
On generalized median triangles
and tracing orbits

HIROAKI NAKAMURA AND HIROYUKI OGAWA

Abstract. We study generalization of median triangles on the plane with two complex param-
eters. By specialization of the parameters, we produce periodical motion of a triangle whose
vertices trace each other on a common closed orbit.
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1. Introduction

Given a triangle ∆ = ∆ABC on a plane, one forms its medial (or midpoint) triangle S(∆) =
∆A′B′C ′ which, by definition, is a triangle obtained by joining the midpoints A′, B′, C ′ of the
sides BC,CA,AB respectively. The median triangle M(∆) = ∆A′′B′′C ′′ of ∆ = ∆ABC is a
triangle whose three sides are parallel to the three medians AA′, BB′, CC ′ of ∆. To position
M(∆), it is convenient to impose extra condition that M(∆) shares its centroid with ∆ as

well as with S(∆). To fix labels of vertices of M(∆), one can set, for example,
−−→
AA′ =

−−−→
A′′B′′,

−−→
BB′ =

−−−→
B′′C ′′,

−−→
CC ′ =

−−−→
C ′′A′′.

Arithmetic interest on median triangles can be traced back to Euler who found a smallest
triangle made of three integer sides and three integer medians: there exists ∆ABC with AB =
136, BC = 174, CA = 170, AA′ = 127, BB′ = 131 and CC ′ = 158 (cf. [2]). In recent years,
geometrical constructions of nested triangles in more general senses call attentions of researchers
(e.g., [1],[9]). In particular, M.Hajja [4] studied a generalization of the above constructions S(∆)
and M(∆) by introducing a real parameter s ∈ R to replace the midpoints of the sides by
more general (s : 1 − s)-division points. Recently in [8], the former construction for S(∆) was
generalized so as to have two complex parameters ∆ 7→ Sp,q(∆) (p, q ∈ C, pq 6= 1).

The primary aim of the first part of this paper is, following the line of [8], to extend the

procedure forM(∆) to a collection of operations of the forms ∆ 7→ Mwx/yz
p,q (∆) so that the sides

of Mwx/yz
p,q (∆) are given by vectors joining vertices of ∆ and of Sp,q(∆) in 18-fold ways of label
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correspondences (See Definition 2.5 below). After studying mutual relations of the 18-fold ways,
we will find that only three ways among them are essential. Then, applying the finite Fourier
transforms of triangles, we obtain operators S[η, η′] and Mwx/yz[η, η′] which behave smoothly
with the parameter (η, η′) running over the full space C2 (the former was already closely studied
in [8]).

In the second part of the present paper, we will study ‘dancing’ of triangles S[η, η′](∆) and

Mwx/yz[η, η′](∆) along with periodical parameters (η(t), η′(t)) ∈ C2 (t ∈ R/Z). In particular, we
search conditions under which the three vertices of a triangle trace one after the other in motion
along a single common orbit. Basic examples including “choreographic three bodies dancing on
a figure eight” will also be illustrated.

The organization of this paper reads as follows. In §2, we formulate the generalized me-

dian operator Mwx/yz
p,q on triangles with two complex parameters p, q (pq 6= 1) and with labels

w, x, y, z ∈ Z/3Z (y 6= z), and illustrate their geometric features on triangles. In §3, we present
how the finite Fourier transformation of triangles improves defects of the original parameters
(p, q) so as to introduce Mwx/yz[η, η′] with a new parameter system (η, η′) ∈ C2. In particular,

Mwx/yz[η, η′] turns out to be expressed as the generalized cevian operator S[η0, η1] studied in
[8] with suitable change of variables (η, η′) → (η0, η1) (Corollary 3.8). In §4, we provide a set

of symmetric identities among those operatorsMwx/yz[η, η′] with variations of labels wx/yz and
of parameters (η, η′), and conclude the prescribed primary goal of the first part of this paper.
A short section §5 is then inserted to introduce the space of triangle shapes (moduli space of
similarity classes) from the viewpoint of finite Fourier transformation and Hajja’s shape func-
tion. We also discuss relationship between Hajja’s median operator Hs and a binary Ceva
operator Cs of Griffiths, Bényi-Ćurgus type from our viewpoint in complex parameter s ∈ C.
The final section §6 is devoted to studying tracing orbits of three bodies and present their pri-
mary characterization in the form S[η(t), η′(t)](∆0) with certain continuous periodic functions
η(t), η′(t) : R/Z → C. We illustrate some examples of area preserving triangle motions and of
figure eight orbits. The latter example will be generalized to 3-braiding motions on Lissajous
curves in a separate article [5].

2. Generalized median operators

Throughout this paper, we use the notations: i :=
√
−1, ρ := e2πi/6, ω := e2πi/3.

We consider any triangle lies on the complex plane C and identify it with the multiset of
vertices {a0, a1, a2} on C. It is useful to say that a vector ∆ = (a0, a1, a2) ∈ C3 is a triangle triple
representing the triangle {a0, a1, a2}. A triangle triple ∆ = (a0, a1, a2) ∈ C3 will sometimes be
written as ∆ = (ax)x∈Z/3Z after the index set {0, 1, 2} for coordinates being naturally identified
with Z/3Z, the ring of integers modulo 3.

In [8], for p, q ∈ C with pq 6= 1, we introduced an operation Sp,q on the triangle triples defined
by

(2.1) Sp,q(a0, a1, a2) = (a′0, a
′
1, a
′
2) :


a′0 = αp,q a0 + βp,q a1 + γp,q a2;

a′1 = αp,q a1 + βp,q a2 + γp,q a0;

a′2 = αp,q a2 + βp,q a0 + γp,q a1,

where,

αp,q =
p(1− q)
1− pq

, βp,q =
q(1− p)
1− pq

, γp,q =
(1− p)(1− q)

1− pq
.

When p, q are real numbers, Sp,q(∆) can be obtained from intersection points of certain two
cevian triples of ∆ as introduced in [7]. For convenience, we shall call Sp,q a generalized cevian
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operator on triangles also for complex parameters p, q. Since αp,q + βp,q + γp,q = 1, it is easy to
see that the centroids of ∆ = (a0, a1, a2) and of ∆′ := Sp,q(∆) = (a′0, a

′
1, a
′
2) coincide and that

(2.2)
∑

k∈Z/3Z

−−−−−−→
aw+ka

′
x+k = 0

for any choice of w, x ∈ Z/3Z. This determines, for each (y, z) ∈ (Z/3Z)2 with y 6= z, a unique
triangle triple ∆′′ = (a′′0, a

′′
1, a
′′
2) by the conditions:

∆′′ shares the centroid with ∆,∆′, in other words, ∆,∆′ and ∆′′ are concentroid;(2.3)
−−−−−−→
aw+ka

′
x+k =

−−−−−−→
a′′y+ka

′′
z+k (k ∈ Z/3Z).(2.4)

Definition 2.5 ((p, q)-median triangle). Let p, q ∈ C with pq 6= 1, and w, x, y, z ∈ Z/3Z with
y 6= z. Given a triangle triple ∆ = (a0, a1, a2) with ∆′ = Sp,q(∆) = (a′0, a

′
1, a
′
2), we define the

triangle triple
Mwx/yz

p,q (∆) := ∆′′,

where ∆′′ = (a′′0, a
′′
1, a
′′
2) is determined by the condition (2.3)-(2.4). We shall call Mwx/yz

p,q a
generalized median operator on triangles.

Before focusing on specific examples, let us here illustrate actions of Mwx/yz
p,q in a generic

sample case: Let ∆ = (a0, a1, a2) be a triangle (0, 1, 7+8i
10 ) and let complex parameter (p, q)

be set as (4
5 ,

2+4i
3 ). Then, the generalized cevian operator Sp,q maps ∆ to ∆′ = (a′0, a

′
1, a
′
2) =

( 93
3050 + 542

1525 i,
201
305 −

46
305 i,

1541
1525 + 908

1525 i). One can form a triangle ∆′′ = (a′′0, a
′′
1, a
′′
2) formed by the

sides parallel to the three vectors
−−→
a0a
′
0,
−−→
a1a
′
1,
−−→
a2a
′
2. Here arise six-fold ways to label the vertices

a′′0, a
′′
1, a
′′
2 depending on choices of pairs (y, z) with y, z ∈ {0, 1, 2}, y 6= z so that

−−→
a0a
′
0 =
−−→
a′′ya
′′
z.

Every such a choice yields the generalized median triangle M00/yz
p,q (∆). The following picture

(Figure 1) illustrates M00/01
p,q (∆), one of those six choices, such that

−−→
a0a
′
0 =
−−→
a′′0a
′′
1. We also note

that M00/01
p,q =M11/12

p,q =M22/20
p,q by definition.

∆ = (0, 1, 7+8i
10 ) and ∆′ = S 4

5
, 2+4i

3
(∆) ∆ and ∆′′ =M00/01

4
5
, 2+4i

3

(∆)

Figure 1. Illustration of Sp,q and M00/01
p,q

There is another set of six-fold ways to form ∆′′ = (a′′0, a
′′
1, a
′′
2) whose sides are taken to be

parallel to
−−→
a0a
′
1,
−−→
a1a
′
2,
−−→
a2a
′
0 in total. The following picture (Figure 2) shows one of those cases
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M01/01
p,q (∆) where a′′0, a

′′
1, a
′′
2 are labeled to satisfy

−−→
a0a
′
1 =

−−→
a′′0a
′′
1. We also note that M01/01

p,q =

M12/12
p,q =M20/20

p,q by definition.

∆ = (0, 1, 7+8i
10 ) and ∆′ = S 4

5
, 2+4i

3
(∆) ∆ and ∆′′ =M01/01

4
5
, 2+4i

3

(∆)

Figure 2. Illustration of Sp,q and M01/01
p,q

It remains to take ∆′′ = (a′′0, a
′′
1, a
′′
2) formed by three sides parallel to

−−→
a0a
′
2,
−−→
a1a
′
0,
−−→
a2a
′
1. Again

we have six-fold ways to label the vertices of ∆′′ subject to
−−→
a0a
′
2 =

−−→
a′′ya
′′
z (y, z ∈ {0, 1, 2},

y 6= z). The following picture (Figure 3) illustrates the case y = 0, z = 1. We also note that

M02/01
p,q =M10/12

p,q =M21/20
p,q by definition.

∆ = (0, 1, 7+8i
10 ) and ∆′ = S 4

5
, 2+4i

3
(∆) ∆ and ∆′′ =M02/01

4
5
, 2+4i

3

(∆)

Figure 3. Illustration of Sp,q and M02/01
p,q

As shown in the above description, we generally have 18(= 3 × 6)-fold ways to define ∆′′ =

Mwx/yz
p,q (∆) whose sides are composed of three disjoint bridges between the vertices of ∆ and of

Sp,q(∆). In §4, we will discuss precise relations among those 18-fold ways at the operator level.

In the next two examples, we focus on some specific cases which connect Mwx/yz
p,q (∆) to its

historical origins.
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Example 2.6 (Prototype). Let ∆ABC be a triangle represented by a triple ∆ = (a, b, c) ∈ C3.
Let us illustrate the classical case in Introduction in our terminology: As noted in [7, Example
1.2], the midpoint triangle S(∆) = ∆A′B′C ′ is given by S0, 1

2
(∆). The median triangleM(∆) =

∆A′′B′′C ′′ labeled by the condition
−−→
AA′ =

−−−→
A′′B′′,

−−→
BB′ =

−−−→
B′′C ′′,

−−→
CC ′ =

−−−→
C ′′A′′ is then given by

M00/01

0, 1
2

(∆).

Example 2.7. In [4], M.Hajja discusses three types of triangles called the s-medial, the s-Routh,
and the s-median triangles with a real parameter s ∈ R. The (p, q)-median triangle introduced
above generalizes Hajja’s s-median triangle. Start with a triangle ∆ABC represented by a
positive triangle triple ∆ = (a, b, c) satisfying Im(a−bc−b ) > 0. Form first ∆′ = (a′, b′, c′) to be

S0,1−s(∆) (called the s-medial triangle of ∆), the triangle whose vertices are (s : 1− s)-division
points of the edges of ∆. The s-median triangle of ∆, written Hs(∆) is, by definition, a triangle

{a′′, b′′, c′′} such that
−→
aa′ =

−−→
b′′c′′,

−→
bb′ =

−−→
c′′a′′, and

−→
cc′ =

−−→
a′′b′′. Without loss of generality, we may

assume Hs(∆) and ∆ are concentroid, i.e. a + b + c = a′′ + b′′ + c′′ so that Hs(∆) is uniquely

determined from ∆. In our above definition, we find Hs(∆) to be M00/12
0,1−s(∆).

3. Fourier parameters

The collection of operators S′ := {Sp,q | (p, q) ∈ C2, pq 6= 1} is incomplete in the sense that
the composition Sp1,q1Sp2,q2 may not always be of the form of an Sp,q ∈ S′. The lesson found
in our previous work [8] to remedy this defect is to introduce the Fourier transforms Ψ(∆) for
triangles ∆ = (a, b, c) by

(3.1) Ψ(∆) =
(ψ0(∆)
ψ1(∆)
ψ2(∆)

)
=

1

3

( a+b+c
a+bω2+cω
a+bω+cω2

)
and to replace the parameter (p, q) ∈ C2 (pq 6= 1) by a new parameter (η, η′) ∈ C2 defined by

(3.2) η :=
p− q
1− pq

+
(p− 1)(2q − 1)

1− pq
ω, η′ :=

p− q
1− pq

+
(p− 1)(2q − 1)

1− pq
ω2.

Indeed, with these parameters, the operator Sp,q is diagonalized as mapping ∆ to ∆′ in the form

(3.3) ψ0(∆′) = ψ0(∆), ψ1(∆′) = η′ · ψ1(∆), ψ2(∆′) = η · ψ2(∆).

It turns out that the collection S′ := {Sp,q | (p, q) ∈ C2, pq 6= 1} extends to a more complete
family

(3.4) S := {S[η, η′] | (η, η′) ∈ C2}

by identifying Sp,q = S[η, η′] for pq 6= 1 so that the composition law S[η1, η
′
1]S[η2, η

′
2] =

S[η1η2, η
′
1η
′
2] provides a natural multiplicative monoid structure on S.

Now, regarding triangle triples as column vectors in C3, we easily see that the operations Sp,q
and S[η, η′] naturally determine linear transformations (3 by 3 matrices in M3(C)) acting on C3

on the left. Below, we shall identify those operators as their matrix representatives in M3(C).
Let

I :=

1 0 0
0 1 0
0 0 1

 , J :=

0 1 0
0 0 1
1 0 0

 , W :=

1 1 1
1 ω ω2

1 ω2 ω

 .

Note that the above Fourier transform (3.1) may be written in the matrix multiplication form:

Ψ
((a

b
c

))
= W−1

(
a
b
c

)
. The following proposition summarizes basic properties for S[η, η′] ∈ S:
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Proposition 3.5 ([8]). Notations being as above, we have:

(i) S = {αI + βJ + γJ2 | α+ β + γ = 1} ⊂M3(C).
(ii) S[η, η′] = W · diag(1, η′, η) ·W−1

= 1
3(1 + η + η′)I + 1

3(1 + ηω + η′ω2)J + 1
3(1 + ηω2 + η′ω)J2 (η, η′ ∈ C).

Let us turn to generalized median operators. We first extend Mwx/yz
p,q (pq 6= 1) to the new

parameters (η, η′) ∈ C2. Below, we understand the number ωx and the matrix Jx in the obvious
sense for each x ∈ Z/3Z.

Definition 3.6 ((η, η′)-median triangles). Let η, η′ ∈ C, and let w, x, y, z ∈ Z/3Z with y 6= z.
Given a triangle triple ∆ = (a0, a1, a2) with ∆′ = S[η, η′](∆) = (a′0, a

′
1, a
′
2), we define the triangle

triple
Mwx/yz[η, η′](∆) := ∆′′,

where ∆′′ = (a′′0, a
′′
1, a
′′
2) is determined by the condition (2.3)-(2.4).

It is not difficult to see thatMwx/yz[η, η′] ∈ S. In fact, we have the following explicit formula:

Proposition 3.7. Given η, η′ ∈ C and w, x, y, z ∈ Z/3Z with y 6= z, we have

(Jz − Jy)Mwx/yz[η, η′] = JxS[η, η′]− Jw.

Proof. Let ∆ = (a0, a1, a2) be a triangle triple, and write ∆′ = S[η, η′](∆) = (a′0, a
′
1, a
′
2) and

∆′′ =Mwx/yz[η, η′](∆) = (a′′0, a
′′
1, a
′′
2). The assertion essentially amounts to seeing the identity

(Jz − Jy)(∆′′) = Jx(∆′)− Jw(∆).

Observe that the 1st component of Jx(∆′) − Jw(∆) is
−−→
awa
′
x, and that the 1st component of

Jz(∆′′)− Jy(∆′′) is
−−→
a′′ya
′′
z. They coincide with each other by definition. Similarly, one can see the

coincidence of their 2nd and 3rd components, as they are the 1st components of the above after
∆ replaced by J∆, J2∆. One can extend the identity also for degenerate triangle triples by easy
argument of continuity, and hence conclude the matrix identity as asserted. �

Although the factor (Jz− Jy) in LHS of the above Proposition 3.7 is not an invertible matrix,

the concentroid condition (2.3) determines Mwx/yz[η, η′] in S as seen in the following corollary.

In fact, the generalized median operator Mwx/yz[η, η′] turns out to be reduced to a generalized
cevian operator S[η0, η1] after a simple change of parameters:

Corollary 3.8. Notations being as in Proposition 3.7, we have

Mwx/yz[η, η′] = S[η0, η1]

where

η0 =
ηω−x − ω−w

ω−z − ω−y
, η1 =

η′ωx − ωw

ωz − ωy
.

Proof. Let N = 1
3(I + J + J2) (i.e., the matrix with all entries 1

3) so that N(∆) = (g, g, g) for

every triangle ∆ = (a, b, c) with centroid g = 1
3(a + b + c). Since M = Mwx/yz[η, η′] preserves

centroids of triangles, we have NM(∆) = N(∆) for all ∆, hence have the identity NM = N .
It follows then from Proposition 3.7 that (∗) : (Jz − Jy +N)M = JxS[η, η′]− Jw +N . Since the
matrix (Jz − Jy + N) ∈ S is invertible, the identity (∗) determines M which itself lies in S by
Proposition 3.5 (ii) and gives rise to0

ωz − ωy

ω−z − ω−y

1
η1

η0

 =

1
ωx

ω−x

1
η′

η

−
1

ωw

ω−w


after conjugation by W . This settles the asserted formula on (η0, η1). �
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4. Reduction of 18-fold ways of Mwx/yz

The upper label wx/yz for a generalzed median operatorMwx/yz[η, η′] is to be given from the
collection of (w, x, y, z) ∈ (Z/3Z)4 with y 6= z.

Since the condition (2.4) is stable under simultaneous shifts of labels in wx/yz, we have

the identity Mwx/yz[η, η′] = Mw+1,x+1/y+1,z+1[η, η′] which will be listed below in (4.2). As a
consequence, there are 18 different ways of labels up to the shifts in Z/3Z. However, there are
many other identities which co-relate generalized cevian and median operators as shown in the
following list (4.1)-(4.8).

S[η, η′] = S[ηω, η′ω−1] · J = J · S[ηω, η′ω−1](4.1)

Mwx/yz[η, η′] =Mw+1,x+1/y+1,z+1[η, η′](4.2)

Mwx/yz[η, η′] · J =Mw+1,x+1/yz[η, η′](4.3)

Mwx/yz[η, η′] · J2 =Mwx/y+1,z+1[η, η′](4.4)

Mwx/yz[η, η′] =Mw,x+1/yz[ηω, η′ω−1] =Mw,x−1/yz[ηω−1, η′ω](4.5)

1

3

(
Mw0/yz[η, η′] +Mw1/yz[η, η′] +Mw2/yz[η, η′]

)
=

1

3
Jw+y+z +

2

3
Jw−y(4.6)

1

2

(
Mwx/yz[η, η′] +Mwx/zy[η, η′]

)
= S 1

2
, 1
2

=
1

3
(I + J + J2)(4.7)

Mwx/yz[ωx−w + η, ωw−x + η′] = Jx · M00/yz[1 + η, 1 + η′].(4.8)

Proof of (4.1)-(4.8). Proposition 3.5 and Corollary 3.8 enable one to express S[η, η′] andMwx/yz[η, η′]
in S as explicit 3 by 3 matrices for every (η, η′) ∈ C2 and for wx/yz. Then the proofs of these
identities, once discovered, can be easily verified (say, by using symbolic computer systems). �

Interpretation: Let ∆ be a triangle triple and fix a pair of parameters (η, η′) ∈ C2. The

relation (4.7) tells that Mwx/yz[η, η′](∆) and Mwx/zy[η, η′](∆) are point-symmetrical about the

centroid of ∆. This together with (4.2) implies thatMwx/y,y+1[η, η′](∆) (w, x, y ∈ Z/3Z) give all
possible triangle triples up to point symmetry. Consider, then, effects of (4.3) and (4.4) after
remarking that the action of J on triangle triples changes only labels of vertices. (Note also that
every matrix in S commutes with J.) From this we realize that the three median triangles

M00/01[η, η′](∆), M01/01[η, η′](∆), M02/01[η, η′](∆)

provide all possibly different triangles from 18-fold triples Mwx/yz[η, η′](∆) in (w, x, y, z) ∈
(Z/3Z)4 with y 6= z (up to parallelism, point symmetry and label permutations). Note also
that the last three triangles are also dependent by a linear relation (4.6).

As illustrated in [8, Remark 3.6], the operations Sp,q have closer geometrical interpretation
on triangles with respect to the original parameters p, q ∈ C (pq 6= 1). In the rest of this section,

we shall translate the above results for S[η, η′], Mwx/yz[η, η′] into the context of Sp,q, Mwx/yz
p,q .

Noting that the transformation (3.2) is birational with

(4.9) p =
1 + η + η′

2− ωη − ω2 η′
, q =

1 + ω η + ω2 η′

2− η − η′

(cf. [8, Prop. 5.13]), we translate Corollary 3.8 in the form

(4.10) Mwx/yz
p,q = Sp1,q1
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with p1, q1 suitable rational functions in p, q and vice versa. The following table shows some
samples chosen from 18 types of labels, where

∆′′ = (a′′0, a
′′
1, a
′′
2) =Mwx/yz

p,q (∆) = Sp1,q1(∆)

for ∆ = (a0, a1, a2) and ∆′ = (a′0, a
′
1, a
′
2) = Sp,q(∆):

Table 1. Mwx/yz
p,q (∆) = Sp1,q1(∆)

wx/yz
−−→
awa
′
x =
−−−→
a′′y a

′′
z [p1, q1] [p, q]

00/01
−−→
a0a
′
0 =
−−−→
a′′0a

′′
1

[
2 pq + p− q − 2

4 pq − p− 2 q − 1
,−p− 2

1 + p

] [
−q1 − 2

q1 + 1
,− p1 − q1

(2 p1 − 1)(q1 − 1)

]
01/01

−−→
a0a
′
1 =
−−−→
a′′0a

′′
1

[
4 pq − 2 p− q − 1

2 pq − p + q − 2
,−q + 1

q − 2

] [
p1 − q1

(p1 − 2)(q1 − 1)
,

2 q1 − 1

q1 + 1

]
02/01

−−→
a0a
′
2 =
−−−→
a′′0a

′′
1

[
p + 2 q − 3

2 p + q − 3
,

3 pq − 2 p− q

3 pq − p− 2 q

] [
(p1 − 1)(2 q1 − 1)

(2 p1 − 1)(q1 − 1)
,

(p1 − 1)(q1 − 2)

(p1 − 2)(q1 − 1)

]
00/12

−−→
a0a
′
0 =
−−−→
a′′1a

′′
2

[
− (p− 2)(q − 1)

pq + 2 p + q − 4
,

(2 p− 1)(q − 1)

4 pq − p− 2 q − 1

] [
3p1q1 − p1 − 2 q1
3 p1q1 − 2 p1 − q1

,
(2 p1 − 1)(q1 − 1)

(p1 − 1)(2 q1 − 1)

]
00/20

−−→
a0a
′
0 =
−−−→
a′′2a

′′
0

[
2 p− 1

p + 1
,

2 pq + p− q − 2

pq + 2 p + q − 4

] [
−p1 + 1

p1 − 2
,

(p1 − 1)(2 q1 − 1)

p1 − q1

]

Example 4.11. In Example 2.7, we identified Hajja’s s-median operator Hs with M00/12
0,1−s for

s ∈ R. The above formula (4.10) (cf. Table 1) translates it as

(4.12) Hs =M00/12
0,1−s = S 2s

s+3
, s
2s−3

.

The last expression for s = −3, 3
2 appears to be singular as S∞, 1

3
, S 2

3
,∞ respectively, but these

singularities can be removed in the language of (η, η′)-parameters: Indeed, by (3.2) we can
interpret S0,1−s = S[sω + (1 − s)ω2, sω2 + (1 − s)ω], hence from Definition 3.6, we obtain

M00/12
0,1−s =M00/12[sω + (1− s)ω2, sω2 + (1− s)ω]. Corollary 3.8 then allows us to compute

Hs =M00/12[sω + (1− s)ω2, sω2 + (1− s)ω](4.13)

= S[s+ ω, s+ ω2] = J2 + s

(
2

3
I− 1

3
J− 1

3
J2

)
which makes senses on all s ∈ C. Finally, formulas (4.1)-(4.5) transform Hs into various expres-
sions of generalized medians. For example, for generic complex parameter s, one has:

(4.14) Hs =M00/01
s−2
s−1

, s
s−1

=M01/01
s
2
, 1
s−1

=M02/01
1

1−s
, 2−s

2

.

Example 4.15 (Parameters for Mwx/yz
p,q = Sp,q). Let wx/yz be a given label with w, x, y, z ∈

Z/3Z, y 6= z. By Proposition 3.7, we find that Mwx/yz[η, η′] = S[η, η′] has a unique solution in
the form

S[η, η′] = (Jx + Jy − Jz)−1Jw = αI + βJ + γJ2
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summarized in the following table

Label [ α , β , γ ] Label [ α , β , γ ] Label [ α , β , γ ]
00/01 [4/7 , 2/7 , 1/7] 01/01 [ 1 , 0 , 0 ] 02/01 [1/2 , 1/2 , 0 ]
00/10 [ 0 , 0 , 1 ] 01/10 [1/7 , 2/7 , 4/7] 02/10 [ 0 , 1/2 , 1/2]
00/02 [4/7 , 1/7 , 2/7] 01/02 [1/2 , 0 , 1/2] 02/02 [ 1 , 0 , 0 ]
00/20 [ 0 , 1 , 0 ] 01/20 [ 0 , 1/2 , 1/2] 02/20 [1/7 , 4/7 , 2/7]
00/12 [1/2 , 0 , 1/2] 01/12 [2/7 , 1/7 , 4/7] 02/12 [ 0 , 0 , 1 ]
00/21 [1/2 , 1/2 , 0 ] 01/21 [ 0 , 1 , 0 ] 02/21 [2/7 , 4/7 , 1/7]

Recall from Proposition 3.5 (ii) that the corresponding parameter (η, η′) for each case is given
by {

η = α+ βω2 + γω,

η′ = α+ βω + γω2.

Next we search parameters (p, q) with pq 6= 1 satisfying Mwx/yz
p,q = Sp,q from the above table.

They are classified into the following three kinds:

(i) Sp,q ∈ 〈J〉 (= {I, J, J2}) , [01/01, 00/10, 02/02, 00/20, 02/12, 01/21];
(ii) Sp,q = 1

2(Ji + Jj) (i 6= j), [02/01, 02/10, 01/02, 01/20, 00/12, 00/21];
(iii) Sp,q = αI + βJ + γJ2 ({α, β, γ} = {1

7 ,
2
7 ,

4
7}), [00/01, 01/10, 00/02, 02/20, 01/12, 02/21].

The first two cases are uninteresting: (i) occurs when (p, q) = (0, 0), (1, ∗), (∗, 1) (where ∗ 6= 1) so
that Sp,q simply represents a permutation of vertex labels (cf. [8, (3.2)]); (ii) occurs when Sp,q(∆)

represents the midpoint triangle, while the sides ofMwx/yz
p,q (∆) consists of the half sides of ∆ when

(p, q) = (0, 1
2), (1

2 , 0). (Note: Sp,q = 1
2(I + J) never occurs). However, (iii) yields geometrically

nontrivial cases (as in Figure 4) when (p, q) = (4
5 ,

2
3), (1

5 ,
1
3), (2

3 ,
1
3), (1

3 ,
2
3), (1

3 ,
1
5), (2

3 ,
4
5). These

are operations for Routh’s triangles discussed in [8, Example 5.3].

M00/01
4
5
, 2
3

(∆) = S 4
5
, 2
3
(∆) M00/02

2
3
, 1
3

(∆) = S 2
3
, 1
3
(∆) M01/10

1
5
, 1
3

(∆) = S 1
5
, 1
3
(∆)

M02/21
2
3
, 4
5

(∆) = S 2
3
, 4
5
(∆) M02/20

1
3
, 2
3

(∆) = S 1
3
, 2
3
(∆) M01/12

1
3
, 1
5

(∆) = S 1
3
, 1
5
(∆)

Figure 4. Type (iii) for Mwx/yz
p,q (∆) = Sp,q(∆) with ∆ = ∆(0) = (0, 1, 0.7 + 0.5i)
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5. Shape space and Bényi-Ćurgus lifts

One advantage of considering the (finite) Fourier transforms of triangle triples (3.1) is to
enable us to catch directly the shape function

(5.1) ψ(∆) :=
ψ2(∆)

ψ1(∆)
∈ C ∪ {∞} = P1

ψ(C)

for triangle triples ∆ without triple collision, i.e., ∆ 6∈ {(a, a, a) | a ∈ C}. The shape function
was explicitly introduced by works of Hajja (e.g. [4]) and has been investigated by many authors

including Nicollier [9], Bényi-Ćurgus [1]. The idea of applying finite Fourier transformation to
study polygon geometry can be traced back to I.J.Schoenberg [10]. The value of shape function
ψ(∆) represents the modulus of shape (similarity class) of ∆ as a triangle with vertices labelled
as vector components, whereas the triple power ψ3(∆) represents the shape of ∆ as an oriented
triangle with unlabelled vertices, which is also useful in some geometrical problem (cf. e.g., [7]).
For our later discussions in §6, it is useful to set up the moduli space of triangles (with no triple
collision) and their value spaces for ψ,ψ3:

Construction 5.2. Write (C3)[ := C3 − {(a, a, a) | a ∈ C} for the collection of triangle triples
with no triple collisions, and consider the Fourier transform Ψ = (ψ0, ψ1, ψ2) of (3.1) as a vector

valued function (C3)[ → C3. Noticing that ψ0(∆) concerns positioning of (the centroid of) ∆,
we may regard the projection to the last two components as the classifying map to the space of
translation classes of triangles (written C[(ψ)) in the form

pr : (C3)[ � C[(ψ) :=
{(

ψ2

ψ1

)
∈ C2 |(ψ1, ψ2) 6= (0, 0)

}
.

Here we mean by ‘triangle’ an ordered triple (a, b, c) ∈ C3 of three vertices admitting double

collisions but no triple collisions. The shape function ψ(∆) = ψ2(∆)
ψ1(∆) for ∆ ∈ (C3)[ factors through

the space C[(ψ) and terminates in P1
ψ(C) = C∪ {∞} which is naturally regarded as the moduli

space of similarity classes of triangles (with labelled vertices). We call P1
ψ(C) the shape sphere.

Denote by P1
33(C) the quotient orbifold of P1

ψ(C) by the multiplication action of the cyclic group

{1, ω, ω2}, where the subscript ‘33’ indicates the two elliptic points of order 3 at 0,∞. Note that

the set of complex points P1
33(C) corresponds bijectively to {ψ(∆)3 | ∆ ∈ (C3)[}.

The relation of the above four spaces are summarized as in the commutative diagram

(5.3)

(C3)[ C[(ψ) P1
ψ(C)

P1
33(C).

pr ψ

ψ3

Note 5.4. The space P1
ψ(C) is a complex analytic model of the shape sphere appearing in the

study of 3-body problem in celestial dynamics (see, e.g., [6]).

Since the operator S[η, η′] acts on ∆ with componentwise multiplication by (1, η′, η) to Ψ(∆)
(cf. (3.3)), it acts on the values of shape function ψ(∆) = ψ2(∆)/ψ1(∆) as

(5.5) ψ(S[η, η′](∆)) =

(
η

η′

)
ψ(∆).
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In Example 2.7, we discussed Hajja’s operator Hs as a special case of generalized median

operator M00/12
0,1−s. As shown in Example 4.11, it is written in Fourier parameters (η, η′) as

(5.6) Hs =M00/12
0,1−s = S[s+ ω, s+ ω2] = W

1 0 0
0 s+ ω2 0
0 0 s+ ω

W−1.

On the other hand, Bényi-Ćurgus [1] introduces an operator ‘Cs’ (called the binary Ceva operator
after a seminal article [3]) for a real parameter s closely related toHs. Although their formulation
is given in slightly different language of side length triples, we may extend the equivalent notion
for complex parameter s ∈ C as follows.

Definition 5.7 (binary Ceva operator). For complex s ∈ C, define the operator Cs on triangle
triples by the following matrix expression:

(5.8) Cs = W

1 0 0
0 0 s+ ω
0 s+ ω2 0

W−1.

In other words, Cs is defined so as to operate on the Fourier parameters of triangle triples by:

ψ0(Cs(∆)) = ψ0(∆), ψ1(Cs(∆)) = (s+ ω)ψ2(∆), ψ2(Cs(∆)) = (s+ ω2)ψ1(∆).

It is not difficult to see that either of Hs, Cs preserve (C3)[ ⊂ C3 if and only if s 6= ρ, ρ−1.

Assuming this condition, let us write H̄s, C̄s for the operators on C[(ψ) induced respectively

from Hs, Cs. These are also expressed as matrices acting on
(
ψ2

ψ1

)
∈ C[(ψ) in the form

(5.9) H̄s =
(
s+ω 0

0 s+ω2

)
, C̄s =

(
0 s+ω2

s+ω 0

)
.

Below we use the quantity ξs := s+ω
s+ω2 to denote the multiplier factor for Hs on the shape

function. Note that the condition s 6= ρ, ρ−1 is equivalent to ξs ∈ C×. The following numerical
identities easily derived from definitions relate the shapes of ∆, Hs(∆), Cs(∆), H1−s(∆) and of
C1−s(∆):

(5.10) ψ(Hs(∆)) = ξs · ψ(∆), ψ(Cs(∆)) = ξ−1
s ψ(∆)−1, ξ−1

s = ξ1−s (s 6= ρ, ρ−1).

We are then led to Proposition 5.11 below which translates selected geometrical relations found
by Bényi-Curgus [1] into our language of operations Hs, Cs. We recall that two triangles ∆ =
(a, b, c) and ∆′ = (a′, b′, c′) are called directly similar (resp. reversely similar) in [1, p.378] if
(a′, b′, c′) is similar to (a, b, c) (resp. (a, c, b)) as oriented triangles without labeling of vertices.

We will write ∆
dr∼ ∆′ (resp. ∆

rv∼ ∆′) for the direct similarity (resp. reverse similarity) which is
equivalent to ψ(∆)3 = ψ(∆′)3 (resp. ψ(∆)3 = ψ(∆′)−3).

Proposition 5.11. Notations being as above, the following formulas and statements hold for
s, r, u ∈ C \ {ρ, ρ−1}.

(i) H̄s ◦ H̄s = −C̄1−s ◦ C̄s.
(ii) C̄s ◦ C̄s = (s2 − s+ 1) id.

(iii) For each ∆ ∈ (C3)[, we have Cs(∆)
rv∼ Hs(∆).

(iv) For each ∆ ∈ (C3)[, Cs ◦ Cr(∆)
dr∼ Cu(∆) if and only if (ξrξu)3 · ψ(∆)6 = ξ3

s .

(v) Cs ◦ Cr(∆)
rv∼ Cu(∆) for all ∆ ∈ (C3)[ if and only if (ξsξu)3 = ξ3

r .

(vi) If ∆
rv∼ ∆′, then Cs(∆)

rv∼ C1−s(∆
′).
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Proof. (i), (ii) follow from matrix computations by (5.9), and (iii) follows from (5.10) at once.
The values of shape function at Cs ◦ Cr(∆) and at Cu(∆) are respectively ξ−1

s ξr · ψ(∆) and
ξ−1
u ψ(∆)−1. This proves (iv). Next, by a remark preceding the proposition, Cs ◦ Cr(∆) is

reversely similar to Cu(∆) iff (ξ−1
s ξrψ(∆))3 = (ξ−1

u ψ(∆)−1)−3, from which the assertion (v)
follows by cancelling out the common factor ψ(∆)3. Finally, the assumption of (vi) is equiv-
alent to ψ(∆)3ψ(∆′)3 = 1. On the other hand, the entry quotients of the identities C̄s(∆) =(

(s+ω2)ψ1(∆)
(s+ω)ψ2(∆)

)
and C̄1−s(∆

′) =
(

(−s−ω)ψ1(∆′)

(−s−ω2)ψ2(∆′)

)
yield ψ(Cs(∆)) · ψ(C1−s(∆

′)) = ψ(∆)−1ψ(∆′)−1.

Thus, we conclude ψ(Cs(∆))3ψ(C1−s(∆
′))3 = 1, that is, Cs(∆)

rv∼ C1−s(∆
′) as desired. �

Note 5.12. The assertions (i), (ii), (iv), (v) and (vi) of Proposition 5.11 correspond respectively
to a property at line −5 in p.379, Proposition 9.2, Corollary 9.8, Theorem 9.9 and Proposition
9.1 of [1]. The assertion (iii) is originally a source defining property for the binary Ceva operator
[1, p.379]. A binary operation ∗ defined by the identity ξsξs′ = ξs∗s′ gives a commutative group
structure on {s ∈ P1(C) | s 6= ρ, ρ−1} which is equivalent to an operation � on R ∪ {∞}
introduced in [1] and to the additive operation [+] on P1(C) − {ρ, ρ−1} studied in [8] after
suitable variable changes.

Note 5.13. Proposition 5.11 (i), (ii) can be rephrased at the level of operators on (C3)[ respec-
tively as:

(i) Hs ◦ Hs = S[−1,−1] ◦ C1−s ◦ Cs;
(ii) Cs ◦ Cs = S[s2 − s+ 1, s2 − s+ 1].

Note 5.14. The above usage of ‘reverse similarity’ differs from the one employed in [7] where it

meant ∆
dr∼ ∆′ (mirror image of ∆′) that is sometimes called anti-similarity.

6. Tracing orbits of triangles

Since our operators S[η, η′] are realized as linear actions on C3 that fix (1, 1, 1) by Proposition
3.5 (i), they commute with every complex affine transformation of triangles, in other words,
S[η, η′] commutes with any mapping of the form (a, b, c) 7→ (f(a), f(b), f(c)) where f : z 7→ λz+ν
(λ, ν ∈ C). This is not always the case for real affine transformations. We first begin with the
following simple lemma.

Lemma 6.1. Let (η, η′) ∈ C2. The operation S[η, η′] commutes with the real affine transforma-
tions of triangles if and only if η̄ = η′, i.e., η and η′ are complex conjugate to each other.

Proof. Recall that any real affine transformation of the complex plane C can be written as
fλ,µ,ν(z) = λz + µz̄ + ν with λ, µ, ν ∈ C. Given a triangle triple ∆ = (a, b, c) and f = fλ,µ,ν ,
write f(∆) := (f(a), f(b), f(c)) for the image of ∆ by f . Then, one computes

S[η, η′]
(
fλ,µ,ν

(
a
b
c

))
= fλ,µ,ν

(
S[η, η′]

(
a
b
c

))
+ µ ·

(
S[η, η′]− S[η, η′]

)(
a
b
c

)
.

The commutativity of S[η, η′] and fλ,µ,ν holds if and only if µ = 0 (i.e., fλ,µ,ν is complex affine)

or S[η, η′] = 1
3(1 + η + η′)I + 1

3(1 + ηω + η′ω2)J + 1
3(1 + ηω2 + η′ω)J2 is in M3(R). The latter

condition is easily seen to be equivalent to η̄ = η′. �

In [8], we called S[η, η′] ∈ S an area-preserving operator if the associated parameters η, η′ ∈ C
satisfy |η| = |η′| = 1. The set of area-preserving operators forms a compact multiplicative torus

in GL3(C). Since S[η, η′]k = S[ηk, η′k] (k ∈ Z), iteration of area-preserving operators can be
interpolated by one-parameter family of the form

{S[e2πimt, e2πint]}t∈R.
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We are particularly interested in the case where three vertices move along a single closed orbit
cyclically replacing positions of each other after t 7→ t + $/3 so that the total motion is left
invariant after t 7→ t+$. Note that, in this situation, we may assume$ = 1 andm,n are coprime
integers without loss of generality. Taking this into accounts, we are led to start with a more
general setup: Recall from 5.2 that (C3)[ denotes the collection of triangle triples with no triple

collisions. Suppose we are given ∆ ∈ (C3)[ and two continuous functions η, η′ : R→ (R/Z→)C
(with period 1). We shall consider the periodic maps R→ R/Z→ (C3)[ in the form

∆(t) = S[η(t), η′(t)](∆) or Mwx/yz[η(t), η′(t)](∆).

Note that generally ∆(0) may not be the same as the initial ∆ and that ∆(t) may degenerate
at some t even if ∆ is given as a non-degenerate triangle. The family {∆(t)}t will be called
collision-free if, for every t ∈ R, ∆(t) is a (degenerate or non-degenerate) triangle with three
distinct vertices. We sometimes regard the time parameter t ∈ R also as t ∈ R/Z when no
confusion could occur.

Definition 6.2. Notations being as above, we say the family {∆(t)}t∈R/Z to have a single tracing

orbit in ascending (resp. descending) order, if J∆(t) = ∆(t+ 1
3) (resp. = ∆(t− 1

3)).

If {∆(t)}t has a single tracing orbit in ascending order, and ∆(t) is written as (a0(t), a1(t), a2(t)),
then, a0(t) = a2(t + 1

3) = a1(t + 2
3) = a0(t + 1) for all t ∈ R. We may interpret a collision-free

family with this property as a motion of three particles a0, a1, a2 moving along a single closed
orbit so that they trace each other chronologically with a0 → a1 → a2 → a0.

Proposition 6.3. Let ∆ ∈ (C3)[ and η, η′ : R/Z→ C be continuous functions with period 1.

(i) {S[η(t), η′(t)](∆)}t has a single tracing orbit in ascending (resp. descending) order if
and only if

η(t+
1

3
) = η(t)ω−1, η′(t+

1

3
) = η′(t)ω (t ∈ R)(

resp. η(t− 1

3
) = η(t)ω−1, η′(t− 1

3
) = η′(t)ω (t ∈ R)

)
holds.

(ii) Let wx/yz be a label for generalized median operators. Then, {Mwx/yz[η(t), η′(t)](∆)}t
has a single tracing orbit in ascending (resp. descending) order if and only if η̃(t) :=
η(t)− ωx−w, η̃′(t) := η′(t)− ωw−x satisfy

η̃(t+
1

3
) = η̃(t)ω−1, η̃′(t+

1

3
) = η̃′(t)ω (t ∈ R).(

resp. η̃(t− 1

3
) = η̃(t)ω−1, η̃′(t− 1

3
) = η̃′(t)ω (t ∈ R).

)
Proof. (i) follows immediately from (4.1). To prove (ii), we make use of Corollary 3.8 to express

Mwx/yz[η(t), η′(t)](∆) as S[η0(t), η1(t)]. Then, apply (i) for the latter form. �

Let us look more closely at the tracing orbit in relation with the shape sphere P1
ψ(C) intro-

duced in Definition 5.2. Write Conf3(C) (called the configuration space) for the collection of

collision-free triples in (C3)[, i.e.,

Conf3(C) := {(a, b, c) ∈ C3 | a 6= b 6= c 6= a} ⊂ (C3)[.

Then, it is easy to see that the shape function ψ = ψ2

ψ1
maps Conf3(C) onto the open locus

P1
ψ(C)−{1, ω, ω2} of the shape sphere P1

ψ(C). Given a collision-free single tracing orbit {∆(t)}t
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⊂ Conf3(C) either in ascending or descending order, the image {ψ(∆(t))}0≤t≤1 move on a closed
curve on P1

ψ(C) − {1, ω, ω2}. More precisely, during the process starting/ending at the point

ψ0 := ψ(∆(0)) = ψ(∆(1)), it passes two distinguished points ψ(∆(1
3)) = ωψ0, ψ(∆(2

3)) =

ω2ψ0 (resp. ψ(∆(1
3)) = ω2ψ0, ψ(∆(2

3)) = ωψ0) if {∆(t)}t moves in ascending order (resp. in

descending order). Thus, in view of the diagram (5.3), the image of {ψ(∆(t))3}0≤t≤ 1
3

forms a

closed curve on P1
33(C) − {1}. It is worth noting that the (existence and) classification of the

tracing orbits {∆(t)}t sharing a same closed curve on P1
33(C)−{1} is available as below, where

we employ the convention 1/0 =∞.

Proposition 6.4. Let ε ∈ {±1} and let γ : R→ P1
ψ(C)−{1, ω, ω2} be a non-constant continuous

map such that γ(0) 6∈ {0,∞} and γ(t+ 1
3) = ωεγ(t) for all t ∈ R. Set ξ(t) := γ(t)/γ(0).

(i) There exists a collision-free single tracing orbit {∆(t)}t with ψ(∆(t)) = γ(t) in ascending
(resp. descending) order when ε = 1 (resp. ε = −1), if and only if ξ(t) can be written

in the form ξ(t) =
η2(t)

η1(t)
with ηr : R→ C satisfying ηr(t+ 1

3) = ωεrηr(t) (r = 1, 2).

(ii) In particular, if γ(t) 6=∞ (∀ t) then (i) is the case with η2(t) = e2πiεtξ(t), η1(t) = e2πiεt.
(iii) Suppose (i) is the case. Then, every possible tracing orbit {∆(t)}t sharing the same

closed curve γ(t) as ψ(∆(t)) is obtained as

∆(t) = W

1 0 0
0 η1(t)µ(t) 0
0 0 η2(t)µ(t)

W−1

a0

b0
c0


where µ : R → C× is a continuous function with period 1

3 , and ∆0 = (a0, b0, c0) is a
triangle triple with ψ(∆0) = γ(0).

Proof. The assumption on γ(0) tells that the value λ0 := −γ(0)ω−1
γ(0)−ω is contained in C−{0, 1, ρ±1}

so that ∆0 := (0, 1, λ0) ∈ Conf3(C) forms a (non-equilateral) triangle triple with ψ(∆0) = γ(0).
(i) The ‘if’-part is already shown in Proposition 6.3, so we here show the ‘only if’ part.

Suppose a collision-free single tracing orbit {∆(t)}t exists and consider the behavior of ψr(∆(t))
(r = 1, 2). Since γ(0) = ψ(∆(0)) = ψ2(∆(0))/ψ1(∆(0)) 6∈ {0,∞} by assumption, we can define
for each r ∈ {1, 2} a function ηr : R → C by ηr(t) := ψr(∆(t))/ψr(∆(0)). This shows that
Ψ(∆(t)) = W−1∆(t) is of the form diag(1, η1(t), η2(t))Ψ(∆(0)). Then the prescribed property
∆(t+ ε

3) = J∆(t) (Definition 6.2) implies the required properties for ηr(t+ 1
3) (r = 1, 2).

(ii) This is immediate after (i).
(iii) Fix a collision-free tracing orbit {∆(t)}t with parameter functions η1(t), η2(t) as in (i), and

pick any other such a family {∆′(t)}t with another set of parameter functions η′1(t), η′2(t). Then,
η2(t)
η1(t) = ξ(t) =

η′2(t)
η′1(t)

for all t ∈ R. Note here that ξ(t) = 0 (resp. = ∞) if and only if η1η
′
1 6= 0,

η2 = η′2 = 0 (resp. η2η
′
2 6= 0, η1 = η′1 = 0). So the continuity of the map ξ of R into the Riemann

sphere C ∪ {∞} enables us to define a continuous function µ : R → C× by µ(t) :=
η′1
η1

(=
η′2
η2

)

when ξ(t) ∈ C×, µ(t) :=
η′1
η1

when ξ(t) = 0 and µ(t) :=
η′2
η2

when ξ(t) =∞. The periodic property

µ(t + 1
3) = µ(t) is a consequence of ηr(t + 1

3) = ωεrηr(t) and η′r(t + 1
3) = ωεrηr(t)

′ (r = 1, 2).
The vector expression in (iii) follows from the procedure described in the above proof of (i)
with ∆0 = (a0, b0, c0) = Wdiag(1, η′1(0), η′2(0))W−1∆′(0), that is, ψ(∆0) = ξ(0) · ψ(∆′(0)) =
ξ(0)γ(0) = γ(0). This completes the proof. �

Now, let us turn back to the area-preserving parameters η(t) = e2πimt, η′(t) = e2πint with
coprime integers m,n ∈ Z and examine some typical cases.
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Example 6.5. Let ∆ be a triangle triple and m,n coprime integers. By Proposition 6.3 (i), the
family

{∆(t) = S[e2πimt, e2πint](∆)}t∈R
has a single tracing orbit if m+n ≡ 0 (mod 3). The vertices move in ascending (resp. descend-
ing) order if m ≡ 2 (mod 3) (resp. m ≡ 1 (mod 3)).

Example 6.6 (Steiner ellipse). The special case m = −1, n = 1 of Example 6.5 is

∆(t) = S[e−2πit, e2πit](∆).

In this case, starting from ∆(0) = ∆, the vertices of a triangle move on an ellipse with sides
tangent to an interior ellipse (Figure 5). For an easy proof for the case ∆ is non-degenerate, one
can apply Lemma 6.1 to deform ∆ to the equilateral triangle (1, ω, ω2) in real affine geometry. If
∆ = (0, 1, u+v

√
−1), then the circumscribed ellipse has the following equation in XY-coordinates

of C.

v2

(
X − 1 + u

3

)2

+ (v − 2uv)

(
X − 1 + u

3

)(
Y − v

3

)
+ (1− u+ u2)

(
Y − v

3

)2
=
v2

3
.

Figure 5. {S[e−2πik/17, e2πik/17](∆)}k≥Z for ∆ = ∆(0) = (0, 1, 0.7 + 0.5i)

Example 6.7. The following three collections of figures (Figure 6, 7, 8) illustrate the family
S[e2πit, e2πint](∆) for n ≡ 2 (mod 3), S[e2πimt, e2πit](∆) for m ≡ 2 (mod 3) and some other
types from Example 6.5 respectively. We start from ∆ = ∆(0) = (0, 1, 0.7 + 0.5i).

Figure 6. {S[e2πit, e4πit, ](∆)}t∈R and {S[e2πit, e−8πit](∆)}t∈R

Example 6.8 (Median orbits). By Proposition 6.3 (ii), the median triangle family{
M0x/01[η(t), η′(t)](∆)

}
t∈R
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Figure 7. {S[e16πit, e2πit](∆)}t∈R and {S[e−14πit, e2πit](∆)}t∈R

Figure 8. {S[e14πit, e4πit](∆)}t∈R and {S[e−10πit, e4πit](∆)}t∈R

along with η(t) = e2πimt + ωx, η′(t) = e2πint + ω−x (m + n ≡ 0 (mod 3), x ∈ Z/3Z) has a
single tracing orbit. The following figure (Figure 9) starts from ∆ = (0, 1, 0.7 + 0.5i), ∆(0) =
(4

5 + 1
3 i,

7
30 + 1

6 i,
2
3). According to (4.8), the orbit is independent of the choice of x ∈ Z/3Z. We

also observe that it is similar to the orbit {S[e−10πit, e4πit](∆)}n∈R illustrated in the previous
example.

Figure 9. ∆ and {M0x/01[e−10πit + ωx, e4πit + ω−x](∆)}t∈R

It is not necessary for us to persist in area-preserving parameters in Proposition 6.3.
Simple linear sums of e2πimt with m ≡ ±1 (mod 3) (± depends on η, η′ individually) already

provide us with a number of remarkable examples. In this paper, we content ourselves with
showing the following few cases among them.
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Example 6.9 (Figure eight cevian orbit). Let ∆ = (0, i,−i) be a degenerate triangle, and set
η(t) = −2e2πit + e−4πit, η′(t) = 2e−2πit + e4πit. Then, the vertices of ∆(t) = S[η(t), η′(t)](∆)
moves on a single figure eight curve X2 = 3

16X
4 + Y 2 in XY-coordinates of C: The first vertex

of ∆(t) moves along 4
3

√
3 cos(t) + i2

3

√
3 sin(2t) (t ∈ R) and the other two vertices chase it on the

same orbit (Figure 10).

→ →

→ → →

Figure 10.
{
S[−2e2πit + e−4πit, 2e−2πit + e4πit](∆)

}
t∈R

One direction of generalizing this example is to consider ∆(t) whose vertices move on what is
called a Lissajous curve. In a separate article [5], we will discuss in details “Lissajous 3-braids”
arising from this sort of triangle’s motions.

Example 6.10 (Figure eight median orbit). We provide another example for Proposition 6.3

(ii). Starting from ∆ = (0, 4, 3+ i), the median triangle family {M01/01[η(t), η′(t)](∆)}t∈R along
with η(t) = −2e2πit + e−4πit + ω, η′(t) = 2e−2πit + e4πit + ω2 gives a figure eight orbit (Figure
11).

→ → →

Figure 11. ∆ and
{
M01/01[−2e2πit + e−4πit + ω, 2e−2πit + e4πit + ω2](∆)

}
t∈R
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