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of the profinite braid groups
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Abstract. In this paper we determine the automorphism groups of the profinite

braid groups with four or more strings in terms of the profinite Grothendieck-Teichmüller

group.
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1. Introduction. Let Bn be the Artin braid group with n(≥ 2) strings defined by

generators σ1, σ2, . . . , σn−1 and relations:

• σiσi+1σi = σi+1σiσi+1 (i = 1, . . . , n− 1),

• σiσj = σjσi (|i− j| ≥ 2).

In [DG], J. L. Dyer and E. K. Grossman studied the automorphism group Aut(Bn)

and showed Out(Bn) ∼= Z/2Z for n ≥ 3. In this paper, we study the continuous

automorphisms of the profinite completion B̂n of Bn. We prove

Theorem A. Let n ≥ 4. There exists a natural isomorphism

Out(B̂n) ∼= ĜT× (1 + n(n− 1)Ẑ)×,

where ĜT is the profinite Grothendieck-Teichmüller group introduced by V. Drinfeld

[Dr], Y. Ihara [I90]-[I95] and (1 + n(n − 1)Ẑ)× is the kernel of the natural projection

Ẑ× → (Z/n(n− 1)Z)×.
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It is well known that the center Ĉn of B̂n is (topologically) generated by ζn :=

(σ1σ2 · · · σn−1)n and is isomorphic to Ẑ. Write

B̂n := B̂n/Ĉn.

Since Ĉn is a characteristic subgroup of B̂n, there is induced the natural homomorphism

ĜT→ Out(B̂n). The key fact for the proof of Theorem A is the following isomorphism

theorem.

Theorem B (Theorem 4.3). Let n ≥ 4. Then, it holds that ĜT
∼→ Out(B̂n).

Our proofs of Theorems A and B rely on preceding works by many authors on the

Grothendieck-Teichmüller group ĜT and the profinite completion Γ̂0,n of the mapping

class group Γ0,n of the sphere with n marked points (cf. [I95], [LS1], [LS2], [C12]). The

permutation of labels defines a natural inclusion of the symmetric group of degree

n: Sn ↪→ Out(Γ̂0,n), whose image commutes with the standard action of ĜT on Γ̂0,n

([I95]). D.Harbater and L.Schneps [HS] remarkably showed that when n ≥ 5, ĜT is

characterized as a “special” subgroup of the centralizer of Sn in Out(Γ̂0,n). In a recent

work [HMM], this result has been improved by showing that the focused centralizer is

indeed full as large as possible in Out(Γ̂0,n). In particular,

Theorem 1.1 (Hoshi-Minamide-Mochizuki [HMM] Corollary C). There is a natural

isomorphism of profinite groups

ĜT×Sn+1
∼→ Out(Γ̂0,n+1)

for every integer n ≥ 4. �

Theorems A and B will be derived by translating the ingredient of Theorem 1.1 for

Out(Γ̂0,n+1) into the language of Out(B̂n) and Out(B̂n). Arguments given by Dyer-

Grossman [DG] for discrete braid groups generically guide us also in profinite context.

However, for the case n = 4, we elaborate a different treatment in Section 3 due to the

existence of non-standard surjections B4 � S4 found in E. Artin’s classic [A47]. Our

argument in Section 3 looks at the “Cardano-Ferrari” homomorphism B4 � B3 which

has close relations with the universal monodromy representation in once-punctured

elliptic curves. Noting that B4 is isomorphic to the mapping class group Γ1,2 of a

topological torus with two marked points, we obtain from Theorem B the following

remarkable

Corollary C. There is a natural isomorphism ĜT
∼→ Out(Γ̂1,2). �
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including a similar phase to this paper.
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2. Generalities on braid groups. We begin with recalling basic facts on braid

groups (cf. e.g., [KT]). Let n ≥ 3 be an integer. The pure braid group Pn is the kernel

of the epimorphism

$n : Bn � Sn

σi 7→ (i, i+ 1) (i = 1, . . . , n− 1).

The center Cn of Pn coincides with the center of Bn which is a free cyclic group

generated by

ζn := (σ1σ2 · · · σn−1)n.

Write Pn := Pn/Cn and Bn := Bn/Cn. The above $n factors through πn : Bn � Sn

and there arise the following exact sequences of finitely generated groups:

1 −−−→ Pn −−−→ Bn
πn−−−→ Sn −−−→ 1,(2.1)

1 −−−→ Cn −−−→ Bn −−−→ Bn −−−→ 1,(2.2)

1 −−−→ Cn −−−→ Pn −−−→ Pn −−−→ 1.(2.3)

We introduce the mapping class group of the n-times punctured sphere Γ0,[n] to be the

group generated by σ̄1, σ̄2, . . . , σ̄n−1 with the relations

• σ̄iσ̄i+1σ̄i = σ̄i+1σ̄iσ̄i+1 (i = 1, . . . , n− 1),

• σ̄iσ̄j = σ̄jσ̄i (|i− j| ≥ 2),

• σ̄1 · · · σ̄n−2 σ̄
2
n−1σ̄n−2 · · · σ̄1 = 1,

• (σ̄1σ̄2 · · · σ̄n−1)n = 1.

Observe that there is a natural epimorphism

Ψn : Bn � Γ0,[n](2.4)

σi 7→ σ̄i (i = 1, . . . , n− 1)

which factors through Bn = Bn/Cn. We also write Γ0,n for the pure mapping class group

of the n-times punctured sphere which is by definition the kernel of the epimorphism

γn : Γ0,[n] � Sn(2.5)

σ̄i 7→ (i, i+ 1) (i = 1, . . . , n− 1)

fitting in the exact sequence

1 −−−→ Γ0,n −−−→ Γ0,[n] −−−→ Sn −−−→ 1.(2.6)

In this paper, besides the above epimorphism Ψn (2.4), another shifted morphism

Φn : Bn → Γ0,[n+1](2.7)

σi 7→ σ̄i (i = 1, . . . , n− 1)
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plays an important role, whose kernel is known to coincide with Cn ([FM, Section

9.2-3]). The homomorphism Φn induces the following commutative diagram of groups

(2.8)

1 // Pn //

∼
��

Bn
πn

//
� _

��

Sn
//

� _

ιn

��

1

1 // Γ0,n+1
// Γ0,[n+1]

γn+1
// Sn+1

// 1,

where the horizontal sequences are exact; the left-hand (resp. middle; right-hand)

vertical arrow is the isomorphism (resp. the injection; the natural injection which

trivially extends each permutation of {1, 2, . . . , n} to that of {1, 2, . . . , n+1}) induced

from Φn.

It is well known that the profinite completion functor preserves the (injectivity of the)

kernel part of the exact sequences (2.1)-(2.3) and (2.6) respectively. If Z(G) denotes

the center of a profinite group G, then

(2.9)

{
Z(Pn) = Z(Bn) = Z(P̂n) = Z(B̂n) = {1},
Ĉn = Z(P̂n) = Z(B̂n) (∼= Ẑ).

hold (cf. e.g., [N94, Section 1.2-1.3]).

Definition 2.1. Let n ≥ 3 be an integer. We shall write (∗) for the commutative

diagram of profinite groups

(∗)

1 // P̂n //

∼
��

B̂n
π̂n

//
� _

��

Sn
//

� _

ιn

��

1

1 // Γ̂0,n+1
// Γ̂0,[n+1]

γ̂n+1
// Sn+1

// 1

which is obtained as the profinite completion of (2.8). Note that the horizontal se-

quences are exact as remarked as above.

Proposition 2.2. Suppose that n 6= 4, n ≥ 3. Then every epimorphism B̂n � Sn has

kernel P̂n. In particular, P̂n is a characteristic subgroup of B̂n.

Proof. E.Artin ([A47, Theorem 1]) classified all surjective homomorphisms Bn � Sn

up to equivalence by conjugation in Sn: When n 6= 4, 6, there is a unique equivalence

class and when n = 6 there are two classes mutually equivalent by a nontrivial outer

automorphism of S6. This proves the assertion for discrete braid groups. Lemma 2.3

below with the residual finiteness of Bn settles the assertion for the profinite braid

groups. �

Lemma 2.3. Let G be a residually finite group, N a normal subgroup of G with finite

quotient Q := G/N . Suppose that every epimorphism G� Q has the same kernel N .

Then, every epimorphism Ĝ� Q has the same kernel N̂ .
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Proof. Note first that, by one-to-one correspondence between the finite index subgroups

of G and the open subgroups of Ĝ, the image of the monomorphism N̂ → Ĝ coincides

with the closure of N in Ĝ. Let p : Ĝ � Q be a given epimorphism. Then, by

[RZ, Proposition 3.2.2 (a)], the closure of H := ker(p) ∩G in Ĝ coincides with ker(p).

Consider the composite:

ϕ : G � G/H
∼→ Ĝ/ker(p)

∼→ Q,

where the first arrow is the projection, the second arrow is the isomorphism induced

from the associated morphism G ↪→ Ĝ ([RZ, Proposition 3.2.2 (d)]) and the third

arrow is the isomorphism induced by p. From the assumption, ϕ has the kernel N , i.e.,

N = ker(ϕ) = H. Thus, ker(p) coincides with N̂ . �

3. Special case B̂4. The main aim of this section is to provide a proof of the

following

Proposition 3.1. P̂4 is a characteristic subgroup of B̂4.

In the proof of [DG, Theorem 11] claiming that Pn is characteristic in Bn for n ≥ 3,

we find an inaccurate argument for the case n = 4: By E. Artin’s classic work ([A47,

Theorem 1]), each surjective homomorphism B4 � S4 is equivalent to one of the

following ε1, ε2, ε3 up to change of labels in {1, 2, 3, 4}:

ε1 : B4 � S4 (σ1 7→ (12), σ2 7→ (23), σ3 7→ (34));

ε2 : B4 � S4 (σ1 7→ (1234), σ2 7→ (2134), σ3 7→ (1234));

ε3 : B4 � S4 (σ1 7→ (1234), σ2 7→ (2134), σ3 7→ (4321)).

Among them, ker(ε1) = P4, while neither ker(ε2) or ker(ε3) equals to P4, for σ2
1 ∈ P4

has non-trivial images in S4: ε2(σ2
1) = ε3(σ2

1) = (13)(24).

Let ε̄1 : B4 � S4 be the induced map. Given an arbitrary automorphism φ ∈
Aut(B4), consider the composite

εφ : B4 → B4/C4 = B4
∼→
φ
B4

ε̄1−→ S4.

Dyer-Grossman [DG, p.1159] discusses that εφ cannot be equivalent to ε2, for (σ̄1σ̄2σ̄3)2

has order exactly two in B4 hence does not belong to P4 (torsion-free), while

ε2((σ1σ2σ3)2) = 1. If moreover one knew εφ 6∼ ε3, then one could get εφ ∼ ε1 and

hence φ(P4) = P4 so as to conclude Proposition 3.1. However, in [DG], apparently

omitted is a discussion about ε3 as the existence of ε3 is already missed in their citation

of Artin’s theorem in [DG, Theorem 2]. Since ε3((σ1σ2σ3)2) = (12)(34) 6= 1, a simple

replacement of the above argument for εφ 6∼ ε2 does not work to eliminate another

possibility εφ ∼ ε3.
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The fact that P4 is a characteristic subgroup of B4 has followed in a different approach

by topologists (see, e.g., [Ko, Theorem 3]) by using finer analysis of the mapping class

group action on the complex of curves C(S) on a topological surface S. However, a

profinite variant of C(S) to derive Proposition 3.1 still remains unsettled even to this

day. Below, we give an alternative argument looking closely at a family of characteristic

subgroups of B4. We argue in the profinite context, however, our discussion works also

for the discrete case in the obvious interpretation. Our main targets arise from the

following epimorphisms b43 : B̂4 � B̂3 and s43 : S4 � S3 defined by

(3.1) b43 : B̂4 � B̂3 :

{
σ̄1, σ̄3 7→ σ̄1,

σ̄2 7→ σ̄2;
s43 : S4 � S3 :

{
(12), (34) 7→ (12),

(23) 7→ (23),

and the composition

(3.2) P := π̂3 ◦ b43 (= s43 ◦ π̂4) : B̂4 � S3

where π̂n : B̂n � Sn is as in the previous section. The kernel of s43 is what is called

the Klein four group

V4 := ker(s43) = {id, (12)(34), (13)(24), (14)(23)} ⊂ S4.

Denote by p43 : P̂4 → P̂3 the restriction of b43 : B̂4 → B̂3 and write Π̂0,4 := ker(p43).

We note that p43 is not the same as the usual homomorphism obtained by forgetting

one strand of pure 4-braids. These maps fit into the following commutative diagram

of horizontal and vertical exact sequences:

(3.3)

1

��

1

��

1

��

1 // Π̂0,4

��

// ker(b43)

��

// V4

��

// 1

1 // P̂4
//

p43

��

B̂4

P
##

π̂4
//

b43
��

S4
//

s43

��

1

1 // P̂3
//

��

B̂3
π̂3

//

��

S3

��

// 1

1 1 1 .

Concerning the two sequences of subgroups B̂4 ⊃ ker(b43) ⊃ Π̂0,4 and B̂4 ⊃ ker(P) ⊃
P̂4, we shall prove
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Proposition 3.2. (i) Π̂0,4 is a characteristic subgroup of ker(b43).

(ii) ker(P) is a characteristic subgroup of B̂4.

(iii) ker(b43) is a characteristic subgroup of B̂4.

(iv) Π̂0,4 is a characteristic subgroup of B̂4.

(v) P̂4 is a characteristic subgroup of B̂4.

Proposition 3.1 is obtained as (v) of the above Proposition. Here is a simple imme-

diate consequence of it:

Corollary 3.3. P̂n is a charactersitic subgroup of B̂n for every n ≥ 3.

Proof. Proposition 2.2 and Proposition 3.1 show that P̂n is a characteristic subgroup

of B̂n for every n ≥ 3. Assertion follows from this and the fact that P̂n is the inverse

image of P̂n by the projection B̂n � B̂n whose kernel is the center Ĉn of B̂n. �

For the proof of Proposition 3.2, note first that (iv) follows from (i) and (iii). We

will apply (iv) for the proof of (v). Assertion (ii) will be used to prove (iii). In fact, (ii)

follows from a stronger assertion that every epimorphism B̂4 � S3 has the same kernel

as ker(P). In fact, it is not difficult to see that every (discrete group) homomorphism

B4 � S3 is conjugate to the standard one B4 � B3 � S3 (cf. e.g., [Lin, Theorem 3.19

(a)]). Since B4 is residually finite, the profinite version follows from Lemma 2.3. To

complete the proof of Proposition 3.2, it remains to prove (i), (iii) and (v).

Proof of Proposition 3.2 (i): Let us begin with geometric interpretation of Π̂0,4 ⊂
ker(b43) which has been well studied by topologists (see, e.g., [ASWY, Section 2.1],

[KS, Section 3]). One may regard the standard lift β43 : B̂4 � B̂3 of b43 : B̂4 → B̂3

(given by σ1, σ2, σ3 7→ σ1, σ2, σ1 respectively) as the πét
1 -transform of the “Cardano-

Ferrari mapping F0 : (A4 \ D)0 → (A3 \ D)0” assigning to a monic quartic (with no

multiple zeros) its cubic resolvent (in the notations of [N13, Section 5.4]). The kernel

of β43 is isomorphic to the free profinite group F̂2 of rank 2. In fact, after Mordell

transformation, the homomorphism β43 = πét
1 (F0) turns to interpret the monodromy

of the universal family of the (affine part of) elliptic curves

E \ {O} = {Y 2 = 4X3 − g2X − g3}

��

Mω
1,1 = {(g2, g3) | ∆ 6= 0}.

Let
√
ζ4 := (σ1σ2σ3)2 so that β43(

√
ζ4) = ζ3 ∈ B3. Then, the reduced sequence

(3.4) 1 −−−→ F2 −−−→ B4/〈
√
ζ4〉 −−−→ B3/〈ζ3〉 = PSL2(Z) −−−→ 1

fits in the orbifold quotient of the complex model of elliptic curve family over the

upper half plane. Taking into account that
√
ζ4 (mod 〈ζ4〉) acts on each elliptic curve

E : Y 2 = 4X3 − g2X − g3 by the switching ±Y involution, we see that ker(b43) can
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be regarded as the fundamental group of an orbicurve P1
∞,2,2,2 obtained as the X-line

from (E \ {O})/{±1}; it turns out to be isomorphic to the profinite free product of

three copies of Z/2Z:

(3.5) ker(b43) = πét
1 (P1

∞,2,2,2/C) = (Z/2Z)

Π

(Z/2Z)

Π

(Z/2Z)

which may also be regarded as the profinite completion of discrete free product (Z/2Z)∗
(Z/2Z)∗ (Z/2Z) ([RZ, Section 9.1]). The normal subgroup Π̂0,4 of ker(b43) corresponds

to the fundamental group of the Galois cover of P1
∞,2,2,2 with group V4 given in the

Lattés cover diagram:

(3.6)

E \ E[2]

��

// P1 − {e0, e1, e2, e3}

��

E \ {O} // P1
∞,2,2,2

where the left vertical arrow is the isogeny of punctured elliptic curves by multiplication

by 2, and horizontal arrows correspond to the {±1}-quotients. From this we obtain a

cartesian diagram of profinite groups:

(3.7)

ker(b43) = (Z/2Z)

Π

(Z/2Z)

Π

(Z/2Z) // // (Z/2Z)× (Z/2Z)× (Z/2Z)

Π̂0,4

� ?

OO

// // (Z/2Z),
� ?

diagonal map

OO

where the upper horizontal arrow is the abelianization map. Moreover, according to

Herfort-Ribes ([HR, Theorem 2 (i)]), the torsion elements of (Z/2Z)

Π

(Z/2Z)

Π

(Z/2Z)

form exactly the three conjugacy classes of order two which, therefore, must be pre-

served as a set under Aut(ker(b43)). This characterizes the diagonal image of (Z/2Z)

in the right hand side of (3.7). Thus we conclude that Π̂0,4 is characteristic in ker(b43)

as the pull-back image of (Z/2Z)
diag.
↪→ (Z/2Z)3 along the abelianization of ker(b43). �

Proof of Proposition 3.2 (iii): To prove (iii), pick any φ ∈ Aut(B̂4). We first show

that φ(ker(b43)) ⊂ ker(b43). As ker(P) is characteristic in B̂4 as shown in (ii), it

follows that φ(ker(b43)) ⊂ ker(P). Hence b43 maps φ(ker(b43)) onto a subgroup of

P̂3(
∼→ Γ̂0,4

∼= F̂2). But φ(ker(b43)) is isomorphic to ker(b43) which is a topologically

finitely generated closed normal subgroup of B̂4. Since F̂2 has no nontrivial non-

free finitely generated normal subgroups ([LvD, Corollary 3.14]) and since ker(b43) ∼=
(Z/2Z)

Π

(Z/2Z)

Π

(Z/2Z) has finite abelianization (Z/2Z)3, the image φ(ker(b43)) must

be annihilated by b43, i.e., φ(ker(b43)) ⊂ ker(b43). We can argue in the same way after

replacing φ by φ−1 to obtain φ−1(ker(b43)) ⊂ ker(b43). Combining both inclusions

implies φ(ker(b43)) = ker(b43). �
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Proof of Proposition 3.2 (v): Let us write [∗]ab for the abelianization of [∗]. Since

we already know ‘(iv): Π̂0,4 is characteristic in B̂4’ from (i)-(iii), for proving P̂4 char-

acteristic in B̂4, it suffices to show the assertion that P̂4 is the kernel of the con-

jugate representation ρ : B̂4 → Aut(Π̂ab
0,4). First we note that ρ factors through

ρ̄ : B̂4/P̂4
∼= S4 → Aut(Π̂ab

0,4). This follows from the observation that pab
43 injects

Π̂ab
0,4 into P̂ab

4 : Indeed, writing {x̄ij} for the image of the standard generator system

{xij = σj−1 · · ·σi+1σ
2
i σ
−1
i+1 · · ·σ−1

j−1 | 1 ≤ i < j ≤ n} of Pn, we find

(3.8) pab
43 : P̂ab

4 → P̂ab
3 :


x̄12, x̄34 7→ x̄12,

x̄13, x̄24 7→ x̄13,

x̄14, x̄23 7→ x̄23.

Taking into account the single relation x̄12 + x̄13 + x̄14 + x̄23 + x̄24 + x̄34 = 0 for P̂ab
4

(respectively, x̄12 + x̄13 + x̄14 = 0 for P̂ab
3 ), we easily see from the description (3.8)

of pab
43 : Ẑ5 � Ẑ2 that ker(pab

43) is isomorphic to Ẑ3 (torsion-free) into which Π̂ab
0,4

must inject. Then, to complete proof of the assertion, it suffices to see faithfulness

of ρ̄ : B̂4/P̂4
∼= S4 → Aut(Π̂ab

0,4). This is easily seen from the general fact that the

action of Bn/Pn = Sn on the x̄ij ∈ Pab
n is given by the natural action on indices, once

declared x̄ij = x̄ji. The action of S4 on Π̂ab
0,4 turns out to be the standard permutation

representation Ẑ4 modulo the diagonal line, which is faithful. �

4. Proofs of Theorems A and B. By virtue of Propositions 2.2 and 3.1, we know

that P̂n is a characteristic subgroup of B̂n for n ≥ 3. The following proposition follows

immediately from this together with the well-known fact that Out(Sn) = {1} in the

case n 6= 6. However, the case n = 6 requires a special care, since Out(S6) ∼= Z/2Z.

Theorem 1.1 (Hoshi-Minamide-Mochizuki) allows us to give a uniform proof working

for all n ≥ 4.

Proposition 4.1. Regard Sn as the quotient of B̂n and of Γ̂0,[n] by $n : Bn → Sn in

Section 2.

(i) Every automorphism of B̂n induces an inner automorphism of Sn for n ≥ 3.

(ii) Γ̂0,n is a characteristic subgroup of Γ̂0,[n] in the profinite completion of (2.6), and

every automorphism of Γ̂0,[n] induces an inner automorphism of Sn for n ≥ 5.

Proof. (i) As Out(S3) = {1}, the assertion is trivial when n = 3. Suppose n ≥ 4 and

pick any φ ∈ Aut(B̂n). Then, it follows from Propositions 2.2 and 3.1, that φ induces

(φP , φS) ∈ Aut(P̂n)×Aut(Sn), Moreover φP induces φΓ ∈ Aut(Γ̂0,n+1) via the natural

isomorphism P̂n
∼→ Γ̂0,n+1 given by Φn of Section 2. Let φ̄Γ ∈ Out(Γ̂0,n+1) be the outer

class of φΓ, and let (φ0, φ1) ∈ ĜT ×Sn+1 be the image of φ̄Γ under the isomorphism
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Out(Γ̂0,n+1)
∼→ ĜT×Sn+1 of Theorem 1.1. Then we have the commutative diagram

(4.1)

Sn

χn
//

∼ φS

��

Out(Γ̂0,n+1)
∼
//

Inn(φ̄Γ)∼
��

ĜT×Sn+1

Inn(φ0,φ1)∼
��

Sn

χn
// Out(Γ̂0,n+1)

∼
// ĜT×Sn+1

where χn : Sn → Out(P̂n) = Out(Γ̂0,n+1) is the natural isomorphism regarding the

commutative diagram (∗) in Definition 2.1. Since χn factors through ιn : Sn ↪→ Sn+1,

the above (4.1) makes the diagram

Sn
ιn−−−→ Sn+1

φS

y ∼ ∼
yInn(φ1)

Sn
ιn−−−→ Sn+1

commutative, hence φ1 normalizes (hence lies in) the image of ιn. From this follows

that φS is an inner automorphism of Sn.

(ii): Recall from Section 2 that there is a surjection sequence B̂n � B̂n � Γ̂0,[n] �

Sn. By Proposition 2.2, every epimorphism from B̂n to Sn has kernel P̂n for n ≥ 5.

This makes Γ̂0,n to be a characteristic subgroup of Γ̂0,[n] as the pull-back of P̂n ⊂ B̂n.

For the rest, we can argue in exactly a similar (and simpler) way to the case (i) with

employing χ′n : Sn → Out(Γ̂0,n) ∼= ĜT×Sn for the role of χn in (i). We leave the rest

of detail to the reader. �

For the proof of Theorem B, we prepare a simple lemma of group theory. Let

1 −−−→ ∆ −−−→ Π −−−→ G −−−→ 1

be an exact sequence of profinite groups with ρ : G → Out(∆) the associated outer

representation. Let ZOut(∆)(Im(ρ)) denote the centralizer of the image ρ(G) in Out(∆).

Assume that ∆ and G are topologically finitely generated so that Aut(∆), Aut(G) are

profinite groups. Write AutG(Π) (resp. InnΠ(∆)) for the group of automorphisms of

Π which preserve ∆ ⊂ Π and induce the identity automorphism of G (resp. for the

group of inner automorphisms of Π by the elements of ∆). Then,

Lemma 4.2. Notations being as above, we have the following assertions.

(i) Suppose Z(∆) = {1}. Then the restriction map AutG(Π) → Aut(∆) induces an

isomorphism

AutG(Π)/InnΠ(∆)
∼→ ZOut(∆)(Im(ρ)).

(ii) Suppose Z(G) = {1} and that ∆ is a characteristic subgroup of Π. Then we have

an exact sequence of profinite groups

1 −−−→ AutG(Π)/InnΠ(∆)
−−−→ Out(Π)

$−−−→ Out(G).
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Proof. Assertion (i) follows immediately from [N94, Corollary 1.5.7]. We consider (ii).

First, observing AutG(Π) ∩ Inn(Π) = InnΠ(∆) under the assumption Z(G) = {1},
we obtain the monomorphism

 : AutG(Π)/InnΠ(∆) ↪→ Aut(Π)/Inn(Π) = Out(Π)

from the natural injection AutG(Π) ↪→ Aut(Π). Next, since ∆ is a characteristic

subgroup of Π, there exists a natural homomorphism $ : Out(Π) → Out(G) with

$ ◦  = 1. Then, immediately from the surjectivity Inn(Π) � Inn(G) follows that

Im() = ker($), which completes the proof of (ii). �

We now obtain Theorem B:

Theorem 4.3. (i) Let n ≥ 4 be an integer. Then the composite

ĜT → Out(B̂n)

of the natural homomorphisms ĜT→ Out(B̂n)→ Out(B̂n) is an isomorphism.

(ii) Let n ≥ 5. Then, the natural homomorphism

ĜT → Out(Γ̂0,[n])

induced from Ψ̂n : B̂n � Γ̂0,[n] (2.4) is an isomorphism.

Proof. First, we note that Sn and P̂n are center-free (2.9), and that P̂n is a character-

istic subgroup of B̂n (Propositions 2.2 and 3.1). Consider the upper exact sequence

1 −−−→ P̂n −−−→ B̂n −−−→ Sn −−−→ 1

of (∗) in Definition 2.1, and write ϕn : Sn → Out(P̂n) for the associated outer represen-

tation. Let us apply Lemma 4.2 to the above exact sequence. By virtue of Proposition

4.1 (i), the homomorphism $ : Out(B̂n)→ Out(Sn) of Lemma 4.2 (ii) turns out trivial,

so  in loc. cit. together with Lemma 4.2 (i) gives an isomorphism

ZOut(P̂n)(ϕn(Sn))
∼→ Out(B̂n).

Then observe that the natural isomorphism P̂n
∼→ Γ̂0,n+1 in (∗) induces an isomorphism

ZOut(P̂n)(ϕn(Sn))
∼→ ZOut(Γ̂0,n+1)(χn(Sn)),

where χn : Sn → Out(Γ̂0,n+1) is as in (4.1). But since ιn(Sn) has trivial centralizer in

Sn+1, Theorem 1.1 implies

ĜT
∼→ ZOut(Γ̂0,n+1)(χn(Sn)).

It is easy to see that the composite of the above three displayed isomorphisms coincides

with ĜT→ Out(B̂n) of the assertion. This completes the proof of (i).



1170 A.Minamide and H.Nakamura

(ii) Let n ≥ 5. After Proposition 4.1 (ii), the argument goes in a similar (and simpler)

way to the case (i) with applying Lemma 4.2 to the profinite completion of (2.6):

1 −−−→ Γ̂0,n −−−→ Γ̂0,[n] −−−→ Sn −−−→ 1.

We leave the rest of detail to the reader. �

Now, to prove Theorem A, let us follow an argument in [DG] (Theorem 20) to look

closely at the short exact sequence

(4.2) 1 −−−→ Ĉn −−−→ B̂n −−−→ B̂n −−−→ 1

obtained as the profinite completion of (2.2). Since Ĉn is characteristic in B̂n, this

yields two natural homomorphisms

(4.3) p0 : Aut(B̂n)→ Aut(Ĉn), p1 : Aut(B̂n)→ Aut(B̂n).

Recalling Ĉn = 〈ζn〉 ∼= Ẑ, we now canonically identify Aut(Ĉn) = Ẑ×.

Definition 4.4. For n > 1, define the subgroup Zn ⊂ Ẑ× by

Zn :=
(
1 + n(n− 1)Ẑ

)×
= ker

(
Ẑ× � (Ẑ/n(n− 1)Ẑ)×

)
.

It is clear that each ν ∈ Zn has a unique element e ∈ Ẑ such that

ν = 1 + n(n− 1)e.

(But note that this form of ν is not always in Ẑ× for arbitrary e ∈ Ẑ.)

The next key lemma enables us to identify ker(p1) with Zn:

Lemma 4.5. There is an isomorphism

φ : Zn
∼→ ker(p1) ⊂ Aut(B̂n)

which assigns to every ν ∈ Zn an automorphism φν ∈ Aut(B̂n) determined by

φν(σi) = σiζ
e
n (ν = 1 + n(n− 1)e, i = 1, . . . , n− 1).

Proof. Given any ν ∈ Zn, let e ∈ Ẑ be the unique element with ν = 1 + n(n − 1)e.

By using this e ∈ Ẑ, we define φν ∈ ker(p1) as follows: First, set φν(σi) := σiζ
e
n for all

i = 1, . . . , n − 1. Since ζn lies in the center of B̂n, it is easy to see that φν preserves

the Artin’s braid relations. Therefore, φν extends to an endomorphism of B̂n written

by the same symbol φν . One computes then

(4.4) φν(ζn) = φν((σ1 · · ·σn−1)n) = (σ1 · · ·σn−1)n · ζn(n−1)e
n = ζ1+n(n−1)e

n = ζνn.

From this, for νj = 1 + n(n − 1)ej ∈ Zn (j = 1, 2), it follows that φν1 ◦ φν2(σi) =

σi ζ
e1+ν1e2
n = φν1ν2(σi) holds for every i = 1, . . . , n − 1. Noting then that φ1 = id and

that Zn forms a multiplicative group, we see that φν (ν ∈ Zn) belongs to Aut(B̂n)

and hence that the mapping φ : Zn → Aut(B̂n) defined by ν 7→ φν forms a group
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homomorphism. One verifies immediately that φ is injective and Zn ∼= Im(φ) ⊂ ker(p1).

To see Im(φ) = ker(p1), pick any α ∈ ker(p1) and set ν := p0(α) ∈ Ẑ×. Then,

α(ζn) = ζνn and there exist ei ∈ Ẑ (i = 1, . . . , n− 1) such that α(σi) = σi ζ
ei
n . It is easy

to see from the braid relation that all ei are the same constant e ∈ Ẑ. But then, since

ζn = (σ1 · · ·σn−1)n, we find ν = 1+n(n−1)e which belongs to Zn and that α = φν . �

Theorem A is obtained from Theorem 4.3 (i) together with the last part of the

following

Theorem 4.6. Let n ≥ 4 be an integer.

(i) There exists an exact sequence

1 −−−→ Zn
φ−−−→ Aut(B̂n)

p1−−−→ Aut(B̂n) −−−→ 1.

(ii) Inn(B̂n) ∩ φ(Zn) = {1}.
(iii) The exact sequence (i) provides a split central extension, i.e.,

Aut(B̂n) ∼= Aut(B̂n)× Zn,

and gives rise to Out(B̂n) ∼= Out(B̂n)× Zn.

Proof. (i) It suffices to show p1 is surjective. Note that Inn(B̂n) is mapped onto Inn(B̂n).

On the other hand, there is a well-known action ιn : ĜT→ Aut(B̂n) in the form

(4.5)

{
σ1 7→ σλ1 ,

σi 7→ f(σi, ζi)σ
λ
i f(ζi, σi) (i = 1, . . . , n− 1)

with (λ, f) ∈ Ẑ×× [F̂2, F̂2] the standard parameter for the elements of ĜT ([Dr], [I90],

[I95]). Let ῑn : ĜT → Aut(B̂n) be the induced action. By virtue of Theorem 4.3 (i),

ĜT ∼= Out(B̂n), hence Aut(B̂n) = ῑn(ĜT) · Inn(B̂n). From this follows that p1 maps

ιn(ĜT) · Inn(B̂n)(⊂ Aut(B̂n)) onto Aut(B̂n).

(ii) This is a consequence of Lemma 4.2 (ii) applied to (4.2). Here is an alternative

direct proof: Recall that the abelianization B̂ab
n of B̂n is isomorphic to Ẑ. Each inner

automorphism acts trivially on B̂ab
n , while φν ∈ φ(Zn) (ν ∈ Zn) acts on it by

(σi)
ab 7→ (σi · ζen)ab = (σab

i )1+n(n−1)e (i = 1, . . . , n− 1)

which is nontrivial unless e = 0. This concludes the assertion.

(iii) It follows from (ii) that p1 induces Inn(B̂n)
∼→ Inn(B̂n). Since ιn(ĜT)

∼→ ῑn(ĜT),

we find from Theorem 4.3 (i) that p1 restricts to the isomorphism

(4.6) ιn(ĜT) · Inn(B̂n)
∼→ Aut(B̂n),

i.e., ιn(ĜT) · Inn(B̂n) gives a complementary factor of φ(Zn) in Aut(B̂n). To see that

the exact sequence (i) gives a central extension, it suffices to show that both Inn(B̂n)

and ιn(ĜT) commutes with φ(Zn). The commutativity of Inn(B̂n) and φ(Zn) follows
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immediately from the definition of φν (ν ∈ Zn) in Lemma 4.5. The commutativity of

ιn(ĜT) and φ(Zn) also follows from direct computation by using the above description

of the ĜT-action on B̂n. Indeed, given (λ, f) ∈ ĜT, noting that ζn lies in the center

of B̂n, and f lies in the commutator subgroup of F̂2, we have f(σi, ζi) = f(σiζ
e
n, ζi)

(i = 1, . . . , n − 1). Since (λ, f) ∈ ĜT is known to act on ζn by ζn 7→ ζλn under the

action (4.5), one computes:

(λ, f) ◦ φν(σi) = (λ, f)(σiζ
e
n) = f(σi, ζi)σ

λ
i f(ζi, σi)ζ

λe
n ,

= f(σi, ζi)(σiζ
e)λf(ζi, σi) = φν(f(σi, ζn)σλi f(ζi, σi))

= φν ◦ (λ, f)(σi).

for every i = 1, . . . , n − 1 (we understand ζ1 = 1 when i = 1). Thus we settle the

first assertion Aut(B̂n) ∼= Aut(B̂n) × Zn after identifying Zn ∼= φ(Zn) ⊂ Aut(B̂n) and

Aut(B̂n) ∼= ιn(ĜT) · Inn(B̂n) ⊂ Aut(B̂n) via (4.6). The second assertion is then just a

consequence of it. �

In our above discussion for the proof of Theorem A, important roles have been

played by the pair of two maps (4.3), which was motivated from the profinite Wells

exact sequence (cf. [N94, Section 1.5], [JL]) associated to the short exact sequence (4.2)

in the form:

(4.7) 0 −→ Z1
cont(B̂n, Ĉn) −→ Aut(B̂n, Ĉn)

p−−−→ C
q−−−→ H2

cont(B̂n, Ĉn).

Since B̂n in (4.2) is a central extension and Bab
n
∼= Z/n(n − 1)Z, we easily see that

Z1
cont(B̂n, Ĉn) = {0}, Aut(B̂n, Ĉn) = Aut(B̂n), and find the group of “compatible pairs”

C to be Aut(B̂n)× Aut(Ĉn). Thus, the exact sequence (4.7) is reduced to

(4.8) 0 −−−→ Aut(B̂n)
p=(p1,p0)−−−−−→ Aut(B̂n)× Aut(Ĉn)

q−−−→ H2
cont(B̂n, Ĉn),

where q is called the Wells pointed map (generally not a homomorphism).

The above sequence (4.8) is simply useful, for example, to see that the exact sequence

of Theorem 4.6 (i) provides a central extension, reproving the core part of Theorem 4.6

(iii) without use of the explicit ĜT-action (4.5): Indeed, according to (4.4), the image

p(φν) = (p1(φν), p0(φν)) = (id, ν) for every ν ∈ Zn is easily seen to lie in the center of

Aut(B̂n)×Aut(Ĉn). Besides this simple observation, it is a natural question to measure

the size of the image of Aut(B̂n) by the injection p = (p1, p0) into Aut(B̂n)×Aut(Ĉn).

Now, recalling ĜT ⊂ {(λ, f) ∈ Ẑ×× F̂2}, Aut(B̂n) = ĜT · Inn(Bn) and Aut(Ĉn) = Ẑ×,

we define two characters

(4.9) λ : Aut(B̂n)→ Ẑ× and ν : Aut(Ĉn)→ Ẑ×

in the obvious way. One finds:
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Proposition 4.7. Notations being as above, we have

Im(p) = {(α, β) ∈ C | λ(α) ≡ ν(β) mod n(n− 1)}.

In particular, C /Im(p) ∼= (Z/n(n− 1)Z)×.

Proof. Let Zn ⊂ Aut(Ĉn) = Ẑ× be as above, and define An ⊂ Aut(Bn) to be λ−1(Zn).

It is not difficult to see An×Zn ⊂ Im(p). The assertion is derived from the observation

that the image of Im(p) in the quotient group C /(An × Zn) ∼= (Z/n(n − 1)Z)× ×
(Z/n(n − 1)Z)× forms the diagonal subgroup. This follows from the well-known fact

that the restriction of the action of (λ, f) ∈ ĜT on B̂n to Ĉn = 〈ζn〉 is given by ζn 7→ ζλn ,

which completes the proof. �

Before closing the paper, let us add some remark on the Wells map q : C →
H2

cont(B̂n, Ĉn). Let [µ] ∈ H2
cont(B̂n, Ĉn) be the class of factor sets associated to the

central extension (4.2). For each pair (α, ν) ∈ C = Aut(B̂n)× Aut(Ĉn), we denote by

[µ](α,ν) ∈ H2
cont(B̂n, Ĉn) the class of a central extension obtained by twisting (4.2) by

(α, ν). Then, one finds:

(4.10) q(α, ν) = [µ]− [µ](α,ν).

This means that Im(p) ⊂ C can be characterized as the stabilizer of the twisting action

of C on [µ]. Concerning the precise position and size of [µ] ∈ H2
cont(B̂n, Ĉn), we remark

the following

Proposition 4.8. Let n ≥ 4. The cohomology group H2
cont(B̂n, Ĉn) is isomorphic to

Z/n(n− 1)Z, and is generated by the class [µ].

Proof. According to V.Arnold [A68], H2(Bn,Z) = {0} and H3(Bn,Z) = Z/2Z. Ap-

plying this to the long exact sequence associated with 0 → Z → Z → Z/rZ → 0

(r ∈ N), we obtain H2(Bn,Z/rZ) ∼= {0}, ∼= Z/2Z according to whether r is odd or

even respectively. For a positive integer N , (part of) the five term exact sequence for

the central extension 1→ Cn → Bn → Bn → 1 reads

H1(Bn,Z/NZ)
resN−→ H1(Cn,Z/NZ)

tgN−→ H2(Bn,Z/NZ)(4.11)

infN−→ H2(Bn,Z/NZ),

where resN , tgN and infN are respectively the restriction, transgression and inflation

maps. Suppose first N is a positive integer divisible by n(n − 1). Then, (4.11) yields

the exact sequence

(4.12) 0→ Z/n(n− 1)Z tgN−−−→ H2(Bn,Z/NZ)
infN−−−→ H2(Bn,Z/NZ) (∼= Z/2Z),

where Z/n(n−1)Z is regarded as the cokernel of the restriction resN : Hom(Bn,Z/NZ)

→ Hom(Cn,Z/NZ) followed by the factorization tgN of transgression tgN . Let us

vary N multiplicatively. The goodness of Bn (in the sense of Serre) together with
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[NSW, Corollary 2.7.6] allows us to interpret H2
cont(B̂n, Ĉn) = lim←−N H

2(Bn,Z/NZ)

after identification Cn = ζZn
∼= Z with trivial (conjugate) action of Bn. The term

coker(resN) ∼= Z/n(n− 1)Z in (4.12) is constant in the projective system along N ∈ N
divisible by n(n − 1). On the other hand, we have (#): lim←−N H

2(Bn,Z/NZ) = {0}.
In fact, since Bab

n
∼= Z, in the long exact sequence associated with 0 → Z/2Z →

Z/2NZ → Z/NZ → 0, we find that H1(Bn,Z/2NZ) → H1(Bn,Z/NZ) is surjective,

hence that the former arrow in H2(Bn,Z/2Z) → H2(Bn,Z/2NZ) → H2(Bn,Z/NZ)

gives an isomorphism between groups of order two so that the latter arrow is 0-map.

This settles (#) which concludes the first assertion H2
cont(B̂n, Ĉn) ∼= Z/n(n− 1)Z.

It remains to show that the class [µ] has order n(n − 1) in H2
cont(B̂n, Ĉn). For an

integer d > 0, let [µd] ∈ H2(Bn,Z/dZ) be the class of factor sets corresponding to the

central extension

(4.13) 1→ Cn/C
d
n(∼= Z/dZ)→ Bn/C

d
n → Bn → 1.

It is known that [µd] is the transgression image of the projection prd : Cn → Cn/C
d
n

regarded as an element of H1(Cn, Cn/C
d
n), i.e.,

(4.14) [µd] = tgd(prd) ∈ Im(tgd) ⊂ H2(Bn,Z/dZ),

where Cn/C
d
n
∼→ Z/dZ is given by ζn 7→ 1 (cf. e.g., [Sz, Chap. 2 Section 9 (9.4)]). Let

us observe that the extension (4.13) splits if and only if n(n− 1) ∈ (Z/dZ)×. In fact,

a system of lifts of the generators σ̄i ∈ Bn (i = 1, . . . , n − 1) can be written in the

form of images of σiζ
ai
i ∈ Bn in Bn/C

d
n (ai ∈ Z). It is easy to see that they satisfy

the braid relations modulo Cd
n if and only if a1 ≡ · · · ≡ an−1 and 1 + n

∑
i ai ≡ 0

in Z/dZ (cf. (4.4)). This condition to be held by a collection {ai}i is equivalent to

n(n − 1) ∈ (Z/dZ)× as desired. Let p be a prime dividing n(n − 1) and consider

[µp] ∈ H2(Bn,Z/pZ). It follows from the above observation that [µp] 6= 0. Since the

restriction map resp : H1(Bn,Z/pZ) → H1(Cn,Z/pZ) is trivial under the assumption

p | n(n − 1), the transgression tgp injects H1(Cn,Z/pZ) ∼= Z/pZ into H2(Bn,Z/pZ)

whose image is generated by [µp] 6= 0. But for any multiple N of n(n − 1), the class

[µN ] ∈ Im(tgN)(∼= Z/n(n−1)Z) ⊂ H2(Bn, Cn/CN
n ) is mapped to [µp] ∈ H2(Bn, Cn/Cp

n)

via the reduction of central extensions induced from the surjective homomorphism

Bn/C
N
n � Bn/C

p
n in virtue of (4.14). In particular, the reduction map Im(tgN) →

Im(tgp) is given simply by the mod p surjection between the cyclic groups:

(4.15)

[µN ] ∈ Im(tgN) (∼= Z/n(n− 1)Z) ⊂ H2(Bn, Cn/CN
n )

↓ ↓ mod p ↓
0 6= [µp] ∈ Im(tgp) (∼= Z/pZ) ⊂ H2(Bn, Cn/Cp

n).

Since the class [µ] ∈ H2
cont(B̂n, Ĉn) is the common limit of those [µN ], it follows that [µ]

generates the p-primary component of the cyclic group H2
cont(B̂n, Ĉn) ∼= Z/n(n − 1)Z

for every prime p | n(n− 1), hence gives a generator of it. �
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