
p-adic Representations of the K-rational
Geometric Fundamental Group

1. Introduction

Let K be a number �eld (or any �n. gen. �eld)

C=K a (smooth: : :) curve of genus g

F = �(C) its function �eld () F=K regular)

P 2 C(K) a K-rational point

De�nition Let Fnr;P be the �eld generated by the

�nite unrami�ed Galois extensions F 0=F such that
P splits completely in F 0. Then its Galois group

�1(C;P ) = Gal(Fnr;P=F )

is called the K-rational
geometric fundamental
group of C with base
point P .
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2. Some Results about �1(C;P )

{joint work with G. Frey and H. V�olklein

Note: g = 0 ) �1(C;P ) = �1(C �K; P ) = f1g.
Theorem 1 (Merel) There is cK such that for all el-

liptic curves E=K and P 2 E(K) we have

j�1(E;P )j � cK :

Mazur: cQ = 12.

Proposition 1: �1(C;P )ab is always �nite.

Theorem 2: Let K � Q (i) (or K � F p(i)). Then
for every g � 3 there exist (many!) curves C=K of
genus g with a point P 2 C(K) such that �1(C;P )
is in�nite.

Remark: The above situation for�1(C;P )is very sim-
ilar to that of the fundamental group �1(K) of a
number �eld K:

�1(K) = f1g for some K's (K = Q ; Q (i); etc.)

j�1(K)abj = h(K) is always �nite.

�1(K) is often in�nite (! Class �eld towers: e.g.
K = Q(�30030:)
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3. p-adic Representations

So far, the theory for �1(C;P ) and for �1(K) seem
to be very similar. (! M. Rosen (Hilbert class �elds).)
However, this picture changes if we look at p-adic repre-
sentations, particularly in view of the Fontaine-Mazur
Conjecture:

Fontaine-Mazur Conjecture (1993): Any p-adic
representation

� : �1(K)! GLn(Q p)

factors through a �nite quotient group.

Equivalently:

Any quotient group of �1(K), which is a p-adic an-
alytic group, is �nite.

Remark: The above conjecture is actually only a spe-
cial case of a more general conjecture (also due to
Fontaine and Mazur):

The Main F-M Conjecture: Every irreducible p-
adic representation onGK which is potentially semi-
stable (at all vjp) comes from algebraic geometry,
i.e. is isomorphic to a subquotient of an �etale coho-
mology group Hq(X

K
; Q p(r)), for some projective

smooth variety X=K.
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The analogues of these conjectures for �1(C;P ) are
false, as the following theorem and its corollary show1:

Theorem 20: Let b 2 K�; b4 6= �1, and put c = 1+b4

and a = 2b2
c . (As before,

p�1 2 K). Let C=K be
the curve de�ned by the equation

s4 = ct(t2 � 1)(t� a)g(t);

where g(t) 2 K[t] is any polynomial with

g(a) = 1 and g(0)g(1)g(�1) 6= 0;

and put P = (a; 0) 2 C(K). Then the K-rational
geometric fundamental group �1(C;P ) is in�nite;
more precisely, for every prime p � 5 (mod 12)
(with p 6= char(K)), the group PSL3(Zp) is a factor
of �1(C;P ), i.e. there is a surjection

� : �1(C;P )! PSL3(Zp):

Corollary. In the above situation, let Cp denote the
�nite cover of C corresponding to a pro-p-Sylow sub-
group Up of PSL3(Zp). Then for any point P 0 over
P , the fundametal group �1(Cp; P

0) has a quotient
which is isomorphic to the p-adic analytic group Up.

1This also shows that J. Holden's generalization of the Fontaine-Mazur Conjecture to

curves over �nite �elds is false as well.
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4. The Basic Construction: Motivation

Basic Idea: Construct unrami�ed extensions of F via
(towers of) torsion points of abelian varietiesA=F =
�(C), i.e. look at the p-adic Galois representation

�A;p : GF = Gal(F=F )! GL(Tp(A)) ' GL2g(Zp):

Remark: In the language of Fontaine-Mazur this means
that we are looking at p-adic representations that are
subquotients of H1(X

F
; Q p(1)), where X is some

curve (or abelian variety) over F .

Want: A to have good reduction everywhere over C.

Criterion of Neron-Ogg-Shafarevich:

A=F has good reduction everywhere

, F (A[m]) is unrami�ed over F;8m � 1

, F (Tp(A)) =
S
F (A[pn]) is unrami�ed over F;8p.

Assume this from now on.

Unfortunately: F (A[m]) 6� Fnr;P for m >> 0, so
in particular F (Tp(A)) 6� Fnr;P , fo all p.

For: �m 2 F (A[m]);8m but �m =2 K (hence �m =2
Fnr;P ), for m >> 0.
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1st Modi�cation: In place of �A;p, consider instead
its associated projective representation:

~�A;p : GF ! PGL(Tp(A)) = Aut(P(Tp(A)));

i.e. consider the sub�eld

F (P(Tp(A))) = F (Tp(A))
Z(GL(Tp(A)));

of F (Tp(A)) which is �xed by the centre Z of the
group GL(Tp(A)).

Then we have: F (P (Tp(A))) � Fnr;P
def, P 2 C(K) splits completely in F (P (Tp(A)))

, GK operates centrally (diagonally) on Tp(AP ),
Tate, EndK(AP )
 Q p = M2g(Q p);

where AP denotes the reduction of A at P .

Note: Here we have used the Tate Conjecture for en-
domorphisms of abelian varieties (which was proved
by G. Faltings).

However: The theory of abelian varieties shows that
this is impossible (in characteristic 0); i.e. there is
no abelian variety of dimension g � 1 whose endo-
morphism ring is a full 2g � 2g matrix algebra.



7

2nd Modi�cation: Look for Zp[GF ]-decompositions:

Tp(A) =
rM

i=1

Si;(1)

and let Si = image of Si in Tp(AP ).

Then: F (P (Si)) � Fnr;P , for all i

, GK operates centrally on each Si
Tate) AP is of CM-Type.

Remark: If we assume the existence of a decomposi-
tion (1) and require the CM-type of AP to be com-
patible with the Si, then the converse to the last
implication is also true.

Proposition: Let A=F be an abelian variety with
good reduction everywhere. If p is a prime such
that we have a decomposition (1) such that GK acts
centrally on each Si � Tp(AP ), then each projective
p-adic subrepresentation

~�Si : GF ! PGL(Si) = Aut(P(Si))

of ~�A;p factors over �1(C;P ), i.e. induces a homo-
morphism

~�Si : �1(C;P )! PGL(Si) = Aut(P(Si)):
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5. The Basic Construction: Some Details

Aim: For F = K(t; s) and P as in Theorem 20, con-
struct an abelian variety A=F satisfying the hy-
potheses of the previous proposition.

Consider: the cyclic covering � : X ! P1F de�ned
by the equation

y4 = x(x2 � 1)(x� a)3(x� t)2:

Then: 0)X has genus 4, 9� 2 Aut(X) of order 4, and
� factors over the elliptic curve E = X=h�2i.
1) The Jacobian JX � E � A, where A = Jnew is
an abelian subvariety of JX of dimension 3.

2) � acts on A and hence on Tp(A), and if p �
1 (mod 4), then we have the GF -decomposition into
�-eigenspaces

Tp(A) = S1 � S2; where dimSi = 3:

3) A=F has good reduction everywhere.

4) ~�Si : GF ! PGL3(Zp) is surjective if p � 5 (12).

5) AP � E1 � E1 � E1, where E1=K is an elliptic
curve with CM by Q (i), so ~�Si factors over �1(C;P ).
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Proof Sketch: 0) - 2) Easy.

3) Note �rst thatX;�;A etc. are de�ned over F0 :=
K(t) � F . By V�olklein's theory of Thompson tu-
ples, the rami�cation structure of F0(P (Si[p]))=F0
can be described precisely (for all p � 1 (4)), and so
it follows from the Serre{Tate criterion that A has
potentially good reduction. By analyzing the Neron
model of JX more closely, it follows that A already
has good reduction over F .

4) V�olklein's theory of Thompson tuples shows that
Gal(F (P (Si[p]))=F ) ' PGL3(p). By an argument
due to Serre, it follows that ~�Si is surjective.

5) Here we work out the structure of the �bre CP
at P of the minimal model of C in some detail. It
is here that the judicious choice of c and a become
important.

Remark:Most of the above program (i.e. steps 0)-
4)) can be generalized to (almost arbitrary) cyclic
coverings � : X ! P1

K(t). In this case one works

with what we call the new part JnewX of the Jacobian
JX of X , i.e. the part of JX that is orthogonal to
the Jacobians of proper subcovers of �.
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Reference: G. Frey, E. Kani, H. V�olklein, Curves with
in�niteK-rational geometric fundamental group. In:
Aspects of Galois Theory (H. V�olklein et al., eds.),
LMS Lecture Notes 256 (1999), 85{118.


