FUNDAMENTAL GROUPS AND GEOMETRY

IN POSITIVE CHARACTERISTIC

"Galois Actions and Geometry" Workshop, MSRI

Akio Tamagawa
RIMS, Kyoto University
October 11, 1999
§. Anabelian Geometry.
k : field, \bar{k} : algebraic closure
$U:$ (geometrically connected) variety $/ k, \bar{U}=U \underset{k}{\otimes} \bar{k}$
Then we have

$$
1 \rightarrow \pi_{1}(\bar{U}) \rightarrow \pi_{1}(U) \stackrel{\mathrm{pr}_{U}}{\rightarrow} G_{k} \rightarrow 1
$$

or

$$
G_{k} \xrightarrow{\rho_{U}} \operatorname{Out}\left(\pi_{1}(\bar{U})\right)
$$

Anabelian Geometry:
Recover Geometry of U from (outer) Galois Action ρ_{U} on geometric fundamental group $\pi_{1}(\bar{U})$ for 'anabelian' U / k (Birational version \rightarrow talks by Pop and Efrat)

However, this talk:

- No Galois Actions (by considering char. > 0)
- Very Little Geometry (by considering curves)
§. Geometric π_{1} of Varieties.
$f: \mathcal{U} \rightarrow S$: "good" family over connected S / k
e.g. proper smooth minus relatively normal crossing divisors

Then:
$\operatorname{char}(k)=0$
$\pi_{1}(\forall$ geom. fiber of $f)$ are isomorphic
$\approx \pi_{1}(\bar{U})$ depends only on the connected component of moduli space to which U belong
$\operatorname{char}(k)=p>0$
π_{1} (geom. fiber of f) may depend on geom. point of S
(though $\pi_{1}(\forall \text { geom. fiber of } f)^{p^{\prime}}$ are isomorphic)
\Longrightarrow possibility to recover geometry only from $\pi_{1}(\bar{U})$
\S. Geometric π_{1} of Curves.
From now on,
$k=\bar{k}$
U : smooth curve $/ k$
X : smooth compactification of $U, g=$ genus of X
$S=X-U, n=\sharp(S)$
(g, n) : "type" of U
$\operatorname{char}(k)=0$
We have

$$
\pi_{1}(U) \leftleftarrows \widehat{\Pi}_{g, n}
$$

where

$$
\begin{aligned}
\Pi_{g, n} & =\pi_{1}^{\mathrm{top}}(\text { Riemann surface of type }(g, n)) \\
& \simeq\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}, c_{1}, \ldots, c_{n} \mid \prod_{i=1}^{g}\left[a_{i}, b_{i}\right] \prod_{j=1}^{n} c_{j}=1\right\rangle
\end{aligned}
$$

In particular, $\pi_{1}(U)$ depends only on (g, n).
$\underline{\operatorname{char}(k)=p>0}$
$\pi_{1}(U)$ is not finitely generated (for $n>0$), but we have

$$
\pi_{1}(U) \rightarrow \pi_{1}^{\mathrm{t}}(U) \longleftrightarrow \widehat{\Pi}_{g, n}
$$

($\pi_{1}^{\mathrm{t}}=$ tame π_{1}, which allows only tame ramification over S.)
This induces

$$
\pi_{1}(U)^{p^{\prime}} \xrightarrow{\sim} \pi_{1}^{\mathrm{t}}(U)^{p^{\prime}} \underset{\leftarrow}{\leftarrow}\left(\widehat{\Pi}_{g, n}\right)^{p^{\prime}}
$$

For pro- p quotients, we have, if $n>0$,
$\pi_{1}(U)^{p}=$ free pro- p group of rank $\sharp(k)$
and, in general,

$$
\pi_{1}^{\mathrm{t}}(U)^{p}=\pi_{1}(X)^{p}=\text { free pro- } p \text { group of rank } \gamma
$$

where

$$
\begin{aligned}
\gamma & =p \text {-rank }(\text { Hasse-Witt invariant }) \text { of } X \\
& =\operatorname{dim}_{\mathbb{F}_{p}} J[p](k) \quad\left(J=\mathrm{Jac}_{X}\right)
\end{aligned}
$$

$(0 \leq \gamma \leq g$, and $\gamma=g \Longleftrightarrow J:$ ordinary $)$

§. Isomorphism Classes.

From now on, char $(k)=p>0$ unless otherwise stated.

$$
\begin{aligned}
\mathcal{C}_{k} & =\{\text { smooth connected curves } / k\} / \underset{\text { Sch }}{\simeq} \\
\cup & \mathcal{C}(g, n)_{k}
\end{aligned}=\{\text { smooth connected curves } / k \text { of type }(g, n)\} / \underset{\text { Sch }}{\simeq}
$$

Then we have
$\pi_{1}\left(\right.$ or $\left.\pi_{1}^{\mathrm{t}}\right): \mathcal{C}_{k} \rightarrow\{$ profinite groups $\} / \simeq$

Theorem 1 (T).
(i) $\left.\pi_{1}\right|_{\mathcal{C}(0, n)_{\overline{\mathbb{F}}_{p}}}$ is injective.
(ii) $\left.\pi_{1}^{\mathrm{t}}\right|_{\mathcal{C}(0, n)_{\overline{\mathbb{F}}_{p}}}$ is injective.

Theorem 2 (Pop-Saïdi). (\rightarrow Saïdi's talk)
For $g \geq 2,\left.\pi_{1}\right|_{\mathcal{C}(g, 0,+ \text { some conditions })_{\mathbb{F}_{p}}}$ is almost injective,
i. e. its fibers are finite sets.
\S. Type (g, n).

Theorem 3 (T).

(i) (g, n) can be recovered from $\pi_{1}(U)$.
(ii) (g, n) can be recovered from $\pi_{1}^{\mathrm{t}}(U)$, except for $(g, n)=(0,0),(0,1)$.

Example. (Harbater, Bouw) E: elliptic curve $/ k$
If $\operatorname{char}(k)=0$, we have

$$
\pi_{1}(E-\{O\}) \simeq \pi_{1}\left(\mathbf{P}^{1}-\{0,1, \infty\}\right)\left(\simeq \widehat{F}_{2}\right)
$$

If $\operatorname{char}(k)=p>0$, we have

$$
\begin{equation*}
\pi_{1}(E-\{O\}) \not \approx \pi_{1}\left(\mathbf{P}^{1}-\{0,1, \infty\}\right) \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\pi_{1}^{\mathrm{t}}(E-\{O\}) \not \approx \pi_{1}^{\mathrm{t}}\left(\mathbf{P}^{1}-\{0,1, \infty\}\right) \tag{ii}
\end{equation*}
$$

(i) can be reduced to (ii) by using Hurwitz formula. (ii) is easy (resp. not so easy) for E ordinary (resp. supersingular).

Key to Th3(ii): Generalization of Raynaud's theory of Θ-divisors.

\S. Inertia Subgroups.

Points of $S \rightsquigarrow$ inertia subgroups in $\pi_{1}(U)\left(\right.$ or $\left.\pi_{1}^{\mathrm{t}}(U)\right)$

Proposition 4 (T).

(i) The set of inertia subgroups (and their higher ramification subgroups) in $\pi_{1}(U)$ can be recovered from $\pi_{1}(U)$.

More precisely, given U_{i} / k_{i} for $i=1,2$, any isomorphism

$$
\pi_{1}\left(U_{1}\right) \simeq \pi_{1}\left(U_{2}\right)
$$

preserves the set of inertia (and higher ramification) subgroups. (ii) The set of inertia subgroups in $\pi_{1}^{\mathrm{t}}(U)$ can be recovered from $\pi_{1}^{\mathrm{t}}(U)$. More precisely, given U_{i} / k_{i} for $i=1,2$, any isomorphism

$$
\pi_{1}^{\mathrm{t}}\left(U_{1}\right) \simeq \pi_{1}^{\mathrm{t}}\left(U_{2}\right)
$$

preserves the set of inertia subgroups.
Key: Apply Th3 for all covers of U. For higher ramification subgroups, use the Lefschetz trace formula, which connects Artin characters with global information obtained from π_{1}.
\S. Digression: "Container" of Galois Group. $\operatorname{char}(k)=0$
Fix $\widehat{\Pi}_{g, n} \xrightarrow{\sim} \pi_{1}(U)$ so that $\left\langle\bar{c}_{j}\right\rangle$'s are inertia subgroups $\left(\bar{c}_{j}=\operatorname{Im}\left(c_{j}\right)\right)$.

$$
\begin{aligned}
& \text { Aut }^{*}\left(\pi_{1}(U)\right) \stackrel{\text { def }}{=} \\
& \left\{\sigma \in \operatorname{Aut}\left(\pi_{1}(U)\right) \mid \exists \lambda \in \widehat{\mathbb{Z}}^{\times}, \exists s \in S_{n}, \sigma\left(\bar{c}_{j}\right) \sim \bar{c}_{s(j)}{ }^{\lambda}\right\} \\
& \quad \text { Out }^{*}\left(\pi_{1}(U)\right) \stackrel{\text { def }}{=} \operatorname{Aut}^{*}\left(\pi_{1}(U)\right) / \operatorname{Inn}\left(\pi_{1}(U)\right)
\end{aligned}
$$

(independent of the choice of $\widehat{\Pi}_{g, n} \xrightarrow{\sim} \pi_{1}(U)$)
Known: $\operatorname{Im}\left(\operatorname{Aut}_{S c h}(U)\right) \subset$ Out $^{*}\left(\pi_{1}(U)\right)$
(Note: $U=U_{0} \underset{k_{0}}{\otimes} k \Longrightarrow \rho_{U_{0}}\left(G_{k_{0}}\right) \subset \operatorname{Im}\left(\operatorname{Aut}_{\mathrm{Sch}}(U)\right)$)

Important: Define a good (smaller) container and capture the Galois group
\rightarrow talks by Schneps, Zapponi and Nakamura;
\rightarrow talks by Hain and Matsumoto in pro-algebraic group context
$\operatorname{char}(k)=p>0$
Fix $\widehat{\Pi}_{g, n} \rightarrow \pi_{1}^{\mathrm{t}}(U)$ so that $\left\langle\bar{c}_{j}\right\rangle$'s are inertia subgroups.

$$
\begin{aligned}
& \operatorname{Aut}^{*}\left(\pi_{1}^{\mathrm{t}}(U)\right) \stackrel{\text { def }}{=} \\
& \left\{\sigma \in \operatorname{Aut}\left(\pi_{1}^{\mathrm{t}}(U)\right) \mid \exists \lambda \in p^{\widehat{\mathbb{Z}}} \subset\left(\widehat{\mathbb{Z}}^{p^{\prime}}\right)^{\times}, \exists s \in S_{n}, \sigma\left(\bar{c}_{j}\right) \sim \bar{c}_{s(j)}{ }^{\lambda}\right\} \\
& \qquad \operatorname{Out}^{*}\left(\pi_{1}^{\mathrm{t}}(U)\right) \stackrel{\text { def }}{=} \operatorname{Aut}^{*}\left(\pi_{1}^{\mathrm{t}}(U)\right) / \operatorname{Inn}\left(\pi_{1}^{\mathrm{t}}(U)\right)
\end{aligned}
$$

(independent of the choice of $\widehat{\Pi}_{g, n} \rightarrow \pi_{1}^{\mathrm{t}}(U)$)
Known: $\operatorname{Im}\left(\operatorname{Aut}_{S c h}(U)\right) \subset \operatorname{Out}^{*}\left(\pi_{1}^{\mathrm{t}}(U)\right)$

Proposition 5 (T).

$$
\begin{aligned}
& \operatorname{Aut}\left(\pi_{1}^{\mathrm{t}}(U)\right)=\operatorname{Aut}^{*}\left(\pi_{1}^{\mathrm{t}}(U)\right) \\
& \operatorname{Out}\left(\pi_{1}^{\mathrm{t}}(U)\right)=\operatorname{Out}^{*}\left(\pi_{1}^{\mathrm{t}}(U)\right)
\end{aligned}
$$

$\underline{\text { Question. }}(n=0$.) For $g \geq 2$, is the image of

$$
\operatorname{Out}\left(\pi_{1}(X)\right) \rightarrow \operatorname{Aut}\left(H^{2}\left(\pi_{1}(X), \widehat{\mathbb{Z}}^{p^{\prime}}\right)\right)=\left(\widehat{\mathbb{Z}}^{p^{\prime}}\right)^{\times}
$$

contained in $p^{\widehat{\mathbb{Z}}}$? (OK for $\operatorname{Im}\left(\operatorname{Aut}_{\operatorname{Sch}}(X)\right)$.)
§. Base Fields and Fields of Definition.
U / k as above $(\operatorname{char}(k)=p>0)$
Definition.
$\operatorname{td}(k)=$ transcendence degree of k over $\overline{\mathbb{F}}_{p}$
$\operatorname{ed}(U)=\min \left\{\operatorname{td}\left(k_{0}\right) \mid k_{0} \subset k, U \simeq \exists U_{0} \otimes k\right\}(\leq \operatorname{td}(k))$
Remark.
(i) $\operatorname{td}(k)$ determines the isom. class of k, since $k=\bar{k}$.
(ii) $\operatorname{ed}(U) \leq \operatorname{dim}\left(M_{g, n}\right)(=3 g-3+n$, if $\chi<0)$

For algebraically closed fields $k_{0} \subset k$,

$$
\begin{aligned}
& \pi_{1}\left(U_{0} \underset{k_{0}}{\otimes k)} \rightarrow \pi_{1}\left(U_{0}\right)\right. \\
& \pi_{1}^{\mathrm{t}}\left(U_{0} \otimes k\right) \xrightarrow{\otimes} \pi_{1}^{\mathrm{t}}\left(U_{0}\right)
\end{aligned}
$$

Question.

(i) For $n>0$, can $\operatorname{td}(k)$ be recovered from $\pi_{1}(U)$?
(ii) For $(g, n) \neq(1,0)$, can $\operatorname{ed}(U)$ be recovered from $\pi_{1}^{\mathrm{t}}(U)$?

Remark.
(i) We have

$$
\pi_{A}\left(U_{0} \underset{k_{0}}{\otimes} k\right)=\pi_{A}\left(U_{0}\right)
$$

where π_{A} denotes the set of finite quotients of π_{1}. Moreover, Abhyankar's conjecture (proved by Raynaud and Harbater) gives explicit description of $\pi_{A}(U)$ for $n>0$, which depends only on (g, n) and p.
(ii) $\pi_{A}^{\mathrm{t}}(U)$ has as much information as $\pi_{1}^{\mathrm{t}}(U)$, but has not been understood well.

Lemma 6. For $n>0$,

$$
\operatorname{dim}_{\mathbb{F}_{p}}\left(H^{1}\left(\pi_{1}(U), \mathbb{F}_{p}\right)\right)= \begin{cases}\omega & \operatorname{td}(k) \leq \omega \\ \operatorname{td}(k) & \operatorname{td}(k)>\omega\end{cases}
$$

In particular, $\operatorname{td}(k)$ can be recovered from $\pi_{1}(U)$ for $\operatorname{td}(k)>\omega$.
Proposition 7 (T). Assume $g=0$.
(i) For $n>0$, whether $\operatorname{td}(k)=0$ or not can be detected from $\pi_{1}(U)$.
(ii) Whether $\operatorname{ed}(U)=0$ or not can be detected from $\pi_{1}^{\mathrm{t}}(U)$. In particular, ed (U) can be recovered from $\pi_{1}^{\mathrm{t}}(U)$ for $n \leq 4$. Proof. Corollary of (proof of) Theorem 1. For (i), use also an old lemma of Abhyankar.
\S. Hopfian Properties.
Definition.
$\pi_{1}(U)$: Hopfian $\Longleftrightarrow \forall \pi_{1}(U) \rightarrow \pi_{1}(U)$ is bijective

Since every finitely generated profinite group is Hopfian, assume $n>0$ in this \S.

Lemma 8.

$$
\pi_{1}(U): \text { Hopfian } \Longrightarrow \operatorname{td}(k)<\omega \&(g, n) \neq(0,1)
$$

Question H. $\Longleftarrow ?$

Definition. $\pi_{1}(U)$: weakly Hopfian \Longleftrightarrow $\pi_{1}(U) \rightarrow \pi_{1}(U)$ is bijective, if it induces surjections of inertia subgroups and higher ramification subgroups

Lemma 9.
$\pi_{1}(U)$: weakly Hopfian $\Longrightarrow \operatorname{td}(k)<\omega$
Question WH. \Longleftarrow ?

Yes to Question $\mathrm{H} \Longrightarrow$ Yes to Question WH \Longrightarrow $\operatorname{td}(k)$ can be recovered from $\pi_{1}(U)$ for $g=0$.
\S. Free Quotients.
Definition.

$$
\begin{aligned}
\rho(U) & =\max \left\{r \mid \exists \pi_{1}(U) \rightarrow \widehat{F}_{r}\right\} \\
\rho^{\mathrm{t}}(U) & =\max \left\{r \mid \exists \pi_{1}^{\mathrm{t}}(U) \rightarrow \widehat{F}_{r}\right\}
\end{aligned}
$$

Remark.
(i) $\exists \pi_{1}^{\mathrm{t}}(U) \rightarrow \widehat{F}_{r} \Longleftrightarrow \pi_{A}^{\mathrm{t}}(U) \supset \pi_{A}\left(\widehat{F}_{r}\right)$
(ii) For $n>0, \pi_{A}(U) \supset \pi_{A}\left(\widehat{F}_{r}\right) \Longleftrightarrow r \leq 2 g+n-1$

Lemma 10.
(i) $\rho(U) \geq \rho^{\mathrm{t}}(U) \geq \rho(X)$
(ii) $\rho(U) \leq 2 g+n-1$ for $(g, n) \neq(0,0)$
(iii) $\rho^{\mathrm{t}}(U)(\leq \gamma) \leq g$

Remark.
(i) For $n>0$, no upper bound better than (ii) is known, even for a single U.
(ii) Degeneration method (or "patching") sometimes gives a lower bound. (\rightarrow talks by Stevenson and Harbater)

For example, if X is generic, then we have

$$
\rho^{\mathrm{t}}(U)=\rho(X)=g
$$

(i) $\rho^{\mathrm{t}}(U) \leq 1$?
(ii) $\rho(U) \leq 1$?
(Possibly absurd. Yes $\left.\Longrightarrow \nexists \pi_{1}\left(\mathbf{A}_{\overline{\mathbb{F}}_{p}}^{1}\right) \rightarrow \mathbb{Z}_{p} * \mathbb{Z}_{p}\right)$

