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The Manin{Mumford

Conjecture

Start with a curve X (nonsingular,

irreducible,. . . ) over C. Let J be

the Jacobian of X|a g-dimensional

abelian variety, where g is the genus

of X.

Fix x0 2 X. The Albanese map

� : X ! J arising from x0 is de�ned

by

x 7! class of (x)� (x0):

If g 6= 0, � is an embedding.
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Suppose now that g is at least 2. Let

Jtors be the torsion subgroup of J and

consider

Xtors := �(X) \ Jtors:

The Manin{Mumford Conjecture

states that Xtors is a �nite set.

This conjecture was the subject

of Serge Lang's \Division points on

curves," Ann. Mat. Pura Appl. 70,

229{234 (1965).
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Lang reduced the conjecture to a

second (arithmetic) conjecture about

abelian varieties over number �elds.

Given A=K, we view the action

of G := Gal(K=K) on Ators as a

continuous homomorphism

� : G! Aut(Ators) � GL(2g; Ẑ);

where g is the dimension of A.

Lang's arithmetic conjecture states

that the image of � contains an open

subgroup of the group Ẑ� of scalar

matrices (homotheties) in GL(2g; Ẑ).
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Lang's conjecture is still an open

problem. However, J-P. Serre

presented a partial result in his 1985{

1986 course at the Coll�ege de France:

there is an integer e � 1 so that

the image of � contains the subgroup

(Ẑ�)e of eth powers in the homothety

group Ẑ�.
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Meanwhile, the Manin{Mumford

conjecture was proved by M. Raynaud

in 1982 (\Courbes sur une vari�et�e

ab�elienne et points de torsion,"

Invent. Math. 71 (1983), 207{

233). Another proof was given

by R. Coleman a few years later

(\Rami�ed torsion points on curves,"

Duke Math. J. 54 (1987), 615{640).

I will explain how Serre's result

may be used to give a proof of the

conjecture that is di�erent in spirit

from Raynaud's proof and Coleman's

proof.
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For this, we view the curve X and

the point x0 as being de�ned over

a �nitely generated sub�eld K of C.

To �x ideas, we suppose that K is

a number �eld, so that we can apply

Serre's result. (That result is true

in the general case by specialization.)

We have � : X ,! J , and we wish to

prove that there are only �nitely many

torsion points of J that lie on X.
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We neglect the set of hyperelliptic

branch points on X if there are any;

these are �nite in number. We use

the following principle, which I learned

from M. Baker and A. Tamagawa:

Suppose that x 2 X is not a

hyperelliptic branch point, and let x0

and x00 be points on X. If we have

2x = x0 + x00 on J , then x0 = x = x00.

Indeed, if 2x = x0+x00, then the divisor

2(x) � (x0) � (x00) on X is principal;

it must be identically 0 in view of the

hypothesis.
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Especially, suppose that x is a

torsion point on X that is not

a hyperelliptic branch point of X.

Then x lies in X(K) and we can

consider the conjugates of x by

elements of Gal(K=K). We �nd:

For �; � 2 Gal(K=K), the equation

2x = �x + �x implies �x = x = �x.

Equivalently: the set

f�x� x j� 2 Gal(K=K) g

contains no non-zero point of J along

with the negative of that point.
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This circumstance suggests that we

introduce the following concept:

Let A be an abelian variety over K

and let P be a point of A over K.

Say that P is almost rational if the

equation 2P = �P + �P implies that

�P and �P are both equal to P .

This is a somewhat weird condition

that takes getting used to!
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Suppose that P is almost rational.

Then:

� No di�erence �P � P can be of

order 2.

� If (� � 1)2P = 0, then � �xes P .

� Let v be a prime of K at which A

has semistable reduction. Assume

that P is an almost-rational torsion

point whose order is prime to v.

Then P is unrami�ed at v (in view

of SGA7I Ex. IX and the second

item)!
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Theorem 1. The set of almost-

rational torsion points on A is �nite.

To apply this theorem to the

M{M conjecture, take A =

the Jacobian of X. The torsion

points on X are either hyperelliptic

branch points or almost-rational

torsion points. There are only �nitely

many of each type, QED.

The theorem, on the other hand,

is an easy consequence of Serre's

homothety theorem:
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Choose e such that the image

of � : Gal(K=K) ! Aut(Ators)

contains all eth powers of scalars.

For m > C(e) (a constant depending

on e), there are r; s 2 ((Z=mZ)�)e

with s+ t = 2, (s; t) 6= (1; 1).

If P is an almost-rational torsion

point of order m, we will prove that

m � C(e). If not, pick s and t as

\above" and choose �  s, �  t.

We must have sP = P . Since P has

orderm and s�1 is non-zero in Z=mZ,

this is impossible.
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In the Annuaire of the Coll�ege

de France, Serre reports that his

theorem is \d'ailleurs su�sant pour

les applications que Lang avait en

vue". In fact, Lang's proof of \Lang

conjecture =) M{M conjecture"

shows by a di�erent route that Serre's

theorem implies M{M.
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Some time ago, Robert Coleman

proposed that the set of torsion points

on X should be worthy of explicit

study if X and the base point x0
are of special interest. There is a

signi�cant literature in this direction.

For example, Coleman, Tamagawa

and Tzermias proved that if X is

a Fermat curve (xn + yn = zn) of

genus > 1 and if x0 is one of the

cusps of X (= points where one

coordinate vanishes), then the set of

torsion points on X is the set of cusps

of X.
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The \guess"

It is natural to consider modular

curves in place of Fermat curves.

Let N be a prime so that the

modular curve X = X0(N) has genus

g > 1. (Thus N � 23.) Let x0 be

the standard cusp \1" of X. The

two cusps x0 and 0 of X map to

torsion points of J = J0(N) under the

Albanese embedding attached to1 =

x0. Are there other torsion points

on X?
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According to Ogg, there are eight

values of N for which X0(N) is

hyperelliptic: 37, 23, 29, 31, 41,

47, 59 and 71. In the latter seven

cases, the hyperelliptic branch points

of X are torsion points (i.e., map to

torsion points on J); if N = 37, the

six hyperelliptic branch points have

in�nite order on J .

The guess, a.k.a. the Coleman-

Kaskel-Ribet conjecture, states that

0 and 1 are the only torsion points

on X that are not hyperelliptic branch

points.
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This conjecture was proved by

M. Baker and by A. Tamagawa

(independently) last spring. I'll now

describe the proof in the language of

almost-rational torsion points.

Our proof is close to that of

Tamagawa but rather di�erent from

Baker's original arguments. In

\Torsion points on modular curves,"

Invent. Math. (to appear), Baker

presents his �rst proof and then this

variant:
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Let P be a torsion point on X that is

not a hyperelliptic branch point. Thus

P is an almost-rational torsion point

on J . To show: that P is a cusp.

To postpone a technicality, we

suppose �rst that the order of P is

prime to N . As we saw before, SGA7I

implies that P is unrami�ed at N : the

discriminant of the �eld Q(P ) (which

is not necessarily a Galois extension

of Q a priori) is prime to N . This is

somewhat surprising: such extensions

normally have the right to be rami�ed

at primes of bad reduction.
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Fact. The point P is killed by the

Eisenstein ideal.

Background: In his 1977 \Eisenstein

ideal" article (Publ. Math. IHES 47),

Barry Mazur made a close study of the

torsion points on J = J0(N), where

N is a prime number. The di�erence

of cusps (1)� (0) is a rational point

on J of order n = num((N�1)=12); it

generates the cuspidal group C � J .
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The Shimura subgroup of J is

the kernel � of the natural map

J = J0(N) �! J1(N). While �

is again cyclic of order n, the action

of Gal(Q=Q) on � is cyclotomic (so

� � �n).

The Hecke ring attached to J is the

subring T of EndQ J generated by the

Hecke operators Tm (m � 1). This

ring stabilizes C, and in fact we have

Tp = 1+p on C for each prime p 6= N .
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The Eisenstein ideal is the kernel I

of the resulting surjective map

T �! End(C) = Z=nZ:

It is generated by the di�erences Tp�

(1 + p) and contains TN � 1 as well.

We have T=I � Z=nZ.

Let J [I] be the group of torsion

points of J that are killed by all

elements of I. Then J [I] contains C,

and J [I] contains � as well. Mazur

showed that J [I] is free of rank 2 over

T=I = Z=nZ.
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If n is odd, J [I] is the direct

sum of its two subgroups C and �.

When n is even, J [I] is harder to

describe because C and � intersect in

the group C[2] = �[2] of order 2.

The precise structure of J [I] as a

Gal(Q=Q)-module was determined by

J�anos Csirik last year.
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The following result explains the

\fact" that was presented before.

Theorem 2. The group J [I] consists

precisely of those torsion points of J

that are unrami�ed at N .

One direction is easy: it is not hard

to see that the points in J [I] are

unrami�ed at N .
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The hard direction is an application

of my \level-lowering" theorem for

irreducible mod p representations

of Gal(Q=Q) arising from J0(N).

Level-lowering implies that such

representations are rami�ed at N . It

follows that unrami�ed torsion points

are killed by a power of I. Borrowing

techniques from Mazur, one then

shows that they are killed by I.

For most primes N , it is now easy to

conclude by showing that points on X

that lie in J [I] can only be cusps.
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Indeed, let X+ be the quotient of X

by its Atkin{Lehner involution w, and

consider the diagram

X ,! J

# #

X+ ! J+

in which J+ is the Jacobian ofX+, the

left-hand vertical map is the quotient,

the horizontal maps are Albanese

maps, and the right-hand vertical map

is induced by Albanese functoriality.

(As base point on X+, we use the

unique cusp of X+.)
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It's an easy fact that J [I] maps to 0

in J+. Hence if P 2 X is killed

by I, it maps to 0 on J+. When the

Albanese map X+ ! J+ is injective,

P is forced to map to the unique cusp

on X+ and thus P must be a cusp

of X!

Another argument is required when

X+ has genus 0, i.e., when N is one

of 23, 29, 31, 41, 47, 59 and 71.

Observe that none of these primes is

congruent to 1 mod 9.
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To complete the proof, we have to

look more closely at the set J [I]a:r:t:
of those almost-rational torsion points

of J that lie in J [I]. Using Csirik's

results, one proves:

J [I]a:r:t: = C � �[3]:

The group �[3] is cyclic of

order 3 when N � 1 mod 9 and

trivial otherwise. Thus if N 2

f 23; 29; 31; 41; 47; 59; 71 g, we have

P 2 C. It is easy to conclude once

one knows that X \ C = f 0;1g.
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The proof that I have sketched

becomes complete once one proves

that all almost-rational torsion points

of J have order prime to N .

Suppose that P is an almost-rational

torsion point on J , and let M be the

sub-T-module of J(Q) generated by P

and its conjugates. Thus M is a �nite

group of torsion points of J on which

T and Gal(Q=Q) operate.
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If the order of P is divisible by N ,

there is more work to do. Let I be

an inertia group for N in Gal(Q=Q).

The argument involving SGA7I and

(� � 1)2 proves that the kernel of the

N -adic cyclotomic character I ! Z�

N

acts trivially on M . In particular, the

action of I on M is abelian:
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Assume now that P has order

divisible by N . Then M has

order divisible by N , so that there

is a maximal ideal m of T that

divides N for which M [m] 6= 0.

Because m is prime to N � 1,

J [m] is an irreducible 2-dimensional

representation of Gal(Q=Q) over the

�eld T=m. Thus M contains J [m].

Accordingly, the action of I on J [m]

is abelian.
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A contradiction arises because the

action of I on J [m] is non-abelian

when mjN . To see this, let � be

the abelian quotient of I that is cut

out by J [m]. The mod N cyclotomic

character factors through � because

J [m] �ts into an exact sequence

0! J [m]t ! J [m]! Q! 0;

where I acts via the cyclotomic

character on the \toric" part J [m]t

of J [m] and acts trivially on Q.

The modules J [m]t and Q are 1-

dimensional over T=m.
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We will show that this sequence of I-

modules splits, which is impossible for

various reasons. (E.g., it implies that

J [m] is �nite at N in Serre's sense,

in contradiction with level-lowering

principles). The class of the extension

lives in H1(�;Hom(Q; J [m]t)). The

action of � on Hom(Q; J [m]t is

given by the inverse of the mod N

cyclotomic character. This is a non-

trivial character because N must be

odd. (Note that J0(2) = 0.) The

vanishing of the cohomology group

follows by Sah's Theorem.
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Closing comments

When A is an abelian variety over

a number �eld K, the set of almost

rational torsion points of A constitute

a canonical subset of the set of all

torsion points of A. Can one identify

this set for semistable abelian varieties

over Q? For Jacobians of modular

curves?
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