p-adic Representations of the K-rational Geometric Fundamental Group

1. Introduction

Let K be a number field (or any fin. gen. field) C / K a (smooth. . .) curve of genus g $F=\kappa(C)$ its function field $(\Rightarrow F / K$ regular $)$ $P \in C(K)$ a K-rational point
Definition Let $F_{n r, P}$ be the field generated by the finite unramified Galois extensions F^{\prime} / F such that P splits completely in F^{\prime}. Then its Galois group

$$
\pi_{1}(C, P)=\operatorname{Gal}\left(F_{n r, P} / F\right)
$$

is called the K-rational geometric fundamental group of C with base point P.
$\rightarrow Y$. Ihara

2. Some Results about $\pi_{1}(C, P)$
-joint work with G. Frey and H. Völklein
Note: $g=0 \Rightarrow \pi_{1}(C, P)=\pi_{1}\left(C_{\bar{K}}, P\right)=\{1\}$.
Theorem 1 (Merel) There is c_{K} such that for all elliptic curves E / K and $P \in E(K)$ we have

$$
\left|\pi_{1}(E, P)\right| \leq c_{K} .
$$

Mazur: $c_{\mathbb{Q}}=12$.
Proposition 1: $\pi_{1}(C, P)^{a b}$ is always finite.
Theorem 2: Let $K \supset \mathbb{Q}(i)\left(\right.$ or $\left.K \supset \mathbb{F}_{p}(i)\right)$. Then for every $g \geq 3$ there exist (many!) curves C / K of genus g with a point $P \in C(K)$ such that $\pi_{1}(C, P)$ is infinite.

Remark: The above situation for $\pi_{1}(C, P)$ is very similar to that of the fundamental group $\pi_{1}(K)$ of a number field K :
$\pi_{1}(K)=\{1\}$ for some K 's $(K=\mathbb{Q}, \mathbb{Q}(i)$, etc. $)$
$\left|\pi_{1}(K)^{a b}\right|=h(K)$ is always finite.
$\pi_{1}(K)$ is often infinite $(\rightarrow$ Class field towers: e.g. $K=Q(\Leftrightarrow 30030$.

3. p-adic Representations

So far, the theory for $\pi_{1}(C, P)$ and for $\pi_{1}(K)$
seem to be very similar. (\rightarrow M. Rosen (Hilbert class fields).) However, this picture changes if we look at p-adic representations, particularly in view of the Fontaine-Mazur Conjecture:
Fontaine-Mazur Conjecture (1993): Any p-adic representation

$$
\rho: \pi_{1}(K) \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{p}\right)
$$

factors through a finite quotient group.

Equivalently:

Any quotient group of $\pi_{1}(K)$, which is a p-adic analytic group, is finite.
Remark: The above conjecture is actually only a special case of a more general conjecture (also due to Fontaine and Mazur):
The Main F-M Conjecture: Every irreducible padic representation on G_{K} which is potentially semistable (at all $v \mid p$) comes from algebraic geometry, i.e. is isomorphic to a subquotient of an étale cohomology group $H^{q}\left(X_{\bar{K}}, \mathbb{Q}_{p}(r)\right)$, for some projective smooth variety X / K.

The analogues of these conjectures for $\pi_{1}(C, P)$ are false, as the following theorem and its corollary show ${ }^{1}$: Theorem 2': Let $b \in K^{\times}, b^{4} \neq \pm 1$, and put $c=1+b^{4}$ and $a=\frac{2 b^{2}}{c}$. (As before, $\sqrt{\Leftrightarrow 1} \in K$). Let C / K be the curve defined by the equation

$$
s^{4}=c t\left(t^{2} \Leftrightarrow 1\right)(t \Leftrightarrow a) g(t),
$$

where $g(t) \in K[t]$ is any polynomial with

$$
g(a)=1 \quad \text { and } \quad g(0) g(1) g(\Leftrightarrow 1) \neq 0,
$$

and put $P=(a, 0) \in C(K)$. Then the K-rational geometric fundamental group $\pi_{1}(C, P)$ is infinite; more precisely, for every prime $p \equiv 5(\bmod 12)$ (with $p \neq \operatorname{char}(K)$), the group $\operatorname{PSL}_{3}\left(\mathbb{Z}_{p}\right)$ is a factor of $\pi_{1}(C, P)$, i.e. there is a surjection

$$
\rho: \pi_{1}(C, P) \rightarrow \operatorname{PSL}_{3}\left(\mathbb{Z}_{p}\right)
$$

Corollary. In the above situation, let C_{p} denote the finite cover of C corresponding to a pro- p-Sylow subgroup U_{p} of $\mathrm{PSL}_{3}\left(\mathbb{Z}_{p}\right)$. Then for any point P^{\prime} over P, the fundametal group $\pi_{1}\left(C_{p}, P^{\prime}\right)$ has a quotient which is isomorphic to the p-adic analytic group U_{p}.

[^0]
4. The Basic Construction: Motivation

Basic Idea: Construct unramified extensions of F via (towers of) torsion points of abelian varieties $A / F=$ $\kappa(C)$, i.e. look at the p-adic Galois representation $\rho_{A, p}: G_{F}=\operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}\left(T_{p}(A)\right) \simeq \mathrm{GL}_{2 g}\left(\mathbb{Z}_{p}\right)$.

Remark: In the language of Fontaine-Mazur this means that we are looking at p-adic representations that are subquotients of $H^{1}\left(X_{\bar{F}}, \mathbb{Q}_{p}(1)\right)$, where X is some curve (or abelian variety) over F.
Want: A to have good reduction everywhere over C.
Criterion of Neron-Ogg-Shafarevich:
A / F has good reduction everywhere
$\Leftrightarrow F(A[m])$ is unramified over $F, \forall m \geq 1$
$\Leftrightarrow F\left(T_{p}(A)\right)=\bigcup F\left(A\left[p^{n}\right]\right)$ is unramified over $F, \forall p$.

Assume this from now on.

Unfortunately: $F(A[m]) \not \subset F_{n r, P}$ for $m \gg 0$, so in particular $F\left(T_{p}(A)\right) \not \subset F_{n r, P}$, fo all p.
For: $\zeta_{m} \in F(A[m]), \forall m$ but $\zeta_{m} \notin K$ (hence $\zeta_{m} \notin$ $F_{n r, P}$, for $m \gg 0$.
$1^{\text {st }}$ Modification: In place of $\rho_{A, p}$, consider instead its associated projective representation:

$$
\tilde{\rho}_{A, p}: G_{F} \rightarrow \operatorname{PGL}\left(T_{p}(A)\right)=\operatorname{Aut}\left(\mathbb{P}\left(T_{p}(A)\right)\right)
$$

i.e. consider the subfield

$$
F\left(\mathbb{P}\left(T_{p}(A)\right)\right)=F\left(T_{p}(A)\right)^{Z\left(G L\left(T_{p}(A)\right)\right)}
$$

of $F\left(T_{p}(A)\right)$ which is fixed by the centre Z of the group $\mathrm{GL}\left(T_{p}(A)\right)$.

Then we have: $F\left(\mathbb{P}\left(T_{p}(A)\right)\right) \subset F_{n r, P}$
$\stackrel{\text { def }}{\Leftrightarrow} P \in C(K)$ splits completely in $F\left(\mathbb{P}\left(T_{p}(A)\right)\right)$
$\Leftrightarrow G_{K}$ operates centrally (diagonally) on $T_{p}\left(\bar{A}_{P}\right)$, $\stackrel{\text { Tate }}{\Leftrightarrow} \operatorname{End}_{K}\left(\bar{A}_{P}\right) \otimes \mathbb{Q}_{p}=M_{2 g}\left(\mathbb{Q}_{p}\right)$,
where \bar{A}_{P} denotes the reduction of A at P.
Note: Here we have used the Tate Conjecture for endomorphisms of abelian varieties (which was proved by G. Faltings).
However: The theory of abelian varieties shows that this is impossible (in characteristic 0); i.e. there is no abelian variety of dimension $g \geq 1$ whose endomorphism ring is a full $2 g \times 2 g$ matrix algebra.
$2^{\text {nd }}$ Modification: Look for $\mathbb{Z}_{p}\left[G_{F}\right]$-decompositions:
(1)

$$
T_{p}(A)=\bigoplus_{i=1}^{r} S_{i}
$$

and let $\bar{S}_{i}=$ image of S_{i} in $T_{p}\left(\bar{A}_{P}\right)$.
Then: $F\left(\mathbb{P}\left(S_{i}\right)\right) \subset F_{n r, P}$, for all i
$\Leftrightarrow G_{K}$ operates centrally on each \bar{S}_{i}
$\stackrel{\text { Tate }}{\Rightarrow} \bar{A}_{P}$ is of CM-Type.
Remark: If we assume the existence of a decomposition (1) and require the CM-type of \bar{A}_{P} to be compatible with the \bar{S}_{i}, then the converse to the last implication is also true.
Proposition: Let A / F be an abelian variety with good reduction everywhere. If p is a prime such that we have a decomposition (1) such that G_{K} acts centrally on each $\bar{S}_{i} \subset T_{p}\left(\bar{A}_{P}\right)$, then each projective p-adic subrepresentation

$$
\tilde{\rho}_{S_{i}}: G_{F} \rightarrow \operatorname{PGL}\left(S_{i}\right)=\operatorname{Aut}\left(\mathbb{P}\left(S_{i}\right)\right)
$$

of $\tilde{\rho}_{A, p}$ factors over $\pi_{1}(C, P)$, i.e. induces a homomorphism

$$
\tilde{\rho}_{S_{i}}: \pi_{1}(C, P) \rightarrow \operatorname{PGL}\left(S_{i}\right)=\operatorname{Aut}\left(\mathbb{P}\left(S_{i}\right)\right) .
$$

5. The Basic Construction: Some Details

Aim: For $F=K(t, s)$ and P as in Theorem 2^{\prime}, construct an abelian variety A / F satisfying the hypotheses of the previous proposition.
Consider: the cyclic covering $\phi: X \rightarrow \mathbb{P}_{F}^{1}$ defined by the equation

$$
y^{4}=x\left(x^{2} \Leftrightarrow 1\right)(x \Leftrightarrow a)^{3}(x \Leftrightarrow t)^{2} .
$$

Then: 0) X has genus $4, \exists \sigma \in \operatorname{Aut}(X)$ of order 4 , and ϕ factors over the elliptic curve $E=X /\left\langle\sigma^{2}\right\rangle$.

1) The Jacobian $J_{X} \sim E \times A$, where $A=J^{\text {new }}$ is an abelian subvariety of J_{X} of dimension 3 .
2) σ acts on A and hence on $T_{p}(A)$, and if $p \equiv$ $1(\bmod 4)$, then we have the G_{F}-decomposition into σ-eigenspaces

$$
T_{p}(A)=S_{1} \oplus S_{2}, \quad \text { where } \operatorname{dim} S_{i}=3
$$

3) A / F has good reduction everywhere.
4) $\tilde{\rho}_{S_{i}}: G_{F} \rightarrow \mathrm{PGL}_{3}\left(\mathbb{Z}_{p}\right)$ is surjective if $p \equiv 5$ (12).
5) $\bar{A}_{P} \sim E_{1} \times E_{1} \times E_{1}$, where E_{1} / K is an elliptic curve with CM by $\mathbb{Q}(i)$, so $\tilde{\rho}_{S_{i}}$ factors over $\pi_{1}(C, P)$.

Proof Sketch: 0) - 2) Easy.
3) Note first that X, ϕ, A etc. are defined over $F_{0}:=$ $K(t) \subset F$. By Völklein's theory of Thompson tuples, the ramification structure of $F_{0}\left(\mathbb{P}\left(S_{i}[p]\right)\right) / F_{0}$ can be described precisely (for all $p \equiv 1$ (4)), and so it follows from the Serre-Tate criterion that A has potentially good reduction. By analyzing the Neron model of J_{X} more closely, it follows that A already has good reduction over F.
4) Völklein's theory of Thompson tuples shows that $\operatorname{Gal}\left(F\left(\mathbb{P}\left(S_{i}[p]\right)\right) / F\right) \simeq \operatorname{PGL}_{3}(p)$. By an argument due to Serre, it follows that $\tilde{\rho}_{S_{i}}$ is surjective.
5) Here we work out the structure of the fibre C_{P} at P of the minimal model of C in some detail. It is here that the judicious choice of c and a become important.
Remark: Most of the above program (i.e. steps 0)4)) can be generalized to (almost arbitrary) cyclic coverings $\phi: X \rightarrow \mathbb{P}_{K(t)}^{1}$. In this case one works with what we call the new part $J_{X}^{\text {new }}$ of the Jacobian J_{X} of X, i.e. the part of J_{X} that is orthogonal to the Jacobians of proper subcovers of ϕ.

Reference: G. Frey, E. Kani, H. Völklein, Curves with infinite K-rational geometric fundamental group. In: Aspects of Galois Theory (H. Völklein et al., eds.), LMS Lecture Notes 256 (1999), 85-118.

[^0]: ${ }^{1}$ This also shows that J. Holden's generalization of the Fontaine-Mazur Conjecture to curves over finite fields is false as well.

