p-adic Representations of the K-rational
Geometric Fundamental Group

1. Introduction

Let K be a number field (or any fin. gen. field)
C'/K a (smooth. . .) curve of genus g
F = k(C) its function field (= F/K regular)
P € C(K) a K-rational point
Definition Let Fj,. p be the field generated by the

finite unramified Galois extensions F’/F such that
P splits completely in F'. Then its Galois group

m1(C, P) = Gal(Fﬁjp/F)

1s called the K-rational I
geometric fundamental

group of ' with base "
point P. FpK §m(Cy,P)
—Y. Ihara G/ —
Fnr,P K
m(C, P){
I3 K




2. Some Results about 7,(C, P)

—joint work with &, Frey and H. Volklein
Note: g =0 = m(C, P) =m(Cg, P) = {1}.
Theorem 1 (Merel) There is ¢y such that for all el-
liptic curves E/K and P € E(K) we have

T (E, P)| < cp.
Mazur: cQ = 12.

Proposition 1: 7;(C, P)ab is always finite.

Theorem 2: Let K D Q(i) (or K D Fy(¢)). Then
for every g > 3 there exist (many!) curves C'/K of
genus g with a point P € C'(K) such that m(C, P)
is infinite.

Remark: The above situation form(C, P)is very sim-

ilar to that of the fundamental group m(K) of a
number field K:

m(K) = {1} for some K'’s (K = Q,Q(7), etc.)
| (K)| = h(K) is always finite.

m1(K) is often infinite (— Class field towers: e.g.
K = Q(<«30030.)



3. p-adic Representations

So far, the theory for m(C, P) and for 7(K) seem
to be very similar. (— M. Rosen (Hilbert class fields).)
However, this picture changes if we look at p-adic repre-
sentations, particularly in view of the Fontaine-Mazur
Conjecture:

Fontaine-Mazur Conjecture (1993): Any p-adic
representation

p:m(K)— GLn(@p)
factors through a finite quotient group.
Equivalently:

Any quotient group of m(K), which is a p-adic an-
alytic group, is finite.

Remark: The above conjecture 1s actually only a spe-
cial case of a more general conjecture (also due to
Fontaine and Mazur):

The Main F-M Conjecture: Every irreducible p-
adic representation on GG i which is potentially semi-
stable (at all v|p) comes from algebraic geometry,
1.e. is isomorphic to a subquotient of an étale coho-
mology group HY(X+z, Q,(r)), for some projective
smooth variety X/ K.
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The analogues of these conjectures for m(C, P) are
false, as the following theorem and its corollary show!:

Theorem 2": Letb € K*,b* # £1, and put ¢ = 140*
and a = 2—22 (As before, /<1 € K). Let C/K be
the curve defined by the equation

st = ct(t? 1) (t <a)g(t),
where g(t) € K|[t] is any polynomial with

gla) =1 and g(0)g(1)g(=L) # 0,
and put P = (a,0) € C(K). Then the K-rational
geometric fundamental group m(C, P) is infinite;
more precisely, for every prime p = 5 (mod 12)
(with p # char(K)), the group PSLs(Zy) is a factor
of m(C, P), i.e. there is a surjection

p: m(C, P) — PSL3(Zy).

Corollary. In the above situation, let C), denote the
finite cover of C' corresponding to a pro-p-Sylow sub-
group Uy, of PSL3(Zy). Then for any point P’ over
P, the fundametal group m(C), P’) has a quotient
which 1s 1somorphic to the p-adic analytic group U).

'This also shows that J. Holden’s generalization of the Fontaine-Mazur Conjecture to
curves over finite fields is false as well.



4. The Basic Construction: Motivation

Basic Idea: Construct unramified extensions of F' via
(towers of ) torsion points of abelian varieties A/ F =
k(C'), i.e. look at the p-adic Galois representation

o4y Gp = Gal(F/F) = GL(T)(A)) ~ GLyy(Z,).

Remark: In the language of Fontaine-Mazur this means
that we are looking at p-adic representations that are

subquotients of H'(X,Q,(1)), where X is some
curve (or abelian variety) over F.

Want: A to have good reduction everywhere over C.

Criterion of Neron-Ogg-Shafarevich:
A/F has good reduction everywhere
& F(Alm]) is unramified over F,Vm > 1
& F(Th(A)) = F(A[]p"]) is unramified over F, Vp.

Assume this from now on.
Unfortunately: F(A[m]) ¢ F),, p for m >> 0, so
in particular F'(Tp(A)) & F, p, fo all p.

For: Cm € F(A[m]),Vm but ¢ ¢ K (hence ¢, &
Eyy p), for m >> 0.
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15" Modification: In place of p A p» consider instead
1ts associated projective representation:

pAp: Gr = PGL(TH(A)) = Aut(P(Tp(A))),
i.e. consider the subfield
F(B(Ty(A))) = F(Ty(4)) /AN,
of F'(Tp(A)) which is fixed by the centre Z of the
group GL(Tp(A)).
Then we have: F(P(Tp(A))) C Fy, p

& P e O(K) splits completely in F(P(T p(A)))
< (G operates centrally (diagonally) on Tp(z ),

Tate EndK<AP) & Qp MQQ(Qp)a
where Ap denotes the reduction of A at P.

Note: Here we have used the Tate Conjecture for en-
domorphisms of abelian varieties (which was proved

by G. Faltings).

However: The theory of abelian varieties shows that
this is impossible (in characteristic 0); i.e. there is
no abelian variety of dimension g > 1 whose endo-
morphism ring is a full 2¢g X 2¢g matrix algebra.
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274 Modification: Look for Zy[G p]-decompositions:
r
1=1

and let S; = image of S; in Tp(Ap).
Then: F(P(S;)) C F, p, for all i

& G operates centrally on each S;

2 A b is of CM-Type.

Remark: If we assume the existence of a decomposi-
tion (1) and require the CM-type of Ap to be com-
patible with the S;, then the converse to the last
implication is also true.

Proposition: Let A/F be an abelian variety with
ocood reduction everywhere. If p is a prime such
that we have a decomposition (1) such that G'g acts
centrally on each S; C Tp(Ap), then each projective
p-adic subrepresentation

ﬁs@. . G — PGL(S;) = Aut(IP(S;))
of pgp factors over mi(C, P), i.e. induces a homo-
morphism

ﬁs@. . m1(C, P) — PGL(S;) = Aut(IP(.S;)).



5. The Basic Construction: Some Details

Aim: For F = K(t,s) and P as in Theorem 2/, con-
struct an abelian variety A/F satisfying the hy-
potheses of the previous proposition.

Consider: the cyclic covering ¢ : X — IP’}17 defined
by the equation

yt = z(z? 1) (z ea)(z o).
Then: 0) X has genus 4, do € Aut(X) of order 4, and

¢ factors over the elliptic curve F = X/{(0?).

1) The Jacobian Jxy ~ E x A, where A = J"" is
an abelian subvariety of Jx of dimension 3.

2) o acts on A and hence on Tp(A), and if p =
1 (mod 4), then we have the G p-decomposition into
g-elgenspaces

Tp(A) =51 @Sy, where dim S; = 3.

3) A/F has good reduction everywhere.

4) ps, : Gp — PGL3(Zp) is surjective if p = 5 (12).
5) Ap ~ By x By x By, where E1/K is an elliptic
curve with CMV by Q(z), so pg; factors over 71 (C, P).



Proof Sketch: 0) - 2) Easy.

3) Note first that X, ¢, A etc. are defined over Fpy :=
K(t) C F. By Volklein’s theory of Thompson tu-
ples, the ramification structure of Fy(IP(S;(pl))/Foy
can be described precisely (for all p =1 (4)), and so
it follows from the Serre—Tate criterion that A has
potentially good reduction. By analyzing the Neron
model of Jy more closely, it follows that A already
has good reduction over F'.

4) Volklein’s theory of Thompson tuples shows that
Gal(F(P(S;|p]))/F) ~ PGL3(p). By an argument
due to Serre, 1t follows that pg. is surjective.

5) Here we work out the structure of the fibre C'p
at P of the minimal model of C' in some detail. It
is here that the judicious choice of ¢ and a become
important.

Remark: Most of the above program (i.e. steps 0)-
4)) can be generalized to (almost arbitrary) cyclic
coverings ¢ : X — IP’}Q ) In this case one works

with what we call the new part Jy“* of the Jacobian
Jx ot X, i.e. the part of Jx that is orthogonal to
the Jacobians of proper subcovers of ¢.
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Reference: G. Frey, E. Kani, H. Volklein, Curves with
infinite K-rational geometric fundamental group. In:
Aspects of Galois Theory (H. Volklein et al.; eds.),
LLMS Lecture Notes 256 (1999), 85-118.



