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Abstract. We study two linear bases of the free associative algebra Z⟨X,Y ⟩: one is formed by

the Magnus polynomials of type (adk1
X Y ) · · · (adkd

X Y )Xk and the other is its dual basis (formed
by what we call the ‘demi-shuffle’ polynomials) with respect to the standard pairing on the
monomials of Z⟨X,Y ⟩. As an application, we show a formula of Le-Murakami, Furusho type
that expresses arbitrary coefficients of a group-like series J ∈ C⟨⟨X,Y ⟩⟩ in terms of the “regular”
coefficients of J .
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1. Introduction

Let R be a commutative integral domain of characteristic 0, and let R〈X,Y 〉 be the free
associative algebra generated over R by two (non-commutative) letters X and Y . For u, v ∈
R〈X,Y 〉, we shall write [u, v] to denote the Lie bracket uv − vu. In [8], W.Magnus introduced
the associative subalgebra SX ⊂ R〈X,Y 〉 generated by (what are called) the elements arising
by elimination of X:

(1) Y (0) := Y, Y (k+1) := [X,Y (k)] (k = 0, 1, 2, . . . ),

and showed that SX is freely generated by the Y (k) (k = 0, 1, 2, . . . ). Moreover, he derived that
every element Z of R〈X,Y 〉 can be written uniquely in the form

(2) Z = α0X
m + s1X

m−1 + · · ·+ sm,

where α0 ∈ R, s1, . . . , sm ∈ SX (see [8, Hilfssatz 2], [9, Lemma 5.6]). This observation is the first
step preceding to repeated elimination for the construction of the basic Lie elements (an ordered
basis of free Lie algebra) whose powered products in decreasing orders give Poincaré-Birkoff-
Witt basis of the enveloping algebra R〈X,Y 〉 ([9, Theorem 5.8]). Apparently, this theory was
historically a starting point toward subsequent developments of finer constructions of free Lie
algebra bases due to Lazard, Hall, Lyndon, Viennot and others (cf. e.g., [15, Notes 4.5, 5.7]).
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In this note, we however stay on the first step of elimination (2) and look at combinatorial

properties of a certain basis {M(k)}
k∈N(∞)

0

of R〈X,Y 〉 (to be called the Magnus polynomials

below) designed as follows:

Notation 1.1. Let N0 denote the set of non-negative integers, and let

N(∞)
0 :=

∞∪
d=0

(
d∏

k=1

N0

)
× N0

be the collection of finite sequences k = (k1, . . . , kd; k∞) of non-negative integers equipped with

a special last entry k∞ ∈ N0. Here, we consider (; k∞) also as elements of N(∞)
0 coming from

d = 0. For k ∈ N(∞)
0 , define |k| :=

∑∞
i=1 ki = k1 + · · ·+ kd + k∞ (resp. dep(k) := d), and call it

the size (resp. depth) of k.

Definition 1.2 (Magnus polynomial). For k = (k1, . . . , kd; k∞) ∈ N(∞)
0 , define

M(k) := Y (k1) · · ·Y (kd) ·Xk∞ ∈ R〈X,Y 〉.

We also set M(;0) = 1, M(;k) = Xk (k = 1, 2, . . . ). Note that M(k;0) = Y (k) for k ≥ 0.

Example 1.3. M(1,0;2) = Y (1)Y (0)X2 = (XY − Y X)Y X2 = XY 2X2 − Y XY X2.

It is not difficult to see that the Magnus polynomial M(k) ∈ R〈X,Y 〉 is homogeneous of
bidegree (|k|, dep(k)) in X and Y .

The above mentioned Magnus expression (2) can then be rephrased as

(3) Z =
∑

k∈N(∞)
0

αkM
(k)

with uniquely determined coefficients αk ∈ R for any given Z ∈ R〈X,Y 〉. In other words, the

collection {M(k) | k ∈ N(∞)
0 } forms an R-linear basis of R〈X,Y 〉.

Below in §2, we will construct another R-linear basis {S(k) | k ∈ N(∞)
0 } (formed by what we

call the ‘demi-shuffle’ polynomials) and show that {M(k)}k and {S(k)}k are dual to each other
under the standard pairing with respect to the monomials of R〈X,Y 〉 (Theorem 2.4). We then
in §3 shortly generalize the duality to the case of free associative algebras of more variables
(Theorem 3.2). In §4, we apply the formation of dual basis to derive a formula of Le-Murakami,
Furusho type that expresses arbitrary coefficients of a group-like series J ∈ R〈〈X,Y 〉〉 in terms
of the “regular” coefficients of J (Theorem 4.1).

2. Demi-shuffle duals and array binomial coefficients

Let W be the subset of R〈X,Y 〉 formed by the monomials in X,Y together with 1, and call
any element of W a word. It is clear that W forms a free monoid by the concatenation product
that restricts the multiplication of R〈X,Y 〉. Each element of R〈X,Y 〉 is an R-linear combination
of words in W . For two elements u, v ∈ R〈X,Y 〉, define the standard pairing 〈u, v〉 ∈ R so as to

extend R-linearly the Kronecker symbol 〈w,w′〉 := δw
′

w ∈ {0, 1} for words w,w′ ∈ W .

Notation 2.1. We use the notation wk := Xk1Y · · ·XkdY Xk∞ and call it the word associated

to k = (k1, . . . , kd; k∞) ∈ N(∞)
0 . The mapping k 7→ wk gives a bijection between N(∞)

0 onto W .
(Note that w(;0) = 1.) The standard pairing 〈wk, wk′〉 is equal to 0 or 1 according to whether
k 6= k′ or k = k′.
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The purpose of this section is to describe the dual of the Magnus basis {M(k)}
k∈N(∞)

0

with

respect to the standard pairing.

Definition 2.2 (Demi-shuffle polynomial). For k = (k1, . . . , kd; k∞) ∈ N(∞)
0 , define

S(k) := (· · · ((Xk1Y ) ∃ Xk2)Y ) ∃ · · · ) ∃ Xkd)Y ) ∃ Xk∞ ∈ R〈X,Y 〉,

where ∃ denotes the usual shuffle product. We also set S(;0) = 1, S(;k) = Xk (k = 1, 2, . . . ). Note

that S(k;0) = XkY for k ≥ 0.

The construction of S(k) can be interpreted as forming the linear sum of all words obtained
from the word wk = Xk1Y · · ·XkdY Xk∞ by consecutively applying ‘left shuffles’ of letters X’s
and ‘concatenations’ of letters Y ’s in wk.

Example 2.3. Here are a few examples: S(0,1;0) = (Y ∃ X)Y = Y XY + XY Y ; S(1,1;0) =

((XY ) ∃ X)Y = XYXY +2XXY Y ; S(1,0,1;0) = (((XY )Y ) ∃ X)Y = XY Y XY +XYXY 2+2X2Y 3.
Using the first identity, one can also compute

S(0,1;1) = ((Y ∃ X)Y ) ∃ X = (Y XY +XY Y ) ∃ X

= (Y XY X + 2Y XXY +XYXY ) + (XY Y X +XYXY + 2XXY Y )

= 2XXY Y + 2XYXY +XY Y X + 2Y XXY + Y XY X.

Theorem 2.4 (Duality). For t,k ∈ N(∞)
0 , we have

〈S(t),M(k)〉 = δkt .

Here δkt is the Kronecker symbol, i.e., designating 0 or 1 according to whether t 6= k or t = k
respectively.

Before going to the proof of the above theorem, we introduce the following notation.

Definition 2.5 (Array binomial coefficient). For t,k ∈ N(∞)
0 with dep(t) = dep(k), |t| = |k|,

define

(4)

(
t

k

)
:=

(
t1
k1

)(
t1 + t2 − k1

k2

)
· · ·
(
t1 + · · · td − k1 − · · · − kd−1

kd

)
,

where t = (t1, . . . , td, t∞), k = (k1, . . . , kd, k∞). We understand
(
t
k

)
= 1 if t = k = (;N) for

some N ∈ N0. We set
(
t
k

)
:= 0 if either dep(t) 6= dep(k) or |t| 6= |k| holds.

Remark 2.6. The special case
(

N,0,...,0;0
k1,k2,...,kd;k∞

)
is the same as the usual multinomial coefficient(

N
k1,k2,...,kd,k∞

)
in combinatorics. Note also that

(
t
k

)
6= 0 implies t∞ ≤ k∞, as the last factor of(

t
k

)
could survive only when (t1 + · · · td − k1 − · · · − kd−1)− kd = k∞ − t∞ ≥ 0.

It turns out that the array binomial coefficients give the expansion of S(t) as a linear sum

of the monomials in W . Recall that, for t = (t1, . . . , td, t∞) ∈ N(∞)
0 , wt denotes the word

Xt1Y Xt2Y · · ·XtdY Xt∞ ∈ W .

Lemma 2.7 (Monomial expansion).

S(k) =
∑

t∈N(∞)
0

(
t

k

)
wt.
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Proof. Without loss of generality, it suffices to show 〈wt, S
(k)〉 =

(
t
k

)
in the case (N :=) |t| = |k|

and (d :=) dep(t) = dep(k). The assertion is trivial when d = 0, as then k = t = (;N),

S(k) = XN = wt and
(
t
k

)
= 1. For d > 0, we argue by induction on d. Suppose d = 1,

k = (k1; k∞) and t = (t1; t∞). Then

S(k) = (Xk1Y ) ∃ Xk∞ =

k∞∑
i=0

(Xk1 ∃ Xi)Y Xk∞−i =

k∞∑
i=0

(
k1 + i

k1

)
Xk1+iY Xk∞−i.

Since N = k1 + k∞ = t1 + t∞, we have 〈wt, S
(k)〉 =

(
k1+k∞−t∞

k1

)
=
(
t1
k1

)
. Suppose d > 1 with

k = (k1, . . . , kd; k∞) and t = (t1, . . . , td; t∞). Write k′ = (k1, . . . , kd−1; 0) ∈ N(∞)
0 . Then

S(k) = (((S(k
′)Y ) ∃ Xkd)Y ) ∃ Xk∞

=

k∞∑
i=0

S(k
′)Y (Xkd ∃ Xi)Y Xk∞−i (associativity of ∃ )

=

k∞∑
i=0

∑
t′

(
t′

k′

)(
kd + i

kd

)
wt′X

kd+iY Xk∞−i,

where t′ = (t′1, . . . , t
′
d−1; t

′
d) ∈ N(∞)

0 runs over those tuples with t′1 + · · ·+ t′d = |k′| so that S(k
′)

is expressed as
∑

t′
(
t′

k′

)
wt′ by the induction hypothesis on dep(k′) = d − 1. The coefficient of

wt in S(k) can be found in the above summand where k∞ − i = t∞, t′d + kd + i = td and t′s = ts
(s = 1, . . . , d− 1), hence

〈wt, S
(k)〉 =

(
t1
k1

)
· · ·
(
t1 + · · · td−1 − k1 − · · · − kd−2

kd−1

)
·
(
kd + k∞ − t∞

kd

)
.

Since N = |k| = |t|, we have kd + k∞ − t∞ = t1 + · · · td − k1 − · · · − kd−1. This establishes the

formula 〈wt, S
(k)〉 =

(
t
k

)
. □

Remark 2.8. It would be worth noting that Lemma 2.7 can be derived from counting 〈wt, S
(k)〉

as the number of certain shuffling of letters in wk = Xk1Y · · ·XkdY Xk∞ to produce wt =
Xt1Y · · ·XtdY Xt∞ . Assume |t| = |k| and dep(t) = dep(k), and consider letters Y as partitions

between groups of letters X’s in wk and in wt. Then 〈wt, S
(k)〉 is the number of ways of

moving some letters X in wk to the left (beyond any number of Y ’s) to form the word wt

without changing orders between X’s from the same group in wk. We count this number by
enumerating branches of possibilities for choosing places of X’s in wt for those moved from wk

group by group. The first binomial factor
(
t1
k1

)
of (4) is the number of ways to choose k1 places

for X’s (coming from the first group in wk) in the first group Xt1Y of wt. The second binomial

factor
(
t1+t2−k1

k2

)
of (4) represents the number of ways to choose k2 places for X’s (coming from

the second group Y Xk2Y in wk) in the first two groups Xt1Y Xt2Y of wt where already occupied
k1 places in the previous step are prohibited to choose. We continue the process in the same
way. For each given i ∈ {2, . . . , d}, suppose that destinations of X’s in Xt1Y · · ·Xti−1 from

Xk1Y · · ·Y Xki−1Y has already been chosen. Then, the i-th binomial factor
(t1+···ti−k1−···−ki−1

ki

)
of (4) represents the number of ways to choose ki places for X’s (coming from the i-th group
Y XkiY in wk) in Xt1Y · · ·Y XtiY (the first i groups of wt): There are t1 + · · ·+ ti places for X
in Xt1Y · · ·Y XtiY but already k1+ · · ·+ki−1 places are occupied by earlier choices. Performing
the process till i = d verifies the desired identity 〈wt, S

(k)〉 =
(
t
k

)
.
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Proof of Theorem 2.4. It is not difficult to see from the formula Y (k) =
∑k

i=0(−1)i
(
k
i

)
Xk−iY X i

([8, (4)]) that the expansion of the Magnus polynomial in monomials is given by

(5) M(k) =
∑

t∈N(∞)
0

{
k

t

}
wt

with

(6)

{
k

t

}
:= (−1)

∑d
i=1(d−i+1)(ki−ti)

(
k1

k1 − t1

)(
k2

k1 + k2 − t1 − t2

)
· · ·
(

kd∑d
i=1(ki − ti)

)
for t := (t1, . . . , td; t∞), k := (k1, . . . , kd; k∞). Since 〈S(t),M(k)〉 =

∑
u∈N(∞)

0

〈S(t), wu〉〈M(k), wu〉,
it suffices to show

(7)
∑
u

{
k

u

}(
u

t

)
= δtk.

Noting that non-zero pairing 〈S(t),M(k)〉 occurs only when |t| = |k|, dep(t) = dep(k), without
loss of generality, we may assume that u in the above summation also runs over those with the
fixed size N := |t| = |k| and depth d := dep(t) = dep(k). Then, the summation

∑
u with u =

(u1, . . . , ud;u∞) has d independent parameters u1, . . . , ud that determine u∞ = N−
∑d

i=1 ui. We

may also regard each ui running over Z, as the coefficients
{
k
u

}
,
(
u
t

)
vanish when combinatorial

meaning is lost. Then, in the summation
∑

(u1,...,ud)∈Zd in (7), the partial factor of summation

involved with the last parameter ud can be factored out in the form:∑
ud∈Z

(−1)−ud

(
kd

ud +
∑d−1

i=1 (ui − ki)

)(
ud +

∑d−1
i=1 (ui − ti)

td

)

= (−1)
∑d−1

i=1 (ui−ki)−kd

(∑d−1
i=1 (ki − ti)

td − kd

)
.

(Use [5, (5.24)].) Repeating this process inductively on d, we eventually find

〈S(t),M(k)〉 =
(

0

t1 − k1

)(
k1 − t1
t2 − k2

)(
k1 + k2 − t1 − t2

t3 − k3

)
· · ·
(∑d−1

i=1 (ki − ti)

td − kd

)
which is equal to δkt as desired. □
Corollary 2.9. Each element u ∈ R〈X,Y 〉 can be written as

u =
∑

k∈N(∞)
0

〈S(k), u〉M(k) =
∑

k∈N(∞)
0

〈M(k), u〉 S(k).

Note that only a finite number of summands are nonzero in either summation above.

3. Generalization to the case R〈X,Y1, Y2, · · ·〉
It is not difficult to generalize the above duality in R〈X,Y 〉 (Theorem 2.4) to similar duality

in R〈X,Yλ〉λ∈Λ (Λ: a nonempty index set), viz. in the associative algebra freely generated by
the symbols X,Yλ (λ ∈ Λ) over R. In fact, introducing

(8) Y
(0)
λ := Yλ, Y

(k+1)
λ := [X,Y

(k)
λ ] (λ ∈ Λ, k = 0, 1, 2, . . . )

that are called the elements arising by elimination of X, Magnus ([8, Hilfssatz 2], [9, Lemma
5.6]) showed that every element Z of R〈X,Yλ〉λ∈Λ has the unique expression (2) with SX the

subalgebra freely generated by the Y
(k)
λ (k ∈ N0, λ ∈ Λ).



6 H.Nakamura

Definition 3.1 (Depth-varied Magnus/demi-shuffle polynomials and monomials). Let d be a

positive integer. For k = (k1, . . . , kd; k∞) ∈ N(∞)
0 and a finite sequence λ = (λ1, . . . , λd) ∈ Λd,

define

M(k,λ) := Y
(k1)
λ1

· · ·Y (kd)
λd

·Xk∞ ;

S(k,λ) := (· · · ((Xk1Yλ1)

∃

Xk2)Yλ2)

∃ · · · ∃ )Xkd)Yλd
)

∃

Xk∞ ;

wk,λ := Xk1Yλ1 · · ·XkdYλd
Xk∞ .

For d = 0 with k = (; k), λ = (), we simply set w(;k),() = M((;k),()) = S((;k),()) = Xk.

Note that the monomials wk,λ (k ∈ N(∞)
0 , λ ∈ Λdep(k)) form an R-linear basis of R〈X,Yλ〉λ∈Λ.

Let us write 〈 , 〉 for the standard pairing defined by the Kronecker symbol with respect to these
monomials.

Theorem 3.2 (Duality). For t,k ∈ N(∞)
0 and λ ∈ Λdep(t), µ ∈ Λdep(k), we have

〈S(t,λ),M(k,µ)〉 = δ
(k,µ)
(t,λ) .

Here δ
(k,µ)
(t,λ) is the Kronecker symbol, i.e., designating 1 or 0 according to whether the pairs (t,λ)

and (k,µ) coincide or not respectively.

Proof. Given a fixed λ = (λ1, . . . , λd) ∈ Λd, let Vλ be the R-linear subspace of R〈X,Yλ〉λ∈Λ
generated by the monomials {wk,λ | k ∈ N(∞)

0 , dep(k) = d}. It is obvious that if λ 6= µ then Vλ

and Vµ are mutually orthogonal under the standard pairing 〈 , 〉. Since M(k,µ) ∈ Vµ, S
(t,λ) ∈ Vλ,

we only need to look at the case µ = λ ∈ Λd. Consider the R-linear subspace Vd of R〈X,Y 〉
generated by {wk | k ∈ N(∞)

0 , dep(k) = d}. Then, the mapping wk 7→ wk,λ defines an isometry,

i.e., an R-linear isomorphism ϕλ : Vd
∼→Vλ preserving 〈 , 〉. The assertion then follows at once

from Theorem 2.4 after observing ϕλ(S
(t)) = S(t,λ) and ϕλ(M

(k)) = M(k,λ). □

4. Application to a formula of Le-Murakami and Furusho type

In this section, we assume that R is a field and consider R〈X,Y 〉 as a subalgebra of the ring of
non-commutative formal power series R〈〈X,Y 〉〉, where a standard comultiplication ∆ is defined
by setting ∆(a) = 1 ⊗ a + a ⊗ 1 for a ∈ {X,Y }. An element J ∈ R〈〈X,Y 〉〉 is called group-like
if it has constant term 1 and satisfies ∆(J) = J ⊗ J . There are many group-like elements; for
example, the subgroup multiplicatively generated by exp(X) and exp(Y ) in R〈〈X,Y 〉〉× consists
of group-like elements and forms a free group of rank 2.

Theorem 4.1 (Le-Murakami, Furusho type formula). Let J ∈ R〈〈X,Y 〉〉 be a group-like element
in the form

J =
∑

k∈N(∞)
0

ckwk,

and write cX for the coefficient c(;1) of X in J . Then,

c(k1,...,kd;k∞) =
∑
s,t≥0

s+t=k∞

(−1)s
(cX)t

t!

∑
s1,...,sd≥0

s=s1+···+sd

(
k1 + s1

k1

)
· · ·
(
kd + sd

kd

)
c(k1+s1,...,kd+sd;0) .

We first prove an elementary identity that will be used for the proof of the above formula.
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Lemma 4.2. Let κ = (k1, . . . , kd) ∈ Nd
0 and s = (s1, . . . , sd) ∈ Zd satisfy s = s1 + · · · + sd ≥ 0

and ki + si ≥ 0 (i = 1, . . . , d). Then, we have

∑
τ∈Nd

0

〈S(τ ;0), w(κ+s;0)〉 · 〈M(τ ;0), w(κ;s)〉 = (−1)s
(
k1 + s1

k1

)
· · ·
(
kd + sd

kd

)
.

Proof. We shall compute the LHS explicitly as the sum over τ ∈ Nd
0 satisfying

∑d
i=1 ti =∑d

i=1(ki + si) with

〈S(τ ;0), w(κ+s;0)〉 =
(
(κ+ s; 0)

(τ ; 0)

)
=

(
k1 + s1

t1

)
· · ·
(∑d−1

i=1 (ki + si)−
∑d−2

i=1 ti
td−1

)(
td
td

)
by Lemma 2.7 and with

〈M(τ ;0), w(κ;s)〉 =
{
(τ ; 0)

(κ; s)

}
= (−1)s+

∑d−1
i=1 (d−i)(ti−ki)

(
t1

t1 − k1

)
· · ·
(

td−1∑d−1
i=1 (ti − ki)

)(
td
s

)
by (5) and s =

∑d
i=1(ti − ki). Note that, since

((κ+s;0)
(τ ;0)

){(τ ;0)
(κ;s)

}
6= 0 only when all entries of

τ = (t1, . . . , td) are nonnegative and t1 + · · · + td =
∑d

i=1(ki + si) (constant), the above sum

can be taken over the tuples (t1, . . . , td−1) ∈ Zd−1 with entries running as independent integers.
Then, the partial summation involved with the last variable td−1 may be factored out as

∑
td−1

(−1)td−1

(∑d−1
i=1 (ki + si)−

∑d−2
i=1 ti

td−1

)(
td−1∑d−1

i=1 (ti − ki)

)(
td
s

)

=
∑
td−1

(−1)td−1

(∑d−1
i=1 (ki + si)−

∑d−2
i=1 ti∑d−1

i=1 ki −
∑d−2

i=1 ti

)( ∑d−1
i=1 si∑d−1

i=1 (ti − ki)

)(∑d
i=1(ki + si)−

∑d−1
i=1 ti∑d

i=1 si

)

=

(∑d−1
i=1 (ki + si)−

∑d−2
i=1 ti∑d−1

i=1 si

)
(−1)

∑d−1
i=1 ki−

∑d−2
i=1 ti

(
kd + sd

sd

)
,

where [5, (5.21)] is applied for the first equality and [5, (5.24)] for the second. After factoring

out the constant
(
kd+sd
sd

)
and repeating the similar process with the other variables td−2, . . . , t1

consecutively, we eventually obtain the asserted formula. Below in Note 4.3, we also provide an
alternative proof of the lemma free from intricate use of [5, (5.21),(5.24)]. □

Proof of Theorem 4.1. We argue in the beautiful framework exploited in Reutenauer’s book [15,
1.5] using the complete tensor product

A = R〈〈X,Y 〉〉⊗̄R〈〈X,Y 〉〉

equipped with a product induced from the shuffle product (resp. the concatenation product)
on the left (resp. right) of ⊗̄. Recall that the ring of R-linear endomorphism EndRR〈〈X,Y 〉〉
can be embedded into A by f 7→

∑
w∈W w ⊗ f(w), and that the product of A restricts to

the convolution product of EndRR〈〈X,Y 〉〉 defined by f ∗ g := conc ◦ (f ⊗ g) ◦∆ (‘conc’ means
concatenation of left and right sides of ⊗). Note that, for f ∈ EndRR〈〈X,Y 〉〉 and J ∈ R〈〈X,Y 〉〉,
we have f(J) =

∑
w∈W 〈w, J〉f(w).
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Since, by Corollary 2.9, every word w can be written as
∑

t∈N(∞)
0

〈S(t), w〉M(t), the element of

A corresponding to the identity id ∈ EndRR〈〈X,Y 〉〉 is:∑
w∈W

w ⊗ w =
∑
w

w ⊗
∑
t

〈S(t), w〉M(t) =
∑
t

(
∑
w

〈S(t), w〉w)⊗M(t)

=
∑
t

S(t) ⊗M(t)

=

 ∞∑
d=0

∑
τ∈Nd

0

S(τ ;0) ⊗M(τ ;0)

 ·

( ∞∑
t=0

Xt ⊗Xt

)
,

where used are S(t) = S(τ ;t) = S(τ ;0) ∃ Xt and M(t) = M(τ ;t) = M(τ ;0) ·Xt. Observing that both
factors of the above last side correspond to specific R-linear endomorphisms, we can apply id to
J as the convolution product of them and find from ∆(J) = J ⊗ J that

(9) J = id(J) =

 ∞∑
d=0

∑
τ∈Nd

0

〈S(τ ;0), J〉M(τ ;0)

( ∞∑
t=0

(cX)t

t!
Xt

)
.

Note here that the pairing of J with Xt = X

∃

t/t! is equal to (cX)t/t!, as easily seen from the
fact that the specialization J(X, 0) ∈ R〈〈X〉〉 at Y = 0 is a group like element exp(cX · X).

To settle the proof of Theorem 4.1, given a fixed k = (κ; k∞) = (k1, . . . , kd; k∞) ∈ N(∞)
0 and

0 ≤ s ≤ k∞, we compute the coefficient of w(κ;s) = Xk1Y · · ·XkdY Xs in the expansion of the
first factor of the above right hand side as follows:

∞∑
d=0

∑
τ∈Nd

0

〈S(τ ;0), J〉〈M(τ ;0), w(κ;s)〉 =

⟨ ∞∑
d=0

∑
τ∈Nd

0

〈S(τ ;0), J〉M(τ ;0), w(κ;s)

⟩

=

⟨ ∞∑
d=0

∑
τ∈Nd

0

⟨
S(τ ;0),

∑
u∈N(∞)

0

(J,wu)wu

⟩
M(τ ;0), w(κ;s)

⟩

=
∑
u

〈J,wu〉
∞∑
d=0

∑
τ∈Nd

0

〈S(τ ;0), wu〉〈M(τ ;0), w(κ;s)〉.

But since 〈S(τ ;0), wu〉〈M(τ ;0), w(κ;s)〉 survives only when dep(τ ; 0) = dep(κ; s) = dep(u) and
|(τ ; 0)| = |(κ; s)| = |u|, the summation

∑
u in the above last side occurs only for those u of the

form (κ + s; 0) ∈ N(∞)
0 with s = (s1, . . . , sd) ∈ Zd, s = s1 + · · · + sd ≥ 0 (cf. also Remark 2.6).

Then, it follows from Lemma 4.2 that the above last side is equal to

∞∑
d=0

∑
s∈Nd

0
|(s;0)|=s

〈J,w(κ+s;0)〉(−1)s
(
k1 + s1

k1

)
· · ·
(
kd + sd

kd

)
.

(Note: The prescribed condition s ∈ Zd has been replaced with s ∈ Nd
0 for a posteriori survivals of

binomial factors). From this and (9) together with 〈J,w(κ+s;0)〉 = c(k1+s1,...,kd+sd;0), we conclude
the assertion. □
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Note 4.3 (Alternative proof of Lemma 4.2). In the right hand side of Lemma 4.2, the quantity(
k1+s1
k1

)
· · ·
(
kd+sd
kd

)
can be interpreted as the pairing 〈w(k1,...,kd;0)

∃ Xs, w(k1+s1,...,kd+sd;0)〉. There-

fore, the assertion of Lemma is equivalent to the identity

(10)
∑
τ∈Nd

0

〈S(τ ;0), w(κ+s;0)〉 · 〈M(τ ;0), w(κ;0) ·Xs〉 = (−1)s〈w(κ;0)

∃ Xs, w(κ+s;0)〉

for κ = (k1, . . . , kd) ∈ Nd
0, s = (s1, . . . , sd) ∈ Zd satisfying s = s1+· · ·+sd ≥ 0 and κ+s ∈ Nd

0. We
now give an alternative proof for it using the Magnus/demi-shuffle duality: First, by Corollary

2.9, we have w(κ;0) =
∑

r〈M(r), w(κ;0)〉S(r) and w(κ+s;0) =
∑

t〈S(t), w(κ+s;0)〉M(t) so that the RHS
of (10) can be written as

(−1)s〈w(κ;0)

∃ Xs, w(κ+s;0)〉(11)

= (−1)s
∑

r,t∈N(∞)
0

〈S(r) ∃ Xs,M(t)〉〈M(r), w(κ;0)〉〈S(t), w(κ+s;0)〉

= (−1)s
∑
ρ∈Nd

0

〈M(ρ;0), w(κ;0)〉〈S(ρ;s), w(κ+s;0)〉.

Here in the second equality, we use the fact that 〈M(r), w(κ;0)〉 survives only if r = (ρ; 0) ∈ N(∞)
0

for some ρ ∈ Nd
0 and then apply the duality (Theorem 2.4) to 〈S(r) ∃ Xs,M(t)〉 with S(ρ;0) ∃ Xs =

S(ρ;s) (cf. Definitions 1.2 and 2.2).
On the other hand, in the LHS of (10), one observes that nontrivial terms of the summation

arise only from those τ = (τ1, . . . , τd) ∈ Nd
0 subject to

∑d
i=1 τi = s +

∑d
i=1 κi (constant). But

then, the last binomial factor in (6) for 〈M(τ ;0), w(κ;0)·Xs〉 =
{(τ1,...,τd;0)
(κ1,...,κd;s)

}
equals

(
τd
s

)
which is non-

zero only if τd ≥ s. Therefore, the summation
∑

τ may be replaced by
∑

ρ with ρ = τ − (0, s)

in Nd
0 (where 0 ∈ Nd−1

0 : the zero vector). Thus, the LHS of (10) can be written as∑
τ∈Nd

0

〈S(τ ;0), w(κ+s;0)〉 · 〈M(τ ;0), w(κ;0) ·Xs〉(12)

=
∑
ρ∈Nd

0

〈S(ρ+(0,s);0), w(κ+s;0)〉 · 〈M(ρ+(0,s);0), w(κ;s)〉.

Comparing summands of the above (11) and (12) for individual ρ ∈ Nd
0 in view of coefficients of

monomial expansions of demi-shuffle/Magnus polynomials (Lemma 2.7 and (5)), we reduce the
formula (10) to the following elementary identity for κ = (ki),ρ = (ri) ∈ Nd

0 and s = (si) ∈ Zd

satisfying
∑d

i=1 ki =
∑d

i=1 ri, s+ κ ∈ Nd
0 and s :=

∑d
i=1 si ≥ 0:

(13)

(
(κ+ s; 0)

(ρ; s)

){
(ρ; 0)

(κ; 0)

}
= (−1)s

(
(κ+ s; 0)

(ρ+ (0, s); 0)

){
(ρ+ (0, s); 0)

(κ, s)

}
that is an immediate consequence of definitions of these symbols {∗∗}, (∗∗). (Observe that only
difference between the corresponding symbols occurs from the last binomial coefficient in (4)
and (6).) □

Example 4.4. The following shows an output of a group-like element J =
∑

w∈W cww of
R〈〈X,Y 〉〉 with the shuffle relation (which is necessary and sufficient for group-likeness due to
Ree [14]) counted from a computation using software [10] up to total degree 4.
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J = 1 + cXX + cY Y +
c2XXX

2
+ cXYXY + (cXcY − cXY )YX +

c2Y YY

2
+

c3XXXX

6

+ cXXYXXY + (cXcXY − 2cXXY )XYX + cXYYXYY +

(
1

2
c2XcY − cXcXY + cXXY

)
YXX

+ (cXY cY − 2cXYY )YXY +

(
1

2
cXc2Y − cXY cY + cXYY

)
YYX +

c3Y YYY

6

+
c4XXXXX

24
+ cXXXYXXXY + (cXcXXY − 3cXXXY )XXYX + cXXYYXXYY

+

(
1

2
c2XcXY − 2cXcXXY + 3cXXXY

)
XYXX +

(
c2XY

2
− 2cXXYY

)
XYXY

+

(
cXcXYY −

c2XY

2

)
XYYX+cXYYYXYYY+

(
1

6
c3XcY − 1

2
c2XcXY + cXcXXY − cXXXY

)
YXXX

+

(
cXXY cY −

c2XY

2

)
YXXY +

(
cXcXY cY − 2cXcXYY − 2cXXY cY +

1

2
c2XY + 2cXXYY

)
YXYX

+ (cXYY cY − 3cXYYY )YXYY +

(
1

4
c2Xc2Y − cXcXY cY + cXcXYY + cXXY cY − cXXYY

)
YYXX

+

(
1

2
cXY c2Y − 2cXYY cY + 3cXYYY

)
YYXY +

(
1

6
cXc3Y − 1

2
cXY c2Y + cXYY cY − cXYYY

)
YYYX

+
c4Y YYYY

24
+ (terms of degree ≥ 5).

In the above computation, one observes that the coefficient cXYXY is expressed by lower
simpler coefficients of J . This does not follow from Theorem 4.1, however, does reflect the fact
that XYXY is not a Lyndon word. Discussions on the most economical expression using only
the coefficients of Lyndon words can be found in [12].

Note 4.5. In the modern theory of multiple zeta values, a certain standard solution Gz
0(X,Y ) ∈

C〈〈X,Y 〉〉 to the KZ-equation on z ∈ C − {0, 1} is known as the generating function for the
multiple polylogarithms (MPL). It is also used to define the Drinfeld associator Φ(X,Y ) ∈
C〈〈X,Y 〉〉. The coefficients of w(k1,...,kd;0) in Φ(X,Y ) (resp. in Gz

0(X,Y )) are regular multiple zeta
values (resp. regular MPL) of multi-index (k1, . . . , kd), but the other coefficients are in general
not. Le-Murakami [6], Furusho [4] derived formulas that express all coefficients of Φ(X,Y ) and
Gz

0(X,Y ) by those ‘regular’ coefficients explicitly. In [13, Remark 2], the author posed a question
if it could be a similar case for ‘ℓ-adic Galois associator f z

σ(X,Y ) ∈ Qℓ〈〈X,Y 〉〉’, in which context
analytic theory of KZ-equation is unavailable yet. Since fz

σ(X,Y ) is by definition a group-like
element, the above Theorem 4.1 answers the question affirmatively.

Note 4.6. A noteworthy notion closely related to our S(k), S(k,λ) is the free Zinbiel (or, dual
Leibniz) algebra studied by J.-L. Loday [7], I. Dokas [2], F. Chapoton [1] et.al. Let V be a vector
space with a basis B = {X0, X1, . . . } and T (V ) be the tensor algebra (free associative algebra)
generated by the letters in B. Loday introduced the “half-shuffle” product ≺ in T (V ) as the
linear extension of the binary product on words given by:

(x0x1 · · ·xp) ≺ (xp+1 · · ·xp+q) := x0 ·
(
(x1 · · ·xp) ∃ (xp+1 · · ·xp+q)

)
,

where xi are letters in B (i = 0, . . . , p+q). It is remarkable that, while the usual shuffle product
w ∃ w′ = w ≺ w′ + w′ ≺ w is associative (and commutative), the half-shuffle product ≺ is not
even associative — however satisfying (w1 ≺ w2) ≺ w3 = w1 ≺ (w2 ≺ w3) + w1 ≺ (w3 ≺ w2).

We may relate the ‘Zinbiel monomials’ with our demi-shuffle polynomials S(k,λ) in Definition 3.1
as follows: Write ∗ 7→ ∗ for the anti-automorphism of R〈X,Yλ〉λ∈Λ reversing the order of letters
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in each word, e.g., XXYλ = YλXX. Then,

(14) S(k,λ) = Xk∞ ∃ (...(Yλd
Xkd ≺

(
Yλd−1

Xkd−1 ≺
(
· · · ≺

(
Yλ2X

k2 ≺ Yλ1X
k1
))
...
)

for k = (k1, . . . , kd; k∞) ∈ N(∞)
0 , λ = (λ1, . . . , λd) ∈ Λd. These polynomials also appeared in

[11, Proposition 5.10] to illustrate the coefficients (of the main factor) of a solution of the KZ-

equation expanded in (adk1−XY ) · · · (adkd−XY ). We also learn from a paper by L. Foissy and F.
Patras [3] that already in M.-P. Schützenberger’s work [16] is found an axiomatic treatment of
half-shuffle combinatorics on words named “algèbre de shuffle”.

Calling S(k), S(k,λ) ‘demi-shuffle’ in Definitions 2.2, 3.1 or reserving ‘semi-shuffle’ for names
of anything else might keep a moderate distance from the already overwhelming naming ‘half-
shuffle’ of the operation ≺ in literature.
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