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Abstract. In his Annals paper in 1986, Y.Ihara introduced the universal power

series for Jacobi sums and showed deep arithmetic phenomena arising in Ga-

lois actions on profinite fundamental groups. In particular, the explicit formula

established by Anderson, Coleman, Ihara-Kaneko-Yukinari opened remarkable

connection to theory of cyclotomic fields (Iwasawa theory) and shed new lights

on circle of ideas surrounding Grothendieck’s philosophy on anabelian geometry

as well as various geometric approaches in inverse Galois theory. In this article, I

will illustrate some of these aspects from a viewpoint of Grothendieck-Teichmüller

theory.
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I was a graduate student of Ihara in 1987-1989 just when a year had passed
since the publication of his influential Annals paper [18]. The paper was moti-
vating many colleagues toward subsequent progresses not only in number theory
but also other areas. I was very fortunate to start my research in those illumi-
nating days: for these 30 years the theme has been continuously attracting my
interest with deep problems and questions as well as enlightening my humble
perception of the mathematical nature.

This is an article for proceedings of the RIMS workshop “Profinite monodromy, Galois rep-
resentations, and Complex functions” held at Kyoto University on May 21–23, 2018.
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0. Adelic beta function on ĜT

After the title “Profinite braid groups, Galois representations and complex
multiplications” of [18], our generation of students of Ihara in the Univ. of
Tokyo called his weekly advanced seminar the PGC-seminar, to which I was at-
tending with a feeling of awe and a piece of pride. (The initials of the paper title
had also hinted to name this workshop). Impacts of [18] have spread over vari-
ous related subjects from number theory to topology as well as other new-wave
areas of mathematics including what is called the Grothendieck-Teichmüller
theory or anabelian geometry (cf. [1]-[37] and references therein).
In this section, I try to give a short overview on some key aspects of the

theme. The main stage is the algebraic fundamental group

π := πét
1 (P

1
Q − {0, 1,∞},

−→
01) = ⟨x, y, z | xyz = 1⟩ (∼= F̂2)

isomorphic to the profinite free group F̂2 of rank 2, where x, y, z represent
standard loops around the punctures 0, 1,∞ respectively on P1(C) based at

the tangent vector
−→
01, with outer actions by the absolute Galois group GQ =

Gal(Q/Q) through the fundamental exact sequence

1→ π → πét
1 (P

1
Q − {0, 1,∞},

−→
01)→ GQ → 1.

In fact, this sequence splits (in many ways) and the Q-rational tangential base

point
−→
01 determines a homomorphic section s−→

01
: GQ → πét

1 (P
1
Q−{0, 1,∞},

−→
01)

which induces the standard splitting

πét
1 (P

1
Q − {0, 1,∞},

−→
01) ∼= GQ ⋉ π

as well as the Belyi action φ−→
01

: GQ → Aut(π) lifting the aforementioned outer
action.

0.1. Fermat tower. Let π ⊃ π′ ⊃ π′′ ⊃ · · · be the derived series of the geomet-
ric fundamental group π (in the profinite sense). First of all, the abelianization
is identified as:

πab = π/π′ = Ẑx̄⊕ Ẑȳ ∼= Ẑ2

with x̄, ȳ ∈ πab the images of x, y ∈ π, on which GQ acts simply by multiplica-
tion via the cyclotomic character

χcyc : GQ → Ẑ× (σ(ζn) = ζχcyc(σ)
n , n ≥ 1, σ ∈ GQ).

Looking at the Galois action on the meta-abelian quotient π/π′′ turns out to
amount to the GQ-actions on the torsion points of Fermat Jacobians Jn :=
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Jac(Fn) which has symmetry induced from the covering group (Z/nZ)2:

Fn := {Xn + Y n = Zn}
⟲(Z/nZ)2
��

{cusps}

��

? _oo

F1 := {X + Y = Z} = P1
t {0, 1,∞}.? _oo

Accordingly the Tate module T̂ (Jn) = lim←−k
(Jn[k]) is operated by GQ and by

Ẑ[(Z/nZ)2]. Climbing up the Fermat tower with identification

lim←−
n

Ẑ[[(Z/nZ)2]] ∼= Ẑ[[πab]], lim←−
n

T̂ (Jn) ∼= π′/π′′,

we eventually find that the GQ-action on the second derived quotient π′/π′′ is
represented by the adelic beta function

B : GQ −→ Ẑ[[Ẑ2]]×

∈ ∈
σ −→ Bσ(x̄, ȳ).

Originally, its ℓ-adic version was introduced in [18] as the universal power series

for Jacobi sums. Fix a prime ℓ. For each σ ∈ GQ, write B
(ℓ)
σ for the image of Bσ

under the natural ℓ-adic projection

Ẑ[[Ẑ2]] ↠ Zℓ[[u, v]] ↪→ Qℓ[[U, V ]],

where (x̄, ȳ) 7→ (1 + u, 1 + v) = (eU , eV ). Here is a list of primary features:

(1) The mapping B(ℓ) : GQ → Zℓ[[u, v]]
× is unramified outside {ℓ}. The

special values at ℓ-power roots of unity B
(ℓ)
σ (ζaℓn− 1, ζbℓn− 1) (n ≥ 1; a, b ∈

Z/ℓnZ) interpolate the family of Jacobi sum Hecke characters on GQ(µℓn).
In other words, it has values of Jacobi sums at Frobenius elements σ = σP
over primes P ∤ ℓ in GQ(µℓn).

(2) The ℓ-adic Taylor expansion has Soulé character coefficients as follows:

Explicit formula (Anderson/Coleman/Ihara-Kaneko-Yukinari)

B(ℓ)σ = exp

 ∑
m≥3,odd

χSoulé
m (σ)

1− ℓm−1
(Um + V m +Wm)


with U + V + W = 0 for σ ∈ Gal(Q/Q(µℓ∞)). Here the m-th (ℓ-adic)
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Soulé character χSoulé
m : GQ(µℓ∞) → Zℓ(m) is, by definition, characterized

by the (accelerated) Kummer properties:

The m-th (ℓ-adic) Soulé character( ∏
1≤a<ℓn

ℓ∤a

(1− ζaℓn)
am−1) 1

ℓn (σ−1) = ζ
χSoulé
m (σ)

ℓn (n ≥ 1).

(3) The local behavior at ℓ is represented by the inertia restriction formula
(Coleman-Ihara formula, cf. [18] Theorem C, p.105) in the form:

Coleman-Ihara formula

χSoulé
m (rec(ϵ))

ℓm−1 − 1
= Lℓ(m,ω1−m)ϕCW

m (ϵ) (ϵ ∈ U∞)

for m ≥ 3 : odd. Notations: For each n ≥ 1, we denote by Un the group
of principal units of Qℓ(µℓn) and by U∞ = lim←−n

Un their norm limit.

Let Ωℓ be the maximal abelian pro-ℓ extension of Q(µℓ∞) unramified

outside ℓ. Then, Ihara’s power series σ 7→ B
(ℓ)
σ (u, v) factors through

Gal(Ω−ℓ /Q). Now, fix an embedding Q ↪→ Qℓ and a coherent system of ℓ-
power roots of unity {ζℓn}n≥1 to identify Zℓ with Zℓ(m). This embedding
and the local class field theory induce the canonical homomorphism rec :
U∞ → Gal(Ωℓ/Q(µℓ∞)) called the reciprocity map. On the other side, the
system {ζℓn}n determines, for m ≥ 1, the Coates-Wiles homomorphism
ϕCW
m : U∞ → Zℓ. The coefficient Lℓ(m,ω1−m) is the Kubota-Leopoldt ℓ-

adic L-value at m with respect to the power of the Teichmüller character
ω.

In regard to the classical decomposition of the beta function into triple gamma
functions B(x, y) = Γ(x)Γ(y)Γ(x+ y)−1, at first sight of the above explicit for-

mula, one may be inclined to consider Γ ♭ := exp(
∑

m≥3,odd
χSoulé
m (σ)
1−ℓm−1 T

m) as a
counterpart to the Γ-function. But this turns out a bad idea for arithmetic
applications, immediately because, as a power series in t = eT − 1, the coef-
ficients of Γ ♭ cannot stay within “integers” (by acquiring big denominators).
One useful way to remedy this denominator problem is to consider a “twisted
log” of a factor of B(ℓ) defined by

g(t) :=
∑

m≥1,odd
χSoulé
m (σ)

Tm

m!
∈ Zℓ[[t]], 1 + t = exp(T )
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for σ ∈ GQ(µℓ∞), which differs from log(Γ ♭) in accompanying χSoulé
1 (σ)T atm = 1

while missing divisions (1−ℓm−1)−1 (m ≥ 3). Deep connections to Iwasawa the-
ory of cyclotomic fields emerge in the behavior of gσ ranged in the “minus part of
the Coleman space” V− ⊂ Zℓ[[t]]. Surprisingly, it is shown in Ichimura-Kaneko
[16], V− is isomorphic to the expected combinatorial model F ⊂ Zℓ[[u, v]]

× for

the collection {B(ℓ)σ | σ ∈ GQ(µℓ∞)} defined by certain symmetric relations in-

cluding one that encodes S4-symmetry of an amalgamated product of π1( )

(cf. Deligne’s idea sketched in [21] p.68). The quotient V−/{gσ}σ ∼= F/{B(ℓ)σ }σ
is called the Vandiver gap, for it vanishes if and only if ℓ ∤ h+(Q(µℓ)) ([7], [21],
[16], [15]).
It is G.Anderson’s essential idea to extend the coefficients of power series from

Zℓ to Wℓ = W (F̄ℓ) = Ẑur
ℓ , the ring of Witt vectors over F̄ℓ and to introduce the

power series

Γ(ℓ)
σ (t) = exp(

∑
m≥3,odd

χSoulé
m (σ)

1− ℓm−1
Tm) · (1 + t)γσ ∈Wℓ[[t]]

×

which is close to Γ ♭ but with complementary factor by a (branch of) Euler-
Masheroni cocycle γσ such that γσ − ϕ(γσ) = χSoulé

1 (σ) where ϕ is the frobenius
automorphism of Wℓ ([21] (36), [1] (11.3.4), [7] §V-VI). Note also that it re-

covers the above g(t) as log Γ
(ℓ)
σ (t)− 1

ℓ log ϕ(Γ
(ℓ)
σ )((1 + t)ℓ − 1) and satisfies the

decomposition Bσ(u, v) = Γ
(ℓ)
σ (u)Γ

(ℓ)
σ (v)Γ

(ℓ)
σ (w) with (1 + u)(1 + v)(1 + w) = 1.

Taking the product W =
∏

ℓWℓ over all primes ℓ, G.Anderson [1] developed

the theory of hyper-adelic gamma function IΓσ ∈W[[Ẑ]]× and established many
properties such as the fact that its special values interpolate Gauss sums,
that a hyperadelic analog of the Gauss multiplication formula

∏N−1
i=0 Γ(s+i

N ) =

N 1−s∏N1

i=1 Γ(
i
N ) holds.

These studies on the Galois image in the meta-abelian reduction GQ →
Aut(π/π′′) bring us first clues to understanding the whole Galois image of
the Galois representation φ−→

01
: GQ → Aut(π). In particular, in the pro-ℓ

case, the sequence of Soulé characters {χSoulé
m }m≥3,odd yields a system of virtual

generators for the core part φ
(ℓ)
−→
01
(GQ(µℓ∞)) ⊂ Aut(F̂ pro-ℓ

2 ), whose (iterated) com-

mutator products diving into deeper anabelian (viz. “entirely non-abelian”)

sea of φ
(ℓ)
−→
01
(GQ(µℓ∞)) have formed another important subject to research. How-

ever, in this article, we content ourselves with just recalling several fundamental
references: Ihara [24], Sharifi [35], Hain-Matsumoto [14], Brown [5]...

0.2. Combinatorial construction. It is also important to understand the
adelic beta function Bσ (σ ∈ GQ) in terms of profinite combinatorial group
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theory. Recall once again the derived series of the geometric fundamental group
π of P1 − {0, 1,∞}: π ⊃ π′ ⊃ π′′ ⊃ · · · with the abelianization πab = π/π′ =

Ẑx̄ ⊕ Ẑȳ ∼= Ẑ2. It is known that the second derived quotient π′/π′′ (equipped

with (GQ, Ẑ[[Ẑ2]])-action) is a free cyclic Ẑ[[Ẑ2]]-module generated by [x, y] ∈
π′/π′′, the image of [x, y] = xyx−1y−1 ∈ π′. It follows from this remark that, for

σ ∈ GQ, one can introduce B′σ ∈ Ẑ[[Ẑ2]]× by the equation σ([x, y]) = B′σ · [x, y]
in π′/π′′: Then, it turns out that

B′σ =

(
x̄λ − 1

x̄− 1
· ȳ

λ − 1

ȳ− 1

)
Bσ (σ ∈ GQ)

where λ = χcyc(σ) (cf. [23] §1.4 (2)).
It is not difficult to see that the GQ-action on π′/π′′ as the projective limit

of the torsions of Fermat Jacobians lim←−n
(T̂ Jn) comes from the Belyi (faithful)

action of GQ on π = π1(P
1
Q − {0, 1,∞},

−→
01) which is uniquely characterized as

a homomorphism φ−→
01

: GQ ↪→ ĜT ⊂ Aut(π) into the Grothendieck-Teichmüller

group ĜT :

ĜT :=


α ∈ Aut(π)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α(x) = xλ (∃λ ∈ Ẑ×),
α(y) = f−1yλf (∃f ∈ π′),
α(z) ∼ zλ (π-conjugate),

s.t.
(λ, f) satisfies conditions “(I),(II),(III)” where
(I),(II)⇔ S3-symmetry of P1 − {0, 1,∞}
(III)⇔ “pentagon” on the moduli space M0,5


.

Each element α ∈ ĜT can be characterized by the two parameters λ ∈ Ẑ×
and f ∈ F̂ ′2 appearing in the defining condition. We often write ĜT ∋ σ 7→
(λσ, fσ) ∈ Ẑ× × F̂2 for the set-theoretical embedding. The former parameter
λσ just extends the cyclotomic character: λσ = χcyc(σ) (σ ∈ GQ); thus, to

control the latter parameter fσ ∈ F̂2 (ranged in the space of pro-words in non-
commutative two variables x, y) should be one of the ultimate goals for the
Grothendieck-Teichmüller theory. The above Grothendieck-Teichmüller group
was introduced as a combinatorial model of the Galois image φ−→

01
(GQ) in Aut(F̂2)

by Drinfeld and Ihara (see [9], [20]). In [23], after extending B and IΓ to

functions on ĜT and deriving “pentagon ⇒ Γ-factorization”, Ihara introduced

intermediate subgroups of ĜT :

GTK � z

,,YYYYYY
YY

GQ
( �

55kkkkkkkkkk
� v

))SSS
SSSS

SS GTA′ ⊂ ĜT ⊂ Aut(π),

GTA
$ �

22eeeeeeeeeeeeee
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where, GTA is designed to hold the Gauss-multiplication formula for the exn-
tended IΓ, and GTK is designed to respect compatibility condition in the fol-
lowing ‘Kummer covering vs. open immersion’-diagram:

Gm − µN

⟲(Z/NZ)
��

P1 − {0, 1,∞} Gm − µN .? _oo

After years later, B.Enriquez [10] remarkably proved GTK = ĜT .

1. An elliptic analog on ĜT ell

Already in [19], Ihara introduces Fox calculus in profinite context and aims to
study not only the Fermat tower but also other important towers including the
elliptic modular tower over P1−{0, 1,∞} (λ-line). This influential paper moti-
vated M.Ohta [34] to invent a new theory of “ordinary p-adic Eichler-Shimura
cohomology” in his subsequent series of works. On the other hand, Ihara de-
livered lectures in the Spring Term of 1984 at Chicago (cf. Acknowledgements
of [18]) which hinted S.Bloch to consider Galois representations in fundamental
groups of once-punctured elliptic curves. Note that topological fundamental
groups of both once punctured torus and 3 point punctured sphere are isomor-
phic to a free group with two generators:

π1( ) ∼= F2
∼= π1(����������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
����� ).

A mimeographed copy of Bloch’s letter to Deligne [4] was brought to the author
before Ihara left from Tokyo to Kyoto in 1990. H.Tsunogai and I began to
study [4] by summer of 1992: For an elliptic curve E over a number field k,
Bloch’s letter [4] looked at the action of Galois group Gk∞, where k∞ is the field
obtained by adjoining all coordinates of ℓ-power torsion points of E to k, on the
meta-abelian quotient π/π′′ for π = πpro-ℓ

1 (Ek̄ −{O}) and constructed a certain
map from Gk∞ into Zℓ[[Tℓ(E)(1)]] modulo constant terms, whose non-triviality
follows from properties of modular units exhibited in the book of Kubert-Lang.
In [37], Tsunogai figured out the missing constant term, and in [27] I expressed
the other coefficients in terms of (accelerated) Kummer properties of special
values of elliptic modular units. Unfortunately, extension of the above power
series from Gk∞ to the whole Gk had been obstructed by technical reason due
to the different inertia structures between π1(E \ {O}) and π1(P1 − {0, 1,∞}).
This obstruction problem together with Ibukiyama’s hint concerning similarity
between Jacobi sums and Dedekind sums (this was also brought to me in 1993)
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had been kept mysterious in my mind for long years till a solution was obtained
in 2009 (cf. [29] Note and acknowledgements).

1.1. Universal elliptic curves. Let us quickly summarize the solution to the
above last problem obtained in [29] and subsequent works. The main setup is
the monodoromy representation arising in the universal family of Weierstrass
elliptic curves E \ {O} := {y2 = 4x3 − g2x − g3} over the parameter space
M := {(g2, g3) | ∆ := g32 − 27g23 ̸= 0} ([29, §5]). We consider both E \ {O} and
M as affine varieties over Q.

E \ {O} := {y2 = 4x3 − g2x− g3}

��

���������
���������
���������

���������
���������
���������

Tate(q)

��

? _oo_ _ _ _

M := {(g2, g3) | ∆ := g32 − 27g23 ̸= 0}
w̃

PX

SpecQ((q))

NV

? _oo_ _ _

The natural projection E\{O} →M is the Weierstrass family of once punctured
elliptic curves. We have a tangential section w̃ : M 99K E \ {O} (normalized
with t := −2x/y) and a tangential fiber Tate(q) ↪→ E \ {O} whose Weierstrass
coefficients g2(q), g3(q) ∈ Q[[q]] are well known power series in q of Eisenstein
type. The images of SpecQ((q)) on the individual spaces in the above diagram
will be most useful as base points of those étale fundamental groups. From the
van-Kampen construction of the degeneration of Tate curve, one can introduce
standard loops x1,x2, z of π̂1,1 := πét

1 (Tate(q) ⊗ Q) based at Im(w̃) ∩ Tate(q)
with [x1,x2]z = 1 ([x1,x2] := x1x2x

−1
1 x−12 ). Note that π̂1,1 is isomorphic to a

free profinite group F̂2 freely generated by x1,x2. From these setup, we obtain
the splitting of arithmetic fundamental groups

πét
1 (E \ {O}) = πét

1 (M)⋉ π̂1,1, πét
1 (M) = GQ ⋉ B̂3,

and the monodromy representation into the elliptic Grothendieck-Teichmüller

group ĜT ell introduced by B.Enriquez [11]:

φ1,1 : π1(M1,1)
� � //Aut∗(π) = {α ∈ Aut(π) | α(z) = zλ}

B̂3 ⋊GQ
� � // ĜT ell = B̂3 ⋊ ĜT .

OO

1.2. Adelic Eisenstein function.

Theorem 1.1. Let Qf = Q⊗ Ẑ. The π1(M)-action on π/π′′ is represented by
a single function (called the adelic Eisenstein function)

E : ĜT ell ×Q2
f −→ Ẑ.

On B3×Q2, Eσ(
u
m ,

v
m) is described in terms of generalized Rademacher functions

(Dedekind sums). On ĜT ×Q2
f , it is described in terms of B : ĜT → Ẑ[[Ẑ2]].
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To illustrate a core idea behind the above theorem, we focus on how to capture
monodromy effect on the meta-abelian covers over a once-punctured elliptic
curve E \ {O} (cf. [27], [29]). Let {EN}N∈N be the isogeny tower on E1 =
E, where all EN are the same E but EN → E1 is given as the isogeny of
multiplcation by N ∈ N. Then, each EN := E \E[N ] is geometrically the étale
(Z/NZ)2-cover of EO = E1 = E \ {O}. Let HN ⊂ π be the corresponding open
normal subgroup of π := π̂1,1.

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

  

Θ

E   =E \ {O}

mE    =E \ E[m]

O

ml
E      =E \ E[ml]

E      (            )
ml

1/ L

Consider a sequence of étale covers
Eml(Θ

1/L) → Eml → Em → EO for
m ∈ N, l: a prime and L = lk

(k > 0), where Eml(Θ
1/L) is the L-

th Kummer covering by the unit func-
tion Θ : Eml → Gm whose divisor is
supported on div(Θ) = Eml[l] − l2[O]
(i.e., Eml(Θ

1/L) is the fiber product of
Θ and degree L isogeny of Gm). Let
Hml,L be the subgroup of Hml(⊂ π) cor-
responding to Eml(Θ

1/L) → Eml. The
monodromy permutation on the Hml,L-
conjugacy classes of inertia subgroups
over the missing points in Eml[ml] \
Eml[l] of Eml is encoded in the Kummer

monodromy properties of values {Θ(P )1/L | P ∈ Eml[ml] \ Eml[l]}. But since
Θ(P ) is (a quotient of) Siegel modular units which are essentially of the form
exp(

∫
Eiswt=2

level=mldτ), the focused Kummer monodromy corresponds to period
integrals of Eisenstein forms of weight 2 and level ml. The geometric mon-
odromy moving moduli of elliptic curves amounts to the period function clas-
sically known as the generalized Rademacher function computing generalized
Dedekind sums. The arithmetic action of GQ at “Tate-section” can also be
computed by the action on the first coefficients of involved q-series, which turns
out to be reduced to looking at adelic beta function. It turns out that the
process of letting m, k → ∞ exhausts monodromy effects on the meta-abelian
quotient π/π′′ so as to determine Eσ(

u
m ,

v
m).

∗ ∗ ∗

At the end of my talk in the workshop, I remarked that the above illustra-
tion looks like a parasol covering stages of isogeny-tower of ellitptic curves. In
Japan, 80th anniversary is called傘寿, where the first Kanji-character indicates
a parasol under which many people (人) live. I would like to celebrate Ihara’s
80th happy birthday and once again express my gratitude for his being the
great mentor to us to discover wonderful and deep world of mathematics.
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