

when ` 6= 2, and its analogue when ` = 2.

It follows that U = G a and that the relative

completion of Z�` with respect to � is

G m � G a:

The homomorphism ~� is � on the �rst factor,

and

Z�`
projn
�! Z` ,! Q `

on the second.
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Example 3: Take S = G m,

� = G` = �1(SpecZ[1=`]) = Gal(Knr=Q )

and � to be the composite

G`
�`�! Z�` ,! Q �` ;

where �` is the cyclotomic character.

We skip this example for the time being as we

do not know

H
j
cts(G`; Q `(n))

for all n when j = 1;2. Note that the groups

that are most interesting are those when n � j,

which are known. Later we shall de�ne the

weighted completion, which is more relevant

to our problem and is computable for this ex-

ample.
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Example 4: Here S = Spg=Q `
, � is the pro�nite

completion of the mapping class group

�g = �0Di�
+F

where F is a compact oriented surface of genus

g.

Here the relative completion Gg is completely

known when g � 6. It is the Q `-points of the

corresponding relative completion of �g, which

is a proalgebraic Q -group:

Gg
�= Spg n Ug

where ug is the completion of the graded Lie

algebra

L(V )=(T)

where

V = �3H1(F)=H1(F)

and

T � L2(V ) = �2(V )

is the orthogonal complement of the part with

highest weight 2�2.
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7. Weighted Completion

There is a modi�ed version of relative comple-

tion which, in retrospect, is more natural.

The setup:

� � is a pro�nite group;

� S is a reductive algebraic group de�ned

over Q `;

� w : G m ! S is a central cocharacter of S;

� � : �! S(Q `) is a continuous, Zariski dense

homomorphism.
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Notation: Denote by Tn the 1-dimensional

representation of G m on which it acts via the

nth power of the standard character. Denote

the Tn isotypical component of a G m-module

V by Vn.

Negatively weighted extensions: If

1! U ! G! S ! 1

is an extension of Q `-groups, where U is unipo-

tent, then H1(U) is an S-module. It can be re-

garded as a G m-module via w, so we can write

H1(U) =
M

n2Z

H1(U)n:

We say that this extension is negatively weighted

if H1(U)n = 0 whenever n � 0.
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The de�nition: The weighted completion of

� with respect to � and w consists of:

� a pro-algebraic Q `-group G which is an ex-

tension of S by a prounipotent group U;

� a continuous homomorphism ~� : �! G(Q `)

which lifts �:

1 �! U(Q `) �! G(Q `) �! S(Q `) �! 1

~�

x???
x???�

� �

It is required to satisfy the following universal

mapping property:
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Given � : � ! G(Q `), where G is a negatively

weighted extension of S such that

�
�
�! G(Q `)

�

???y
???y

S(Q `) S(Q `)

commutes, then we have a unique homomor-

phism � : G ! G of Q `-groups such that:

�
~�
�! G(Q `) �! S(Q `)



 �

???y






� �!
�

G(Q `) �! S(Q `)

commutes.
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The weight �ltration:

If G is a negatively weighted extension of S,

then every G-module V has a natural weight

�ltration

� � � �Wn�1V �WnV �Wn+1V � � � �

It is constructed as follows:

Choose any lifting ~w : G m ! G of the central

cocharacter w : G m ! S. Now any G-module V

can be regarded as a G m-module via ~w, and can

thus be decomposed as a G m-module. De�ne

WmV =
M
n�m

Vn:

Naturality: For a �xed lift ~w, the weight �l-

tration is clearly preserved by every G-module

mapping f : V ! V 0.
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It is well de�ned:

1. First, �x a lift ~w, and use it to put a weight

�ltration on every G-module.

2. Using the adjoint action, put a weight �l-

tration on g and u. The facts that w is central

and the extension is negatively weighted imply

that

g =W0g and that u =W�1g:

3. It is not hard to see that W� behaves well

with respect to tensor products. This can be

used to show that the in�nitesimal action

g
 V ! V

preserves the weight �ltration.

4. Since u =W�1g, we have u �WnV �Wn�1V ,

which implies that g preserves W� and that it

acts trivially on GrW� V .
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5. Basic facts about the Levi decomposition

imply that any two lifts ~w are conjugate by an

element u of U . This implies that u carries

the weight �ltration of ~w onto that of u~wu�1.

Since U preserves the weight �ltration, W� is

independent of ~w.

Strictness: By �xing a lift ~w of w, it is clear

that every G-equivariant mapping f : V ! V 0 is

strict with respect to the weight �ltration and

that the functor

GrW�

is exact on the category of G-modules. It is

also clear that it behaves well with respect to

Hom and 
.
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8. Computation of Weighted Completions

Let fV�g be a set of representatives of the iso-
morphism classes of irreducible representations
of S. Schur's Lemma implies that for each �,
there is an integer n(�) such G m acts on V� via
w by the n(�)th power of the standard charac-
ter.

Theorem 2 If each H
j
cts(�; V�) is �nite dimen-

sional when j = 1;2 and n(�) < 0, then

H1
cts(u) =

M

f�:n(�)��1g

H1
cts(�; V�)
 V �

�

and there is a natural injection

H2
cts(u) ,!

M

f�:n(�)��2g

H2
cts(�; V�)
 V �

�

We shall need the stronger (and true) state-
ment: If H1

cts(�; V�) = 0 when �d < n(�) < 0,

then

H2
cts(u) �

M

f�:n(�)��2dg

H2
cts(�; V�)
 V �

�
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Example 1: Take S = G m, w : G m ! G m to

be the (�2)th power of the standard character,

� = Z�` and � to be the inclusion Z�` ,! Q �` .

As before, we have H1
cts(Z

�
` ; T

n) = 0 except

when n = 0, and H2
cts(Z

�
` ; T

n) = 0 for all n. It

follows from this that U is trivial and that the

weighted completion of Z�` with respect to �

and w is just G m.

Why take w = ( )�2 ?

We want representation theoretic weights to

equal Galois theoretic weights. The fact that

�`(Fp) = p

then forces us to de�ne w = ( )�2.

29



Example 2: This example is key. Here we

take ` 6= 2, S = G m, w : G m ! G m to be the

(�2)th power of the standard character,

� = G` = �1(SpecZ[1=`])

and � to be the composite

G`
�`! Z�` ,! Q �` :

where �` is the cyclotomic character. We shall

denote the weighted completion of G` with re-

spect to �` and w by A`, and its unipotent

radical by K`:

1! K` ! A` ! G m ! 1:

Their Lie algebras will be denoted by a` and k`:

0! k` ! a` ! Q ` ! 0:
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Computation of k`: The pullback of T
�n along

w is Q `(n). Thanks to Soul�e, we know that

when n � 1 and ` 6= 2,

H1
cts(G`; Q `(n)) =

8<
:
Q ` n= 2m+1;m � 0;

0 otherwise,

and that H2
cts(G`; Q `(n)) vanishes when n � 2.

This implies that

H1
cts(k`) =

M
n>0

H1
cts(G`; Q `(n))
 Q `(�n)

=
M
m�0

Q `(�2m� 1):

Taking duals, this implies that

H1(k`) =
Y
n>0

H1
cts(G`; Q `(n))

� 
 Q `(n)

=
Y
m�0

Q `(2m+1):

The vanishing of H2
cts(G`; Q `(n)) for all n � 2

implies that H2
cts(k`) = 0, and that k` is free.
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Theorem 3 If ` 6= 2, the Lie algebra k` is a

free pro-nilpotent Lie algebra over Q `. It is

(un-naturally) isomorphic to the completion of

its associated graded

GrW� k` :=
M
n>0

GrW�2n k`;

which is a free Lie algebra:

GrW� k` = L
�
GrW� H1(k`)

�
= L

� M
m�0

Q `(2m+1)
�
:
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9. Philosophy

Belief: (due to Deligne and/or Beilinson?) To

each scheme X, there should be a proalgebraic

Q -group TX which is an extension of G m by a

prounipotent group. Denote its Lie algebra

by tX. The one-dimensional TX-module cor-

responding to the nth power of the standard

representation of G m will be denoted by Q (n).
The Lie algebra tX should have the property

that

Hm
cts(tX ; Q (n))

�= K2n�m(X)
(n)

:=

8><
>:

the weight n part of

K2n�m(X) 
 Q under

the Adams operations

9>=
>;

Heuristic: The category of representations of

TX should be equivalent to the category T (X)
of mixed Tate motives over X, and so

Hm(tX ; Q (n))
�= ExtmT (X)(Q X ; Q X(n))

should hold. Motivic philosophy says the RHS

is the weight n part of K2n�m(X).
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Is a` = tSpecZ[1=`] 
Q Q ` ?

An easy spectral sequence argument shows that

Hm
cts(a`; Q `(n)) =

8>><
>>:

Q ` m = n= 0;

Q ` m = 1; n � 1 odd;

0 otherwise.

Computations of Borel show that

Km(Z[1=`]) =

8>><
>>:

Q m = 0;

Q m � 1 mod 4;

0 otherwise

By results of Soul�e, Beilinson and Gillet, we
have

K4n+1(Z[1=`]) 
 Q ` = K4n+1(Z[1=`])
(2n+1)
Q `

�
�!

ch2n+1
H1
cts(G`; Q `(2n+1)):

Thus the regulator induces an isomorphism

Hm
cts(a`; Q `(n))

�= K2n�m(X)
(n) 
Z Q `

for all m and n, and is thus a candidate for the
Q `-form of the motivic Lie algebra of SpecZ[1=`].
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