Weighted Completion of Galois Groups and the Deligne-Ihara Conjecture* Makoto Matsumoto, Kyushu University (*)joint work with Richard Hain

1. Deligne-Ihara Conjecture

Ihara stated a conjecture in

"Galois group over \mathbb{Q} " Publ. MSRI 16 (1989), attributed to Deligne.

Conjecture (Deligne-Ihara)

The Lie algebra

$$\operatorname{\mathsf{Gr}}^{Ih} G_{\mathbb{Q}} \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$$

has the following properties.

- (G) as \mathbb{Q}_{ℓ} -Lie algebra, it has a generating set consisting of one element in each odd grade ≥ 3 .
- (F) these are free generators.

We shall prove (G) by weighted completion of Galois groups. The proof suggests the reason of this conjecture. Notation:

- $\mathbb{P}^1_{01\infty}$: the projective line over \mathbb{Q} minus three points.
- π₁ =< x, y >: its topological fundamental group (free with two generators),
- π_1 : its profinite completion,
- π_1^{ℓ} : its pro- ℓ completion, (ℓ : a prime)

•
$$G_{\mathbb{Q}} := \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}).$$

We have the pro-*l* nonabelian Galois representation

$$\rho^{\ell}: G_{\mathbb{Q}} \to \operatorname{Out} \pi_1^{\widehat{}} \to \operatorname{Out} \pi_1^{\ell}.$$

Let $L^m \pi_1^\ell$ be the lower central series $L^1 \pi_1^\ell := \pi_1^\ell$ $\supset L^2 \pi_1^\ell := [\pi_1^\ell, \pi_1^\ell]$ $\supset L^3 \pi_1^\ell := [\pi_1^\ell, [\pi_1^\ell, \pi_1^\ell]]$ Then, induce a descending filtration on $G_{\mathbb{Q}}$ by $Ih^m(G_{\mathbb{Q}}) := \ker[G_{\mathbb{Q}} \to \operatorname{Out}(\pi_1^{\ell}/L^{m+1}\pi_1^{\ell})].$ By group theory, $Ih^m(m \ge 1)$ is a central filtration, and

$$\operatorname{Gr}_{m}^{Ih} G_{\mathbb{Q}} := Ih^{m} G_{\mathbb{Q}}/Ih^{m+1} G_{\mathbb{Q}}$$

is abelian and a free $\mathbb{Z}_\ell\text{-module}$ of finite rank.

The direct sum of $\mathbb{Z}_\ell\text{-modules}$

$$\operatorname{Gr}^{Ih} G_{\mathbb{Q}} := \bigoplus_{m \ge 1} \operatorname{Gr}_{m}^{Ih} G_{\mathbb{Q}}$$

has a graded Lie algebra structure:

$$s_m \in Ih^m(G_{\mathbb{Q}}), s_n \in Ih^n(G_{\mathbb{Q}})$$

$$\mapsto s_m s_n s_m^{-1} s_n^{-1} \in Ih^{n+m}(G_{\mathbb{Q}})$$

gives Lie product

$$\operatorname{Gr}_{m}^{Ih} G_{\mathbb{Q}} \otimes_{\mathbb{Z}_{\ell}} \operatorname{Gr}_{n}^{Ih} G_{\mathbb{Q}} \to \operatorname{Gr}_{m+n}^{Ih} G_{\mathbb{Q}}.$$

Known:

- $G_{\mathbb{Q}} \xrightarrow{=} \operatorname{Aut} \pi_1^{\ell} \to \operatorname{Aut}(\pi_1^{\ell}/L^{m+1}\pi_1^{\ell})$ which defines the same Ih. $Ih^1G_{\mathbb{Q}} = Ih^2G_{\mathbb{Q}} = Ih^3G_{\mathbb{Q}}$ is the kernel of $\chi : G_{\mathbb{Q}} \to \mathbb{Z}_{\ell}^{\times}$.
- Soulé's elements: $\exists \sigma_m \neq 0 \in \operatorname{Gr}_m^{Ih} G_{\mathbb{Q}}$ ($m \geq 3$, odd). (Ihara, Soulé).
- Some nonvanishing of their products.

- $\operatorname{Gr}^{Ih} G_{\mathbb{Q}} \hookrightarrow \mathfrak{g}t$, Lie version of Grothendieck-Teichmüller group. (Deligne, Drinfeld, Ihara)
- dim $\operatorname{Gr}_m^{Ih} G_{\mathbb{Q}} = \dim \mathfrak{g} t_m \quad (m \leq 12)$ fits to Conjecture (Tsunogai)
- (F) implies (G). (Ihara)
- The Lie algebra appears in Gr π₁^{arith} of the moduli stack M_{g,n}
 (H. Nakamura, T. Oda).

Outline of Proof of (G)

- It factors through $G_{\ell} := \pi_1(\mathbb{Z}[\frac{1}{\ell}])$.
- Construct the weighted completion \mathcal{A}_{ℓ} of G_{ℓ} with Zar.dense $G_{\ell} \to \mathcal{A}_{\ell}(\mathbb{Q}_{\ell})$ which is "relative-unipotent group closure $/\mathbb{Q}_{\ell}$ " (cf. Deligne, same book). \mathcal{A}_{ℓ} has a natural weight filtration.
- The kernel K_ℓ of A_ℓ → G_m is free unipotent group generated by Soulé's elements. This follows from Soulé's computation of Hⁱ(G_ℓ, Q_ℓ(m)).
 So generated is t_ℓ := Lie(K_ℓ) ≃ GrK_ℓ.

• Let \mathcal{P} be the "unipotent group closure" of π_1^l . Then, we have

$$\rho^{unip}: G_\ell \to \mathcal{A}_\ell \to \operatorname{Aut} \mathcal{P}.$$

- The image $Im\mathcal{A}_{\ell} \subset \operatorname{Aut}\mathcal{P}$ has two filtrations:
 - 1. image of the weight filtration \mathcal{A}_{ℓ}
 - 2. one from $L^{m+1}\mathcal{P}$ (induces Ih^mG_ℓ).

They coincide.

• $\operatorname{Gr}^{Ih} G_{\ell} \otimes \mathbb{Q}_{\ell} \cong \operatorname{Gr}(Im\mathcal{K}_{\ell})$ is generated by Soulé's elements.

2. Weighted Completion of
$$G_{\ell} := \pi_1(\operatorname{Spec} \mathbb{Z}[\frac{1}{l}])$$

Known: ρ^{ℓ} factors through

$$\rho^{\ell}: G_{\mathbb{Q}} \xrightarrow{f} G_{\ell} := \operatorname{Gal}(\mathbb{Q}^{ur,l}/\mathbb{Q}) \to \operatorname{Out} \pi_{1}^{\ell},$$

where $\mathbb{Q}^{ur,l}$ is a maximal algebraic extension of \mathbb{Q} unramified outside ℓ .

Easy to see:
$$\operatorname{Gr}^{Ih} G_{\mathbb{Q}} = \operatorname{Gr}^{Ih} G_{\ell},$$

where $Ih^m G_{\ell} := \ker G_{\ell} \to \operatorname{Out}(\pi_1^{\ell}/L^{m+1}\pi_1^{\ell})$, since $Ih^m G_{\mathbb{Q}} = f^{-1}(Ih^m G_{\ell})$.

Representation Theory

 $V: \text{ finite dimensional } \mathbb{Q}_{\ell}\text{-vector space.}$ $\mathbb{G}_m \to \operatorname{Aut} V: \text{ a rational action of } \mathbb{G}_m.$ decomposition of $\mathbb{G}_m\text{-representations}$ \Downarrow

 $V = \oplus_{m \in \mathbb{Z}} V_m$ (unique),

where \mathbb{G}_m acts on V_m by *m*-th power multiplication, i.e.

 $c \in \mathbb{G}_m$ acts by $c^m \times (-) : V_m \to V_m$.

By Levi-decomposition Theorem, any

(*) $1 \to U \to G \to \mathbb{G}_m \to 1$

(U unipotent, G algebraic $/\mathbb{Q}_{\ell}$) has a section $G \leftarrow \mathbb{G}_m$ unique upto the inner automorphisms of U. Thus

$$\mathbb{G}_m \to G \stackrel{conjugation}{\to} \operatorname{Aut} U \cong \operatorname{Aut} \mathfrak{u}$$

(\mathfrak{u} : the Lie algebra of U) gives

$$\mathfrak{u} = \bigoplus_{m \in \mathbb{Z}} \mathfrak{u}_m.$$

The sequence (*) is *negatively weighted* if, for some (hence any) section,

$$\mathfrak{u}_m = 0$$
 if $m \leq 0$.

We equip the weight filtration on \mathfrak{u} by

$$W_{-N}\mathfrak{u} := \bigoplus_{m \ge \frac{N}{2}} \mathfrak{u}_m.$$

Facts:

- Is independent of choice of section.
- $\mathfrak{u} = W_0\mathfrak{u} = W_{-1}\mathfrak{u} \supset W_{-2}\mathfrak{u} = W_{-3}\mathfrak{u} \supset \cdots$ is a central filtration of Lie ideals. $\therefore Gr^W\mathfrak{u}$: a graded \mathbb{Q}_{ℓ} -Lie algebra.
- \exists A bijection exp : $\mathfrak{u} \to U$, gives a central filtration on group $U = W_0 \mathfrak{u} = W_{-1}U \supset W_{-2}U = W_{-3}U \supset \cdots$ with $\operatorname{Gr}^W U \cong \operatorname{Gr}^W \mathfrak{u}$.

• If we have two negative sequences:

Then $f : U \rightarrow U'$ is strictly weight preserving, i.e.:

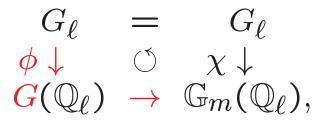
 $f(W_N(U)) = f(U) \cap W_N \mathcal{U}' \quad (N \leq -1)$ (:: Decompose $\mathfrak{u}, \mathfrak{u}'$ by \mathbb{G}_m -action. Then f restricts to $f : \mathfrak{u}_m \to \mathfrak{u}'_m$.) In particular, f: surjective \Rightarrow $Gr(f) : Gr \mathcal{U} \to Gr \mathcal{U}'$: surjective. For a profinite group , with continuous homomorphism χ : , $\rightarrow \mathbb{G}_m(\mathbb{Q}_\ell)$, the weighted completion of , relative to χ is the projective limit of the following objects.

$$1 o U o G o \mathbb{G}_m o 1$$

is negative, with a ϕ : , $\rightarrow G(\mathbb{Q}_{\ell})$ is specified so that:

Apply this to , $= G_{\ell}$ and the cyclotomic character $\chi : G_{\ell} \to \mathbb{Z}_{\ell}^{\times} \subset \mathbb{G}_m(\mathbb{Q}_{\ell})$. We get the weighted completion of G_{ℓ} :

 $\begin{array}{rcl} G_{\ell} &=& G_{\ell} \\ \Phi \downarrow & \chi \downarrow \\ 1 \rightarrow \mathcal{K}_{\ell} \rightarrow & \mathcal{A}_{\ell} \rightarrow & \mathbb{G}_{m} \rightarrow 1 \end{array}$ with $\Phi : G_{\ell} \rightarrow \mathcal{A}_{\ell}(\mathbb{Q}_{\ell})$ Zariski dense in the proalgebraic group \mathcal{A}_{ℓ} . It has the following universality: For any $G \to \mathbb{G}_m$ with unipotent kernel U and for any $\phi : , \to G(\mathbb{Q}_\ell)$ with



we have unique $arphi:\mathcal{A}_\ell
ightarrow G$ such that

$$\begin{array}{rcl} G_{\ell} & = & G_{\ell} \\ & \Phi \downarrow & & \chi \downarrow \\ 1 & \rightarrow & \mathcal{K}_{\ell} & \rightarrow & \mathcal{A}_{\ell} & \rightarrow & \mathbb{G}_{m} & \rightarrow & 1 \\ & & \downarrow & & \varphi \downarrow & \circlearrowleft & \parallel \\ 1 & \rightarrow & U & \rightarrow & G & \rightarrow & \mathbb{G}_{m} & \rightarrow & 1. \end{array}$$

 \mathfrak{k}_{ℓ} : Lie algebra of \mathcal{K}_{ℓ} .

Theorem 1 \mathfrak{k}_{ℓ} is a pronilpotent free \mathbb{Q}_{ℓ} -Lie algebra. We can choose free generators $\sigma_m \in W_{-2m}\mathfrak{k}_{\ell}$ (m = 1, 3, 5, ...),such that their emages freely generate Gr \mathfrak{k}_{ℓ} .

∴ (Wt. compl.) \mathfrak{k}_{ℓ}^{ab} is the product of $H^1_{cts}(G_{\ell}, \mathbb{Q}_{\ell}(m))^* \otimes \mathbb{Q}_{\ell}(m) \quad (m \ge 1).$ Soulé: = $\mathbb{Q}_{\ell}, 0$ (m:odd, even).

 \mathfrak{k}_{ℓ} : pronilpotent \Rightarrow generated by these. Free $\Leftarrow H^2(\mathfrak{k}_{\ell}) = 0$ since $H^2_{cts}(G_{\ell}, \mathbb{Q}_{\ell}(m)) = 0 \ (m \ge 2).$: Fix \mathbb{G}_m -section to \mathcal{A}_ℓ . Then $\mathfrak{k}_\ell = \prod_{m>0} \mathfrak{k}_{\ell m}$. We can show for $m \ge 1$,

 $(\mathfrak{k}_{\ell}{}^{ab})_m = H^1_{cts}(G_{\ell}, \mathbb{Q}_{\ell}(m))^* = \begin{cases} \mathbb{Q}_{\ell} & (m : \text{odd}) \\ 0 & (m : \text{even}) \end{cases}$

(the last step is Soulé's result + some).

$$H^{2}(\mathfrak{k}_{\ell}) \hookrightarrow \bigoplus_{m \ge 2} H^{2}_{cts}(G_{\ell}, \mathbb{Q}_{\ell}(m)) = 0$$

(the right 0 is by Soulé + some).

 \mathfrak{k}_ℓ , acted by \mathbb{G}_m , is automatically graded:

$$\mathfrak{k}_{\ell} = \prod_{m>0} (\mathfrak{k}_{\ell})_m \cong (\operatorname{Gr} \mathfrak{k}_{\ell})^{\widehat{}}$$

gives a (completed) graded Lie algebra structure on \mathfrak{k}_{ℓ} . General theory on nilpotent Lie algebra says that if we take $\sigma_m \in \mathfrak{k}_{\ell m} \twoheadrightarrow \mathfrak{k}_{\ell} {}_m^{ab}$ whose image generates $\mathfrak{k}_{\ell m} {}^{ab}$ for odd m, then $\sigma_1, \sigma_3, \ldots$ generate \mathfrak{k}_{ℓ} as pronilpotent Lie algebra, and hence also Gr \mathfrak{k}_{ℓ} . Malcev completion of $\pi_1(\mathbb{P}^1_{01\infty})$ Recall $\pi_1 = \langle x, y \rangle$.

• Consider $A := \lim_{t \to m} \mathbb{Q}_{\ell}[\pi_1]/J^m$, J = (x-1, y-1) is the augmentation ideal.

A is a complete Hopf-algebra.

• $\mathcal{P} \subset \mathbf{1} + J$: the set of group-like elements.

Is a subgroup of A^{\times} .

 $\mathfrak{p} \subset J$: the set of Lie-like elements.

Is a \mathbb{Q}_{ℓ} -Lie algebra, & \exists bijection:

 $\log: \mathcal{P} \subset \mathbf{1} + J \to \mathfrak{p} \subset J.$

Proposition

1. $\pi_1 \to A^{\times}$ continuously extends to $\pi_1^l \to A^{\times}$, and gives Aut $\pi_1^l \to \operatorname{Aut}_{Hopf} A \cong \operatorname{Aut}_{Lie} \mathfrak{p}$.

3.
$$W'_{-2m}$$
 Aut \mathfrak{p}
 $:= \ker[\operatorname{Aut}\mathfrak{p} \to \operatorname{Aut}(\mathfrak{p}/\mathfrak{p} \cap J^{m+1})].$
Then

$$\begin{array}{ccc} G_{\ell} & \to \operatorname{Aut} \pi_{1}^{l} \to & \operatorname{Aut} \mathfrak{p} \\ \cup & \Box & \cup \\ Ih^{m}G_{\ell} & \to & W_{-2m}^{\prime}\operatorname{Aut} \mathfrak{p}. \end{array}$$

Proposition

- 1. There is a proalgebraic group $\mathcal{A}ut\mathfrak{p}$ over \mathbb{Q}_{ℓ} such that $\operatorname{Aut}\mathfrak{p} \cong (\mathcal{A}ut\mathfrak{p})(\mathbb{Q}_{\ell})$.
- 2. Aut $\mathfrak{p}^{ab} \cong GL(2, \mathbb{Q}_{\ell})$. By scaler embedding $\mathbb{G}_m \to GL(2)$, we pull back

3. The weight filtration on K' coincides with W' $(m \ge 1)$:

 $W_{-2m}K' = \ker[\operatorname{Aut}\mathfrak{p} \to \operatorname{Aut}\mathfrak{p}/(\mathfrak{p}\cap J^m)].$

Lemma 2

 $G_{\ell} \to \operatorname{Aut} \pi_{1}^{l} \to \operatorname{Aut} \mathfrak{p} \to \operatorname{Aut} \mathfrak{p}^{ab}$ is $G_{\ell} \xrightarrow{\chi} \mathbb{Z}_{\ell}^{\times} \subset \mathbb{G}_{m}(\mathbb{Q}_{\ell}) \xrightarrow{diag} GL(2, \mathbb{Q}_{\ell}).$

 $:: G_{\ell} \to \operatorname{Aut} \pi_1^{ab}$ is χ -multiplication.

Now, by the universality of $G_{\ell} \to \mathcal{A}_{\ell}(\mathbb{Q}_{\ell})$, we have

$$\begin{array}{rcl} G_{\ell} &=& G_{\ell} \\ & \phi \downarrow & & \chi \downarrow \\ 1 &\to \mathcal{K}_{\ell} &\to & \mathcal{A}_{\ell} &\to & \mathbb{G}_{m} &\to & 1 \\ & \downarrow & & \varphi \downarrow & \circlearrowleft & \parallel \\ 1 &\to & \mathcal{K}' &\to & \mathcal{A}\mathrm{ut}^{*} \mathfrak{p} &\to & \mathbb{G}_{m} &\to & 1. \end{array}$$

Denote the image of $\mathcal{K}_\ell o K'$ by $Im(\mathcal{K}_\ell)$.

Strictness of filtration in $\mathcal{K}_{\ell} \rightarrow Im(\mathcal{K}_{\ell})$ says

$$\operatorname{Gr} \mathcal{K}_{\ell} \twoheadrightarrow \operatorname{Gr} \operatorname{Im}(\mathcal{K}_{\ell}),$$

SO

 $\operatorname{Gr} Im(\mathcal{K}_{\ell})$ is generated by the images

 $\sigma_1, \sigma_3, \sigma_5, \ldots$ as Lie algebra.

Only two steps left for proving (G): **Step 1.** Gr $Im\mathcal{K}_{\ell} \cong Gr^{Ih} G_{\ell} \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$. **Step 2.** (Already commented:) Gr_1^{Ih} G_{\ell} = 0, hence σ_1 vanishes there.

Lemma 3

 \mathcal{U} : a prounipotent group over \mathbb{Q}_{ℓ} , $W_{-m}\mathcal{U}$: filtration such that every $\operatorname{Gr}_{-m}\mathcal{U}$ is finite dimensional abel.

, : a profinite group,

 $\rho: , \rightarrow \mathcal{U}(\mathbb{Q}_{\ell})$: a continuous map.

 $I_{-m}, := \rho^{-1}(W_{-m}\mathcal{U}(\mathbb{Q}_{\ell})).$

If the image of ρ is Zariski dense, then

$$Gr^{I}, \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell} \cong (Gr^{W}\mathcal{U})(\mathbb{Q}_{\ell}).$$

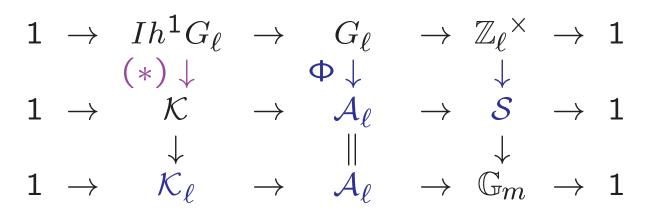
(:: induction).

For , $= Ih^1G_\ell$ and $U := Im\mathcal{K}_\ell \supset W_{-1}Im\mathcal{K}_\ell \supset \cdots$, we saw that I_{-2m} , $= Ih^m$, . Thus, for Step 1, we need only:

$$Ih^1G_\ell \to Im\mathcal{K}_\ell$$

is Zariski dense.

Lemma 4 Let S be the weighted completion of $\mathbb{Z}_{\ell} \to \mathbb{G}_m(\mathbb{Q}_{\ell})$. Then (*) in the below is Zariski dense.



Moreover, by $H^1_{cts}(\mathbb{Z}_{\ell}^{\times}, \mathbb{Q}_{\ell}(m)) = 0 \quad (m \neq 0),$ $S = \mathbb{G}_m$ and consequently $Ih^1G_{\ell} \to \mathcal{K} \cong \mathcal{K}_{\ell}$ is dense.

Concluding Remarks

Our proof of (G) says nothing on (F).

(F) says the faithfullness of the "motivic Galois group" action

 $\mathcal{A}_{\ell}/ < \exp(\sigma_1) > \rightarrow \mathcal{A}$ ut \mathcal{P}

 $(\mathcal{P} : \text{ completion of } \pi_1^l \cdot \text{ c.f. Belyi's injectivity of } G_{\mathbb{Q}} \to \operatorname{Aut} \pi_1^{\widehat{}}$.