
On adelic Hurwitz zeta measures

HIROAKI NAKAMURA AND ZDZIS LAW WOJTKOWIAK

Abstract. In this paper we construct a Ẑ-valued measure on Ẑ which interpolates
p-adic Hurwitz zeta functions for all p.
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1. Introduction

Let m ≥ 1, 0 < a < m be integers such that a is prime to m, and let p be a rational
prime. Set q := 4, q := p according to whether p = 2 or p > 2 respectively, and e :=
|(Z/qZ)×|. When p - m, let 〈ap−1〉 denote the least positive integer such that 〈ap−1〉p ≡ a

mod m. Define the Bernoulli polynomials Bk(T ) (k ∈ N) by
∑∞

k=0Bk(T )w
k

k!
= weTw

ew−1
and

set the Bernoulli numbers Bk := Bk(0).
In [Sh], Shiratani constructed p-adic Hurwitz zeta functions ζShp (s; a,m) (s ∈ Zp, s 6= 1)

characterized by the interpolation property:

(1.1) ζShp (1− k; a,m) =

{
−mk−1

k
Bk(

a
m

), (p | m);

−mk−1

k
Bk(

a
m

) + pk−1mk−1

k
Bk(

〈ap−1〉
m

), (p - m)

for all integers k > 1 with k ≡ 0 mod e. In [W3], assuming p - m, the second author
introduced a p-adic Hurwitz L-function Lβp (s; a,m) for β ∈ (Z/eZ) which satisfies

(1.2) Lβp (1− k; a,m) =
1

k
Bk

( a
m

)
− pk−1

k
Bk

(
〈ap−1〉
m

)
for all integers k > 1 with k ≡ β mod e using certain p-adic measures arising in the study
of Galois actions on paths on P1−{0, 1,∞} (see also [W4]). The purpose of this paper is

to complete the construction to include the case p | m and to lift it over Ẑ = lim←−N(Z/NZ).

Throughout this paper, we fix an embedding of Q into C. For any subfield F ⊂ C,
denote by GF the absolute Galois group Gal(F̄ /F ).

2010 Mathematics Subject Classification. 11S40; 11G55, 11F80, 11R23, 14H30.
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Theorem 1.1. Let m and a be mutually prime integers with m > 1, 0 < a < m. Then,
for every σ ∈ GQ(µm), there exists a certain measure ζ̂a,m(σ) in Ẑ[[Ẑ]] such that for every

prime p, its image ζ̂p,a,m(σ) in Zp[[Zp]] has the following integration properties over Z×p :∫
Z×p
bk−1dζ̂p,a,m(σ)(b) =

{
(1− χp(σ)k) ·mk−1 · 1

k
Bk(

a
m

) (p | m);

(1− χp(σ)k) ·mk−1
(

1
k
Bk(

a
m

)− pk−1

k
Bk(

〈ap−1〉
m

)
)

(p - m)

for all integers k ≥ 1, where χp : GQ → Z×p denotes the p-adic cyclotomic character, and

〈ap−1〉 represents the least positive integer such that 〈ap−1〉p ≡ a mod m.

Remark 1.2. Note that, in the above theorem, the case m = 1 is excluded. In fact, the
case m = a = 1 corresponds to the Ẑ-zeta function treated in [W2]. This separation of

treatment is necessary for the appearance of tangential base point
−→
10 in the construction

of measure, which causes replacements of both Bk(
a
m

), Bk(
〈ap−1〉
m

) of RHS by Bk(1).

Remark 1.3. More generally, we construct the measure ζ̂a,m(σ) ∈ Ẑ[[Ẑ]] for m > 1 and
m - a which satisfies the above integration property for all primes p|m with p - a (cf.
Remark 5.6).

Remark 1.4. Using any σ ∈ GQ(µm) with χp(σ)e 6= 1, we obtain from ζ̂p,a,m a set of p-adic

Hurwitz functions {L[β]
p (s, a,m)}β∈(Z/eZ) by the standard integral

L[β]
p (s; a,m) =

1

1− ω(χp(σ))β[χp(σ)]1−s

∫
Z×p

[b]1−sb−1ω(b)βdζ̂p,a,m(σ)(b)

where ω : Z×p → µe is the Teichmüller character, and for every b ∈ Z×p , [b] ∈ 1 + qZp is
defined by b = [b]ω(b). Note that the above integral converges in s ∈ Zp except when it
has a pole at s = 1 in the case β ≡ 0 (mod e). It follows from Theorem 1.1 that, for each

β ∈ Z/eZ, the L-function L
[β]
p (s; a,m) has the interpolation property:

(1.3) L[β]
p (1− k; a,m) =

{
mk−1

k
Bk(

a
m

) (p | m);
mk−1

k

(
Bk(

a
m

)− pk−1Bk(
〈ap−1〉
m

)
)

(p - m)

for all k ≥ 1 with k ≡ β mod e. Since Z>0,≡β(mod e) is dense in the space β + q
p
Zp

(= Zp (p > 2), 2Z2 or 1 + 2Z2), the above interpolation property shows that L
[β]
p (s, a,m)

is determined independently of σ (at least) on that space. In particular when β ≡ 0

(mod e) and p > 2, L
[0]
p (s; a,m) = −ζShp (s; a,m) for s ∈ Zp − {1}. See also Appendix A

for relations of L
[β]
p (s, a,m) with Cohen’s Hurwitz zeta functions ζp(s, x).

In the present paper, we hope to make a small step towards the quest of Coates about
existence of zeta functions on Ẑ with values in Ẑ [W2, Introduction].

The mapping ζ̂a,m in Theorem 1.1 gives a 1-cocycle GQ(µm) → Ẑ(1)[[Ẑ(−1)]] whose

(k− 1)st moment integral gives rise to a cohomology class in H1(GQ(µm), Ẑ(k)) for k ≥ 2.
In fact, we will show in Corollary 5.5:∫

Zp
bk−1dζ̂p,a,m(σ)(b) =

mk−1

k
Bk

( a
m

)
(1− χp(σ)k) (σ ∈ GQ(µm), k ≥ 2)

which implies that the p-adic image of the above cohomology class is torsion with order
calculated explicitly by Bernoulli values. It is noteworthy that this cohomology class is
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closely related to the ξam-component of the Z(k)-torsor ‘Pm,k+(−1)kεPm,k’ over µm studied
by Deligne in [De, Proposition 3.14, Lemma 18.5].

Acknowledgement: This work was partially supported by JSPS KAKENHI Grant Num-
ber JP26287006. The authors would like to thank the referee for many valuable sugges-
tions including a crucial remark to simplify the proof of Lemma 5.2.

2. The Kummer-Heisenberg measure κ1

2.1. Cyclic coverings. Let F ⊂ C be a finite extension of Q with the algebraic closure
F ⊂ C. For any (normal) algebraic variety V over F and F -rational points x, y ∈ V (F ),
we write πét

1 (V ; y, x) for the set of étale paths from x to y on the geometric variety V ⊗F ,
and πét

1 (V ;x) = πét
1 (V ;x, x) for the étale fundamental group with base point x. Denote

by πpro-p
1 (V, x) the maximal pro-p quotient of πét

1 (V, x), and by πpro-p
1 (V ; y, x) the natural

push forward of πét
1 (V ; y, x) induced from the projection πét

1 (V, x)� πpro-p
1 (V, x).

For each n ≥ 1, write ξn := exp(2πi
n

) so that µn := {1, ξn, ξ2
n, . . . , ξ

n−1
n }. Let

Vn := P1 \ {0, µn,∞},

where we understand {0, µn,∞} is the abbreviation of {0,∞} ∪ µn. Regard Vn(C) =

C× \ µn. Let
−→
01n be the tangential base point on Vn represented by the unit tangent

vector and denote for simplicity
−→
01. Then, for each n ≥ 1, there is a standard cyclic étale

cover pn : Vn → V1 given by z 7→ zn which sends
−→
01n to a Galois functor equivalent to

−→
011

on V1. Thus, without ambiguity, we may omit the index of
−→
01 on Vn and regard (Vn,

−→
01)

as a pointed étale cover over (V1,
−→
01). By standard Galois theory, it allows us to identify

πét
1 (Vn,

−→
01) as a subgroup of πét

1 (V1,
−→
01).

Let x, y be the generators of πét
1 (V1,

−→
01) given by the loops based at

−→
01 on V1 = P1 −

{0, 1,∞} running around 0, 1 once anti-clockwise respectively. Then, it is easy to see

that, as a subgroup of it, πét
1 (Vn,

−→
01) is freely generated by xn := xn and yb,n := x−byxb

(0 ≤ b < n).

2.2. Galois associators and Kummer-Heisenberg measure. Now, let z be an F -
point of V1 = P1 − {0, 1,∞}. We have the canonical comparison map

π1(V1(C); z,
−→
01) −→ πét

1 (V1; z,
−→
01)

from the set of homotopy classes of paths from
−→
01 to z on V1(C) to the étale paths from

−→
01 to z on V1 ⊗ F̄ . The Galois group GF acts on the profinite group πét

1 (V1,
−→
01) and its

torsor of paths πét
1 (V1; z,

−→
01).

Let us fix an étale path γ ∈ πét
1 (V1(C); z,

−→
01). For σ ∈ GF , define the Galois associator

for the path γ by

(2.1) fγ(σ) := γ−1 · σ(γ) ∈ πét
1 (V1,

−→
01),

where σ(γ) := σ ◦ γ ◦ σ−1.
Write π′ for the commutator subgroup of a profinite group π. The abelianization of

fγ(σ) is known (cf. [NW1, Proposition 1]) to be expressed as:

(2.2) fγ(σ) ≡ xρz,γ(σ)yρ1−z,γ(σ) mod πét
1 (V1,

−→
01)′,
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with the Ẑ-valued functions

ρz,γ, ρ1−z,γ : GF → Ẑ
the Kummer 1-cocycles associated with the roots of z and 1 − z. They are respectively
calculated along γ with the above chosen base of the Tate module

(2.3) (ξn)n≥1 ∈ Ẑ(1) := lim←−
n

µn.

For the latter ρ1−z,γ, we understand the points
−→
01 and 1 − z are connected by the unit

segment [0, 1] on P1 followed with the reversed path of γ by (∗ 7→ 1− ∗). We sometimes
omit the mention to γ when it is obvious from context.

Definition 2.1. Let σ ∈ GF and set

f [γ(σ) := x−ρz,γ(σ)fγ(σ) (σ ∈ GF ).

which belongs to the subgroup π1(Vn,
−→
01) ⊂ π1(V1,

−→
01) by (2.2) for every n ≥ 1. Given

0 ≤ b < n, we define κ
(n)
z,γ(σ)(b) ∈ Ẑ by the congruence

f [γ(σ) ≡
n−1∏
b=0

yb,n
κ
(n)
z,γ(σ)(b)

modulo πét
1 (Vn,

−→
01)′: the commutator subgroup of πét

1 (Vn,
−→
01).

Proposition 2.2 (See [NW1] Lemma 1). For each σ ∈ GF , the system of functions{
Z/nZ 3 b 7→ κ(n)

z,γ(σ)(b) ∈ Ẑ
}
n∈N

running over n ≥ 1 defines a Ẑ-valued measure on Ẑ. �

We shall denote the above measure by

κ1(γ :
−→
0199Kz)(σ) or κ1(z)γ(σ)

and call it the Kummer-Heisenberg measure associated with the path γ :
−→
0199Kz. We

view it as an element of the Iwasawa algebra Ẑ[[Ẑ]]. Recall that Ẑ(1) in (2.3) is the Galois

module Ẑ acted on by GF by multiplication by the cyclotomic character. Let Ẑ(−1) be
its dual.

Proposition 2.3. The function

κ1(γ :
−→
0199Kz) : GF → Ẑ(1)[[Ẑ(−1)]]

is a cocycle. Namely it holds that

κ(n)
z,γ(στ)(b) = κ(n)

z,γ(σ)(b) + χ(σ) · κ(n)
z,γ(τ)(χ(σ)−1b)

for σ, τ ∈ GF , n ≥ 1, b ∈ Z/nZ.

Proof. By the definition of fγ (2.1), we have fγ(στ) = fγ(σ) · σ(fγ(τ)), hence f [γ(στ) ≡
f [γ(σ) · σ(f [γ(τ)) modulo π1(Vn)′. The assertion follows from this and the observation

σ(yb,n) ≡ x−χ(σ)byχ(σ)xχ(σ)b ≡ (yχ(σ)b,n)χ(σ)

modulo π1(Vn)′. �
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Remark 2.4. In [NW1, Lemma 1], we introduced a compatible sequence (κn)n in the

projective system lim←−n Ẑ[Z/nZ] which forms a measure κ̂ ∈ Ẑ[[Ẑ]]. We call κ̂ (resp. κ1)

the Kummer-Heisenberg measure in e-form (resp. t-form) in the terminology of Appendix
B. These two measures are ‘oppositely directed’ mainly because of different choice of path
conventions as follows. After identification Ẑ ∼→ Ẑ(1) by 1 7→ (ξn = exp(2πi/n))n, let ε

denote the involution on Ẑ(1) induced by ξ 7→ ξ−1. Then, we have κ1(σ) = ε · κ̂(σ)

(σ ∈ GF ) as elements of Ẑ[[Ẑ(1)]].

3. Adelic Hurwitz measure

3.1. Paths to roots of unity. Fix m ∈ N>1 and let a be an integer with m - a. Let

ι : V1 → V1 be the involution given by ι(z) = z−1. For any path γ on V1(C) from
−→
01 to

ξam, we set another path γ̄ from
−→
01 to ξ−am by

γ̄ := ι(γ) · Γ∞

where Γ∞ is a path on V1(C) from
−→
01 to

−→∞1 as in Figure 1.

Figure 1. Γ∞ is a path from
−→
01 to

−→∞1

Write a
m

=
⌊
a
m

⌋
+ { a

m
} so that 0 ≤ { a

m
} < 1, and define the path Γa/m :

−→
0199Kξam to be

the composition Γ{a/m} · xba/mc, where Γ{a/m} is the path illustrated as in Figure 2.

Figure 2. Γ{a/m} is a path from
−→
01 to ξam

It is easy to see the following lemma.

Lemma 3.1. Along the above paths Γa/m :
−→
0199Kξam and Γ̄a/m :

−→
0199Kξ−am , the associated

Kummer 1-cocycles are coboundaries satisfying

ρξam,Γa/m(σ) =
a

m
(χ(σ)− 1), ρξ−am ,Γ̄a/m

(σ) = − a

m
(χ(σ)− 1)

for σ ∈ GQ(µm).
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Proof. The first formula is immediate from the definition and the identification Ẑ ∼=
Ẑ(1) by 1 7→ (ξn)n≥1. For the second, it suffices to note that the image of Γ̄a/m by
P1 − {0, 1,∞} ↪→ P1 − {0,∞} is topologically homotopic to the complex conjugate of
Γa/m. �

Remark 3.2. It is worth noting that Γαx
n = Γα+n for any α ∈ Q and n ∈ Z. This

additivity property does not hold for Γ̄α in general. Still, if 0 ≤ α ≤ 1, then it holds that
Γ̄α = Γ−α = Γn−αx

−n for every n ∈ Z. This last point will play a crucial role later in
Lemma 5.7.

3.2. Translation of a measure. Let pn : Vn → V1 be the cyclic cover of degree n

considered in §2.1. For an étale path γ :
−→
0199Kz on V1, we shall write

γn
(
= (γ)n

)
:
−→
01n99Kz

1/n

to denote the lift of γ to Vn for all n ≥ 1. Let us fix σ ∈ GF . Note that the end point
z1/n may or may not be fixed by the σ. By (2.2), we have

(3.1) f [γ(σ) = (γ · xρz,γ(σ))−1σ(γ) ∈ πét
1 (V1,

−→
01)′.

But since Vn is an abelian cover of V1, πét
1 (V1,

−→
01)′ is contained in π1(Vn,

−→
01). Therefore

(3.1) implies that the lifts of γ · xρz,γ(σ) and of σ(γ) departing at
−→
01n on Vn end at the

same point σ(z1/n) = ξ
ρz,γ(σ)
n z1/n. Since the lift (xρz,γ(σ))n of xρz,γ(σ) from

−→
01n ends at

ξ
ρz,γ(σ)
n

−→
01n, the subsequent path γn,σ should lift γ so as to start from that point ξ

ρz,γ(σ)
n

−→
01n

with ending at the point σ(z1/n) on Vn:

−→
01n

xρz,γ (σ)
//

(σ(γ))n

66
ξ
ρz,γ(σ)
n

−→
01n

γn,σ
// σ(z1/n) .(3.2)

In summary, writing (σ(γ))n for the lift of σ(γ) from
−→
01n on Vn, we may express f [γ(σ) as

the composition of those three paths

f [γ(σ) = (xρz,γ(σ))−1
n · γ−1

n,σ · (σ(γ))n

on Vn.
Below, we shall see magnification of the base space Ẑ on a coset s+rẐ (s, r ∈ Z, r ≥ 1)

under the measure κ1(z)γ(σ) can be interpreted as a twisted lifting of the reference path

γ :
−→
0199Kz to Vr followed with ‘s-rotated’ embedding by Vr ↪→ V1.

Set an ‘s-modified’ path γ〈−s〉 :
−→
0199Kz, for the given path γ :

−→
0199Kz on V1, by

(3.3) γ〈−s〉 := γ · x−s.
It follows easily that

(3.4) ρz,γ〈−s〉(σ) = ρz,γ(σ)− s(χ(σ)− 1) (σ ∈ GF ).

Suppose that ξr, z
1/r ∈ F . Write

γ r = (γ)r :
−→
01r99K z

1/r,

γ〈−s〉,r = (γ〈−s〉)r :
−→
01r99K ξ

−s
r z1/r
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for the lifts of the paths γ and γ〈−s〉 by pr : Vr → V1 respectively, and

γ r∗ = r(γr) :
−→
0199K z1/r,

γ〈−s〉,r∗ = r(γ〈−s〉,r) :
−→
0199K ξ−sr z1/r

for the images of paths γ r, γ〈−s〉,r on Vr by the immersion r : (Vr,
−→
01r) ↪→ (V1,

−→
01)

respectively. It follows that

ρz1/r,γ〈−s〉,r∗(σ) = ρz1/r,(γ)r∗(σ)− s

r
(χ(σ)− 1)(3.5)

=
1

r
ρz,γ(σ)− s

r
(χ(σ)− 1)

for every σ ∈ GF .

Lemma 3.3. Notations being as above, with assumptions ξr, z
1/r ∈ F and σ ∈ GF .

(i) For every n ≥ 1, it holds that

κ(nr)
z,γ (σ)(vr + sχ(σ)) = κ

(n)

ξ−sr z1/r,γ〈−s〉,r∗
(σ)(v) (v = 0, . . . , n− 1),

where vr + sχ(σ) in LHS is regarded ∈ (Z/nrZ).

(ii) For any continuous function ϕ on Ẑ, we have∫
sχ(σ)+rẐ

ϕ(b) dκ1(γ :
−→
0199Kz)(σ)(b) =

∫
Ẑ
ϕ(rv+sχ(σ)) dκ1(γ〈−s〉,r∗ :

−→
0199Kξ−sr z1/r)(σ)(v).

Proof. In this proof, for n ≥ 1, we denote π(n) := πét
1 (Vn,

−→
01) and write

(3.6) $nr : π(nr)� π(n)

for the surjection induced from the open immersion (Vnr,
−→
01nr) ↪→ (Vn,

−→
01n). Note that,

among the standard generators xnr, yb,nr (b = 0, . . . , nr − 1) of π(nr), only xnr and yvr,nr
(v = 0, . . . , n− 1) survive via $nr to be xn, yv,n (v = 0, . . . n− 1) in π(n).

Noting that x−uyxu = yu,nr ≡ yu+nrk,nr mod π(nr)′ for u, k ∈ Z, we see from Definition
2.1 that

xsχ(σ) · f [γ(σ) · x−sχ(σ) ≡
nr−1∏
u=0

y−sχ(σ)+u,nr
κ
(nr)
z,γ (σ)(u) mod π(nr)′(3.7)

≡
nr−1∏
v=0

yv,nr
κ
(nr)
z,γ (σ)(v+sχ(σ)) mod π(nr)′

which should map via $nr to the product over those v multiples of r:

(3.8) $nr

(
xsχ(σ) · f [γ(σ) · x−sχ(σ)

)
≡

n−1∏
v=0

yv,n
κ
(nr)
z,γ (σ)(rv+sχ(σ)) mod π(n)′

as π(n)′ ⊃ $nr(π(nr)′). We shall interpret the LHS of the above expression (3.7) by

applying the composition diagram (3.2) to the path γ〈−s〉 :
−→
0199Kz (3.3) on V1 and its lift
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(γ〈−s〉)r = γ〈−s〉,r on Vr:

Vnr
� � /

����

Vn

����

[γ〈−s〉,r :
−→
0199Kξ−sr z1/r] �

�
Vr
� � /

����

V1 [γ〈−s〉,r∗]? _

[γ〈−s〉 :
−→
0199Kz] �

�
V1 .

We first derive:

xsχ(σ) · f [γ(σ) · x−sχ(σ) = xsχ(σ) · x−ρz,γ(σ)γ−1σ(γ) · x−sχ(σ)(3.9)

= xs(χ(σ)−1)−ρz,γ(σ) · (γx−s)−1σ(γx−s)

= (γ〈−s〉 · xρz,γ〈−s〉 (σ)
)−1 · σ(γ〈−s〉).

By (3.4), the former factor of path composition reads on Vr

(γ〈−s〉)r,σ ·
(
x
ρz,γ〈−s〉 (σ))

r
= (γx−s)r,σ ·

(
xρz,γ(σ)−s(χ(σ)−1)

)
r

where (γ〈−s〉)r,σ stands for a suitable lift of γ〈−s〉 on Vr, which arrives at the same end
point on Vr as the latter σ-transformed factor

(σ(γ〈−s〉))r :
−→
01r99Kσ(ξ−sr z1/r).

It turns out that (γ〈−s〉)r,σ starts at ξ
ρz,γ(σ)−s(χ(σ)−1)
r · −→01r which is equal to

−→
01r by our

assumption ξr, z
1/r ∈ F . Thus we conclude

(3.10) (γ〈−s〉)r,σ = γ〈−s〉,r
(
= (γ · x−s)r

)
.

By virtue of this and (3.5), applying to (3.9) the surjection $r : π(r)� π(1) determined
by xr 7→ x, y0 7→ y and y1, . . . , yr−1 7→ 1 as the case n = 1 of (3.6), we obtain

$r

(
(x
−ρz,γ〈−s〉 (σ)

)r · (γ〈−s〉)−1
r,σ · σ(γ〈−s〉,r)

)
= $r

(
(xr)

−ρ
z1/r,γr

(σ)+ s
r

(χ(σ)−1)
γ−1
〈−s〉,r · σ(γ〈−s〉,r)

)
= x

−ρ
z1/r,γ〈−s〉,r∗

(σ)
· γ〈−s〉,r∗−1 · σ(γ〈−s〉,r∗)

= f [γ〈−s〉,r∗(σ)

≡
n−1∏
v=0

yv,n
κ
(n)

ξ−sr z1/r,γ〈−s〉,r∗
(σ)(v)

mod π(n)′.

This, combined with (3.8) and (3.9) and the compatibility $nr = $r|π(nr), proves (i). The
assertion (ii) is just a formal consequence of (i). �

Suppose we are given a measure µ ∈ Ẑ[[Ẑ]]. Let m, a ∈ Z be integers as in §3.1 and

pick ν ∈ Ẑ×. Consider the coset Qaν,m := aν
m

+ Ẑ of Ẑ in Qf = Ẑ⊗Q. Then, obviously,

Raν,m := m ·Qaν,m = aν +mẐ ⊂ Ẑ.

We define the measure [m, aν]∗(µ) on Raν,m by assigning to each open subset U ⊂ Raν,m

the value µ(U ′), where U ′ is the inverse image of U by the affine map t 7→ mt+aν (t ∈ Ẑ).
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Note that Lemma 3.3 (ii) reads:

(3.11) κ1(γ :
−→
0199Kz)(σ)|sχ(σ)+mẐ = [m, sχ(σ)]∗

(
κ1(γ〈−s〉,m∗ :

−→
0199Kξ−sm z1/m)(σ)

)
for σ ∈ GF , m, s ∈ Z, m ≥ 1, where ∗|sχ(σ)+mẐ in LHS designates the restricted measure

on Rsχ(σ),m = sχ(σ) +mẐ ⊂ Ẑ.

Let ι denote the action of the complex conjugation on Ẑ(1)[[Ẑ(−1)]], that is, the action

of −1 ∈ Ẑ×. It is straightforward to see

(3.12) ι ◦ [m, aν]∗ = [m,−aν]∗ ◦ ι.

Now we are ready to introduce the fundamental object of our study. Let m > 1 and

a ∈ Z as above, and let Γa/m ∈ π(V1(C); ξam,
−→
01) be the path introduced in §3.1.

Definition 3.4 (Ẑ-Hurwitz and adelic Hurwitz measure). For each σ ∈ GQ(µm) we

define the Ẑ-Hurwitz measure ζa/m(σ) ∈ Ẑ[[Ẑ]] and the adelic Hurwitz measure ζ̂a,m(σ) ∈
Ẑ[[Ẑ]] by the formulas

ζa/m(σ) := κ1

(−→
01

Γ̄a/m
−99K ξ−am

)
(σ) + ι

(
κ1

(−→
01

Γa/m
−99K ξam

)
(σ)

)
;

ζ̂a,m(σ) := [m, aχ(σ)]∗ ζa/m(σ).

4. Geometrical interpretation of translation of measure

In this section we address the fact that translation of Kummer-Heisenberg measure by
[m, aχ]∗ corresponds to path composition with the loop xα. We work however only with
p-adic measures.

4.1. p-adic Galois polylogarithms. Let γ be an étale path on V1 from
−→
01 to an F -

rational (possibly tangential) point z. Let Qp〈〈X, Y 〉〉 be the non-commutative power

series ring in two variables X, Y , and write E : πpro-p
1 (V1,

−→
01) ↪→ Qp〈〈X, Y 〉〉 for the

embedding that sends the standard generators x, y to exp(X), exp(Y ). We define IY to
be the ideal of Qp〈〈X, Y 〉〉 generated by monomials containing Y twice or more.

For σ ∈ GF , set

Λγ(σ) := E (fγ(σ));

Λγ(σ) := E (f [γ(σ)) = exp(−ρz,γ(σ)X) · Λγ(σ).

Definition 4.1. Define p-adic Galois polylogarithms `ik(z)γ,Lik(z)γ : GF → Qp by the
congruence expansion

log Λγ(σ) ≡ ρz,γ(σ) +
∞∑
k=1

(−1)k−1`ik(z)γ(σ) (adX)k−1(Y ),

log Λγ(σ) ≡
∞∑
k=1

(−1)k−1Lik(z)γ(σ) (adX)k−1(Y )

modulo the ideal IY .
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Proposition 4.2. The family of functions {ρz,γ, `ik(z)γ, Lik(z)γ : GF → Qp}k≥1 satisfy

Lik(z)γ =
k∑
i=1

ρk−iz,γ

(k + 1− i)!
`ii(z)γ,(i)

`ik(z)γ =
k−1∑
s=0

Bs

s!
ρsz,γ Lik−s(z)γ(ii)

for k = 1, 2, . . . .

In fact, this proposition is a formal consequence of the following lemma:

Lemma 4.3. Let K be a field of characteristic zero, and suppose that two sequences
{bi}i≥0, {ui}i≥0 in K satisfy the congruence

e−u0Xeu0X+
∑∞
k=0 uk+1(adX)k(Y ) ≡ eb0X+

∑∞
k=0 bk+1(adX)k(Y ) mod IY

as non-commutative power series in X, Y . Then, b0 = 0 and, for k = 1, 2, . . . ,

bk =
k∑
i=1

(−u0)k−i

(k + 1− i)!
ui, uk =

k−1∑
s=0

Bs

s!
(−u0)sbk−s,

where B0, B1, . . . are Bernoulli numbers defined by
∑∞

s=0
Bs
s!
T s = T

eT−1
.

Proof. We use the classical Campbell-Hausdorff formula

log(eαeβ) ≡ β +
∞∑
n=0

Bn

n!
(adβ)n(α) mod deg(α) ≥ 2.

Set −α =
∑∞

i=0 bi+1(adX)i(Y ) and −β = u0X so that congruences mod deg(α) ≥ 2
derive those mod IY . It follows that log(eu0Xeb1Y+b2[X,Y ]+...) is congruent to u0X +∑∞

k=0

(∑k
s=0

Bs
s!

(−u0)sbk+1−s
)
(adX)k(Y ) mod IY . This is equivalent to the equality

(4.1)
∞∑
k=0

uk+1T
k =

(
−u0T

e−u0T − 1

) ∞∑
k=0

bk+1T
k.

The assertion follows from this immediately. �

4.2. Extension for Qp-paths. Let πQp(
−→
01) be the pro-algebraic hull of the image of the

above embedding E : πpro-p
1 (V1,

−→
01) ↪→ Qp〈〈X, Y 〉〉, and extend it to the inclusion of path

torsors πpro-p
1 (V1; z,

−→
01) ↪→ πQp(z,

−→
01) naturally. The elements of πQp(

−→
01), πQp(z,

−→
01) will

be simply called Qp-paths, and the action of the Galois group GF on the pro-p paths
extends to that on the Qp-paths in the obvious manner.

For each Qp-path γ :
−→
0199Kz and σ ∈ GF , we may define the Galois associator

fγ(σ) := γ−1 · σ(γ) ∈ πQp(
−→
01) extending (2.1). Then, define ρz,γ, lik(z, γ) : GF → Qp

(k = 1, 2, . . . ) as the coefficients in log(fγ(σ)) so as to extend the congruence in Definition
4.1 mod IY , and then, define Lik(z)γ : GF → Qp (k = 1, 2, . . . ) as the coefficients of
log(exp(−ρz,γ(σ)X) · fγ(σ)) again as the extension of Definition 4.1. Then, it is simple to

see that the identities in Proposition 4.2 hold true for Qp-paths γ :
−→
0199Kz in the same

forms.
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4.3. Relation with κ1,p. We now arrive at the stage to connect the `-adic polyloga-
rithms Lik and the Kummer-Heisenberg measure κ1. In [NW1], we showed that, for pro-p

paths γ :
−→
0199Kz, the function Lik(z)γ multiplied by (k − 1)! can be written by a certain

polylogarithmic character χ̃k(z)γ : GF → Zp defined by Galois transformations of certain

sequence of numbers of forms
∏pn−1

s=0 (1 − ξsz1/pn)s
k−1/pn (ξ ∈ µpn , n ≥ 1). This enabled

us to express Lik(z)γ(σ) (σ ∈ GF ) by the moment integral 1
(k−1)!

∫
Zp b

k−1dκ1,p(σ)(b) over

the p-adic measure κ1,p(σ) which is by definition the image of the Kummer-Heisenberg

measure κ1(σ) (§2.2) by the projection Ẑ[[Ẑ]]→ Zp[[Zp]].
A generalization of this phenomenon has been investigated in [NW3] for some more

general Qp-paths of the form γxa/m. We summarize the result as follows:

Proposition 4.4 ([NW3] §7). Let γ :
−→
0199Kz be a pro-p path. Then, for any α ∈ Qp, we

have

Lik(z)γxα(σ) =
1

(k − 1)!

∫
Zp

(b+ αχ(σ))k−1dκ1,p(
−→
01

γ
99Kz)(b) (σ ∈ GF ).

Proof. We just translate [NW3, §7] from e-form to t-form in the terminology of Appendix
B. In e-form, it reads (with δ := γ, α := − s

n
, κ̂p := κz,γ in [NW3, §7]):

χ̃xαδ
k (σ) =

∫
Zp

(b− αχ(σ))k−1dκ̂p(σ)(b).

Let γxα be the t-path reciprocally corresponding to the e-path xαδ. In RHS, we regard
the measure κ̂p as the p-adic image of κ̂(δ) of Remark 2.4 which can be switched into the
e-form κ1,p(γ) to obtain∫

Zp
(b− αχ(σ))k−1dκ̂p(σ)(b) =

∫
Zp

(−b− αχ(σ))k−1dκ1,p(σ)(b).

At the same time, we may convert the LHS to t-form by (B.11) and (B.13) as

χ̃xαδ
k (σ) = −(k − 1)! L ik(z)

xαδ:
−→
01 z(σ)

= (−1)k−1(k − 1)! Lik(z)
γxα:

−→
0199Kz(σ).

The formula of the proposition follows from combination of these identities. �

5. Consequence of Inversion Formula

5.1. Pro-p inversion formula. We start this section with the main technical result.
Let a,m be integers with m > 1, m - a, and fix the m-th root of unity z := ξam ∈ µm

and set F = Q(z). Pick any path γ :
−→
0199Kz in πpro-p

1 (P1 − {0, 1,∞}, z,−→01) and let

γ̄ :
−→
0199Kz−1 be the associated path defined in §3.1.

By the assumption z ∈ µm, using the p-adic cyclotomic character χp : GF → Z×p , we
may suppose that the Kummer 1-cocycle ρz,γ : GF → Zp (written just ρz for simplicity)
is of a 1-coboundary form

(5.1) ρz,γ(σ) = ρz(σ) = α(χp(σ)− 1) (σ ∈ GF )

with a unique constant α ∈ a
m

+ Zp. Since we do not assume p - m, the constant α ∈ Qp

may generally have denominator, while ρz(σ) ∈ Zp.
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Theorem 5.1. Notations being as above, we have

Lik(ξ
−a
m )γ̄xα(σ) + (−1)kLik(ξ

a
m)γx−α(σ) =

1

k!
Bk(α)(1− χp(σ)k).

for σ ∈ GF and k ≥ 1.

This result generalizes [W3, Theorem 10.2], where only the case p - m was considered.
Here, we shall present a proof using the inversion formula for p-adic Galois polylogarithms
[NW2]. For σ ∈ GF , consider the `-adic polylogarithmic characters (for ` = p) χ̃k(z)γ(σ),
χ̃k(

1
z
)γ̄(σ) along those pro-p paths γ and γ̄. In [NW2, 6.3], we showed an inversion formula

for γ and γ̄ in the following form∗

(5.2) χ̃k(z)γ(σ) + (−1)kχ̃k(
1
z
)γ̄(σ) = −1

k
{Bk(−ρz(σ))−Bk · χp(σ)k} (σ ∈ GF ),

where Bk(T ) is the Bernoulli polynomial defined by
∑∞

k=0 Bk(T )w
k

k!
= weTw

ew−1
and Bk =

Bk(0). Apply to (5.2) the translation formula

(5.3) Lik(z)γ(σ) =
(−1)k−1

(k − 1)!
χ̃k(z)γ(σ) (σ ∈ GF , k ≥ 1)

for which we refer the reader to (B.11), (B.13) and (B.14), and obtain

(5.4) Lik(
1
z
)γ̄(σ) + (−1)kLik(z)γ(σ) =

1

k!
(Bk(−ρz(σ))−Bk · χp(σ)k) (σ ∈ GF ).

Observe that this formula already gives a special case of Theorem 5.1 where α = 0 and
ρz(σ) = 0. What we shall do from now is to deform this formula into a form involved
with the Qp-paths γx−α and γ̄xα. In fact, it follows from Proposition 4.4, we generally
have

Lik(z)γxα(σ) =
k−1∑
i=0

Lik−i(z)γ(σ)
(αχp(σ))i

i!
,

hence the LHS of Theorem 5.1 can be written as:

Lik(
1
z
)γ̄xα(σ) + (−1)kLik(z)γx−α(σ)(5.5)

=
k−1∑
i=0

(αχp(σ))i

i!

(
Lik−i(

1
z
)γ̄(σ) + (−1)k−iLik−i(z)γ(σ)

)
.

To complete the proof of Theorem 5.1, by comparing (5.4) and (5.5), we are now reduced
to the following core lemma:

Lemma 5.2. Let k be a positive integer, and set Js := −1
s
{Bs(−ρz(σ))−Bs ·χp(σ)s} for

s = 1, . . . , k and σ ∈ GF . Then, we have

1

k
Bk(α)

(
χp(σ)k − 1

)
=

k−1∑
i=0

(
k − 1

i

)
αiχp(σ)iJk−i(σ).

∗See (B.14). The path γ̄ from
−→
01 to z−1 ∈ µm in t-form here reciprocally corresponds to the path

〈0, 1〉[1∞0 ]〈1,∞〉 · f2(γ) in e-form with the notation of [NW2, §6.3].
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Proof. For simplicity, we omit σ in this proof. To simplify the RHS of the lemma, we use
the Bernoulli addition formula

(5.6) Bk(y + x) =
k∑
s=0

(
k

s

)
Bs(y)xk−s.

Applying (5.6) with x = αχp, y = −ρz so that x + y = α by (5.1) (resp. with x = α,
y = 0 so that x+ y = α), we obtain:

Bk(α) =
k−1∑
i=0

(
k

i

)
Bk−i(−ρz)(αχp)i + (αχp)

k,

Bk(α) =
k−1∑
i=0

(
k

i

)
αiBk−i + αk.

Each of the above identities respectively simplifies the former and latter term of the
following computation of the RHS of the lemma. In fact, noting 1

k−i

(
k−1
i

)
= 1

k

(
k
i

)
, one

computes:

RHS =

[
−

k−1∑
i=0

(αχp)
i

k

(
k

i

)
Bk−i(−ρz)

]
+

[
χkp
k

k−1∑
i=0

(
k

i

)
αiBk−i

]

=

[
−1

k
Bk(α) +

1

k
αkχkp

]
+

[
χkp
k

(Bk(α)− αk)

]

which coincides with the LHS of the aimed identity. �

Thus, our proof of Theorem 5.1 is completed. �

Remark 5.3. We mention that the proof in [W3] also carries over in the case p | m; One

needs only consider rational paths in πpro-p
1 (V1; ξam,

−→
01)⊗̂Q and in πpro-p

1 (V1,
−→
01)⊗̂Q. The

embedding of the latter π1⊗̂Q into Qp〈〈X, Y 〉〉 extends to that of the former pro-p path
space into Qp〈〈X, Y 〉〉.

Remark 5.4. If p - m, then for any α ∈ Zp there is γ ∈ πpro-p
1 (V1; ξam,

−→
01) such that

ρz,γ = α(χp − 1). Hence we have

(k − 1)!

χp(σ)k − 1

(
Lik(ξ

−a
m )γ̄xα(σ) + (−1)kLik(ξ

a
m)γx−α(σ)

)
= −Bk(α)

k

as long as χp(σ)k 6= 1. A key observation here is the following: Taking α = 0 we get values
of the Riemann zeta function at negative integers (cf. [W2]), while taking α = a

m
∈ Q×

we get values of Hurwitz zeta function ζ(s, a
m

) at negative integers. If we choose γ from

topological paths Γa/m ∈ π(V1(C); ξam,
−→
01) (§3.1), then we get − 1

k
Bk(

a
m

) for every choice
of rational prime p.



14 H.Nakamura and Z.Wojtkowiak

5.2. Moment integrals of p-adic Hurwitz measure. First we shall rewrite the for-

mula in Theorem 5.1 in terms of measures κ1,p(
−→
01

γ
99Kξam) and κ1,p(

−→
01

γ̄
99Kξ−am ) after multi-

plied by mk−1. Set α := a
m
∈ Q. By Proposition 4.4 we find that, for σ ∈ GF ,

mk−1Lik(ξ
−a
m )γ̄xα(σ) =

mk−1

(k − 1)!

∫
Zp

(v + αχp(σ))k−1d
(
κ1,p(
−→
01

γ̄
99Kξ−am )(σ)

)
(v)(5.7)

=
1

(k − 1)!

∫
aχp(σ)+mZp

bk−1d
(
[m, aχp(σ)]∗κ1,p(ξ

−a
m )γ̄(σ)

)
(b)

=
1

(k − 1)!

∫
Zp
bk−1d

(
[m, aχp(σ)]∗κ1,p(ξ

−a
m )γ̄(σ)

)
(b),

where the last equality follows as the measure [m, aχp(σ)]∗κ1,p(ξ
−a
m )γ̄ is supported on

aχp(σ) +mZp ⊂ Zp. In the same way, we get that

mk−1Lik(ξ
a
m)γx−α(σ) =

mk−1

(k − 1)!

∫
Zp

(v − αχp(σ))k−1dκ1,p(
−→
01

γ
99Kξam)(σ)(v)(5.8)

= −(−1)k−1 mk−1

(k − 1)!

∫
Zp

(v + αχp(σ))k−1d
(
ι · κ1,p(

−→
0199Kξam)γ(σ)

)
(v)

=
(−1)k

(k − 1)!

∫
Zp
bk−1d

(
[m, aχp(σ)]∗ (ι · κ1,p(ξ

a
m)γ(σ))

)
(b).

Now, we enter the situation of Theorem 1.1 and §3, that is, a,m ∈ Z (m > 1) are
integers with m - a, and set γ := Γa/m, α := a/m.

Corollary 5.5. For the adelic Hurwitz measure ζ̂a,m = [m, aχp(σ)]∗ζa/m ∈ Ẑ[[Ẑ]], the

p-adic image ζ̂p,a.m(σ) ∈ Zp[[Zp]] satisfies∫
Zp
bk−1dζ̂p,a,m(σ)(b) =

mk−1

k
Bk

( a
m

)
(1− χp(σ)k) (σ ∈ GQ(µm), k ≥ 2).

Proof. Combining the above calculations (5.7) and (5.8), we obtain from Theorem 5.1:

mk−1

k
Bk(α)(1− χp(σ)k) = (k − 1)!mk−1

(
Lik(ξ

−a)γ̄xα(σ) + (−1)kLik(ξ
a)γ̄x−α(σ)

)
=

∫
Zp
bk−1d[m, aχp(σ)]∗

(
κ1,p(
−→
01

γ̄
99Kξ−am )(σ) + ι · κ1,p(

−→
01

γ
99Kξam)(σ)

)
(b)

=

∫
Zp
bk−1d[m, aχp(σ)]∗ζp,a/m(σ)(b),

where ζp,a/m(σ) is the image of ζa/m(σ) by the projection Ẑ[[Ẑ]] → Zp[[Zp]]. This con-
cludes the proof of the corollary. �

5.3. Proof of Theorem 1.1. Note first that the support of the measure ζ̂p,a,m(σ) is
aχp(σ) + mZp. When p | m and p - a, it is included in Z×p so that the above Corollary
proves the case.

Remark 5.6. It is worth noting that we do not need to assume 0 < a < m for the
construction of the measure ζ̂a,m and the integration property in the above case of p | m.
This leads to Remark 1.3 of Introduction.
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The case p - m was treated [W3] in the setting where pro-p path γ is taken suitably for

a fixed p. In our present case, we are taking γ to be the topological path Γa/m :
−→
0199Kξam

(cf. Remark 5.4). We also need the assumption 0 < a < m for the following

Lemma 5.7. Given m, a ∈ Z, m > 1 as in Theorem 1.1, suppose that a prime p does not
divide m. Let a1, δ ∈ Z be integers such that a = pa1 + δm with 1 ≤ a, a1 < m. Then,

(i) (Γa/m)〈−δ〉,p∗ = Γa1/m;
(ii) (Γ̄a/m)〈δ〉,p∗ = Γ̄a1/m;
(iii) ζa/m(σ) = [p,−δχ(σ)]∗ζa1,m(σ) for σ ∈ GQ(µm).

Proof. (i) results from a good compatibility of our topological paths Γa/m introduced in
§3.1 with the lifting along Vr � V1. Indeed,

(Γa/m · x−δ)p = (Γ a
m
−δ)p = Γ a

pm
− δ
p

= Γa1/m

which derives (i). For (ii), suppose 1 ≤ a, a1 < m. Then, noting that Γ̄a/m, Γ̄a1/m are
homotopic to the complex conjugates of Γa/m, Γa1/m respectively (cf. Remark 3.2), we
have

(Γ̄a/m · xδ)p = (Γ− a
m

+δ)p = Γ−a+mδ
mp

= Γ−a1/m = Γ̄a1/m.

This derives (ii). Finally, using (3.11), we see from (i) and (ii):

κ1(Γa/m)(σ) = [p, δχ(σ)]∗κ1(Γa1/m),

κ1(Γ̄a/m)(σ) = [p,−δχ(σ)]∗κ1(Γ̄a1/m),

hence from (3.12) we find

[p,−δ]∗ζa1,m(σ) = [p,−δ]∗
(
κ1(Γ̄a1/m)(σ) + ι · κ1(Γa1/m)(σ)

)
= [p,−δ]∗κ1(Γ̄a1/m)(σ) + ι · [p, δ]∗κ1(Γa1/m)(σ)

= κ1(Γ̄a/m)(σ) + ι · κ1(Γa/m)(σ)

= ζa/m(σ).

This settles the proof of (iii). �

Now, we compute the target integral of Theorem 1.1 in the case p - m:∫
Z×p
bk−1d[m, aχp(σ)]∗ζp,a/m(σ)(b)

=

∫
Zp
bk−1d[m, aχp(σ)]∗ζp,a/m(σ)(b)−

∫
pZp

bk−1d[m, aχp(σ)]∗ζp,a/m(σ)(b),

where the first term is calculated as:

(5.9)

∫
Zp
bk−1d[m, aχp(σ)]∗ζp,a/m(σ)(b) =

mk−1

k
Bk

( a
m

)
(1− χp(σ)k)

by Corollary 5.5. For the second term, we observe:∫
pZp

bk−1d[m, aχp(σ)]∗ζp,a/m(σ)(b) =

∫
S

(mv + aχp(σ))k−1dζp,a/m(σ)(v)

with S := {v ∈ Zp | mv + aχp(σ) ∈ pZp}. Since p - m, we can choose integers a1, δ ∈ Z
such that a = a1p+mδ. We set a1 = 〈ap−1〉 to be the least positive one as introduced in
Theorem 1.1. In this set up, the condition mv+aχp(σ) = m(v+δχp(σ))+pa1χp(σ) ∈ pZp
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is equivalent to the condition v + δχp(σ) ∈ pZp; hence the space S is a coset form:
S = −δχp(σ)+pZp. If v ∈ S is written as v = −δχp(σ)+pβ (β ∈ Zp), then mv+aχp(σ) =
p(mβ + a1). Noting that Lemma 5.7 (iii) implies ζp,a/m(σ) = [p,−δχ(σ)]∗ζp,a1,m(σ) for

the p-adic images of measures by Ẑ[[Ẑ]]→ Zp[[Zp]], we obtain∫
S

(mv + aχp(σ))k−1dζp,a/m(σ)(v) = pk−1

∫
Zp

(mβ + a1χp(σ))k−1dζp,a1,m(σ)(β)

= pk−1

∫
Zp
bk−1d[m, a1χp(σ)]∗ζp,a1,m(σ)(b)

= pk−1

∫
Zp
bk−1dζ̂p,a1,m(σ)(b)

=
(pm)k−1

k
Bk

(a1

m

)
(1− χp(σ)k),

where the last identity follows from Corollary 5.5. This, combined with (5.9), settles the
remained case of Theorem 1.1. �

Appendix A. Cohen’s p-adic Hurwitz zeta function

In this appendix, we shall relate the p-adic Hurwtiz zeta function ζp(s, x) introduced in
H. Cohen’s book [Co] to the p-adic Hurwtiz zeta function of Shiratani type ([Sh]) discussed
in our main text. Let p be a prime, and let q = p or q = 4 according as p > 2, p = 2
respectively. Set CZp := Qp \ p

q
Zp. Cohen’s ζp(s, x) is defined first in [Co, §11.2.2] for

x ∈ CZp and is then defined also for x ∈ Zp in [Co, §11.2.4]. Our main goal is to give
connection with ζp(s,

a
m

) in the formulas (A.4) and (A.9).

The case ζp(s, x) for x ∈ CZp:
In [Wa, Theorem 5.9], a p-adic meromorphic function Hp(s, a,m) in s is introduced for

a pair of integers a,m such that 0 < a < m, q | m and p - a. It satisfies

(A.1) Hp(1− k, a,m) = −ω(a)−k
mk−1

k
Bk(

a

m
) (k ∈ N),

where ω : Z×p → µe (e := |(Z/qZ)×|) is the p-adic Teichmüller character. Cohen extends

ω to ωv : Q×p → pZ · µe by ωv(up
n) = pnω(u) (u ∈ Z×p , n ∈ Z). Then, the interpolation

property of ζp(s, x) for x ∈ CZp given in [Co, Theorem 11.2.9] reads

ζp(1− k, x) = −ωv(x)−k
Bk(x)

k
(k ∈ N).

This specializes for x = a/m ∈ Q ∩ CZp (p - a, q | m without assuming 0 < a < m) to

(A.2) ζp(1− k,
a

m
) = −ωv(m)k · ω(a)−k

1

k
Bk(

a

m
).

Restricting k to those positive integers in a same class in Z/eZ, we obtain a relation

between special values of ζp(s, a/m) and {L[β]
p (s; a,m)}β∈Z/eZ of Remark 1.4: For k ≡
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β(mod e), k ≥ 1, writing m = pvp(m)m1, we have

ζp(1− k,
a

m
) = −

(
ωv(m)

ω(a)

)k
m1−kL[β]

p (1− k; a,m)(A.3)

= −
(
ωv(m)

ω(a)β

)(
ωv(m)

m

)k−1

L[β]
p (1− k; a,m)

= −
(
ωv(m)

ω(a)β

)(
ω(m1)β−1

mk−1
1

)
L[β]
p (1− k; a,m).

Hence, under the assumption q | m and p - a, for any β ∈ Z/eZ, it follows that

(A.4) ζp(s,
a

m
) = −

(
ωv(m)

ω(a)β

)(
ω(m1)β−1

m−s1

)
L[β]
p (s; a,m)

for s in the space β + q
p
Zp which is one of the forms Zp (p > 2), 2Z2 or 1 + 2Z2. Due to

Remark 1.3, this formula holds true for all a ∈ Z with m - a and p - a.

The case ζp(s, x) for x ∈ Zp:
In this case, let us first observe the following identity:

(A.5) ζp(1− k, x) = −1

k
Bk(ω̃

−k, x) (k ∈ Z≥1)

where ω̃ is the Teichmüller character on Zp (extended by 0 on pZp) and Bk(χ, ∗) is the
χ-Bernoulli polynomial defined in [Co, §9.4.1] .

Proof. Write x = puα ∈ Zp with p - α and set N = pv = pu+1. We use [Co, Corollary
11.2.15] and the notations there. As ωv(N) = pv, 〈N〉 = 1, we have for s = 1− k:

pv · ζp(1− k, x) =
∑

0≤j<pv
p-j

ζp(1− k,
x

pv
+

j

pv
).

In RHS here, it follows from [Co, Theorem 11.2.9] that

ζp(1− k,
x

pv
+

j

pv
) = −(p−vω(j))−k

1

k
Bk(

x

pv
+

j

pv
).

Hence

pv · ζp(1− k, x) = −p
kv

k
·
pv∑
j=0

ω̃−k(j) ·Bk(
x

pv
+

j

pv
)

= −p
kv

k
· pv(1−k)Bk(ω̃

−k, x) (by [Co, Lemma 9.4.7] ).

This proves (A.5). �

Let e = |(Z/qZ)×|. Then,

(A.6) ζp(1− k, x) = −1

k

(
Bk(x)− pk−1Bk(

x

p
)

)
for k ∈ Z≥1 and k ≡ 0 mod e.
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Proof. When k ≡ 0 mod e, we have ω̃k(j) = 0, 1 according as p | j, p - j. Putting this
into the basic identity of χ-Bernoulli polynomial ([Co, Proposition 9.4.5]), we find

Bk(ω̃
−k, x) = pk−1

p−1∑
j=0

ω̃(j)−kBk(
x+ j

p
) = pk−1

p−1∑
j=1

Bk(
x+ j

p
).

On the other hand, from the usual distribution formula of the Bernoulli polynomial: it
follows that

Bk(x) = pk−1

p−1∑
j=0

Bk(
x

p
+
j

p
).

By comparing these two identities, we obtain (A.6). �

Suppose x = a
m
∈ Q∩Zp with p - m. Observe that the above interpolation property of

Cohen’s ζp(s, x) (A.6) reads then

(A.7) ζp(1− k,
a

m
) = −1

k

(
Bk(

a

m
)− pk−1Bk(

a

mp
)

)
(k ≥ 1, k ≡ 0(mod e)).

It is not straightforward to find a connection from this to the interpolation property of

Shiratani’s ζShp (s, a,m) = −L[0]
p (s; a,m) (cf. Remark 1.4):

(A.8) ζShp (1− k; a,m) = −m
k−1

k

(
Bk(

a

m
)− pk−1Bk(

〈ap−1〉
m

)

)
for all k ∈ Z>0, k ≡ 0 mod e, where a and 〈ap−1〉 are supposed to be positive integer < m
such that 〈ap−1〉p ≡ a mod m. To connect (A.7) and (A.8), let r be the unique integer

with a + mr = 〈ap−1〉p so that a+mr
mp

= 〈ap−1〉
m

. Note that r > 0, due to the assumption

0 < a, 〈ap−1〉 < m. Then, replacing a by a+mr in (A.7), we find

ζp(1− k,
a+mr

m
)−m1−kζShp (1− k; a,m) = −1

k
Bk(r +

a

m
) +

1

k
Bk(

a

m
)

= −
r−1∑
v=0

(
a+mv

m
)k−1

for all k > 0, k ≡ 0 mod e. We claim below that p - (a+mv) for all v ∈ [0, r − 1] so that
the existence of p-adic analytic functions ( a

m
+v)s provides a connection between Cohen’s

ζp(s, x) with x ∈ Zp and Shiratani’s ζShp (s; a,m) = −L[0]
p (s; a,m), namely, it holds that

(A.9) ζp(s,
a+mr

m
) = ms · ζShp (s; a,m)−

r−1∑
v=0

(
a+mv

m
)−s

for s ∈ q
p
Zp, under the assumptions p - m, 0 < a < m, p | (a+mr) and 0 < a+mr < pm.

The assertion (A.9) is thus reduced to the following elementary

Claim. Notations being as above, let r0 be the least nonnegative integer such that a +
mr0 ≡ 0 mod p. Then, a+mr0 = 〈ap−1〉p.

Proof. If r0 ≥ p, then a + m(r0 − p) ≡ a + mr0 ≡ 0 mod p which contradicts the
minimality of r0. Therefore r0 < p. If r0 = p−1, then writing a+m(p−1) = xp, we have
p(m − x) = m − a > 0. Hence m > x > 0, i.e., x = 〈ap−1〉. Assume that r0 < p − 1. If
mp ≤ a+mr0, then since a < m, it follows that 0 ≤ a+m(r0− p) < m(r0− p+ 1) hence
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that p−1 ≤ r0 contradicting the assumption. Thus mp > a+mr0. Writing a+mr0 = xp,
we obtain m > x, that is, x = 〈ap−1〉. �

Example. Let p = 11, a = 3 and m = 106. Noting 106 ≡ 7 mod 11 and 3+7 ·9 = 6 ·11,
one finds 3+106 ·9 = 957 = 87 ·11. Hence 〈3 ·11−1〉 = 87. Now, the core sum in the above
construction reads

∑
v(

a
m

+ v)k−1 = ( 3
106

)k−1 + (109
106

)k−1 + (215
106

)k−1 + (321
106

)k−1 + (427
106

)k−1 +

(533
106

)k−1 + (639
106

)k−1 + (745
106

)k−1 + (851
106

)k−1. There do exist 11-adic analytic functions that

interpolate (3+106v
106

)k−1 at s = 1− k (k ≡ 0 mod 10) for v = 0, 1, . . . . , 8 respectively.

Question. It is unclear if L
[β]
p (s; a,m) for p - m, β 6≡ 0 (e) can be expressed in terms of

Cohen’s ζp(s, x).

Appendix B. Path conventions

In this Appendix, we quickly summarize two conventions on étale paths mostly used
in our papers. Just for simplicity, we call one system of conventions the traditional form
(‘t-form’) and another system the electronic form (‘e-form’). The present paper and most
papers by the second author obey the t-form, whereas most papers by the first author and
our previous common papers [NW1-3] obey the e-form. The purpose of this Appendix is
to serve a dictionary to translate formulas between these two forms.

Let C be a Galois category, for example, that of the finite étale covers of an algebraic
variety. We write a, b, c, ... for general symbols playing roles of base points for π1(C) and
ωa, ωb, ωc, . . . for the corresponding Galois functors C → Sets. The path space between
two points a and b is by definition the set Isom(ωa, ωb) whose element is a compatible

family of isomorphisms of fibre sets γU : ωa(U)
∼→ωb(U) over U ∈ Ob(C). In t-form, an

element γ of Isom(ωa, ωb) is called a (t-)path from a to b and written as γ : a99Kb. In e-
form, the same γ ∈ Isom(ωa, ωb) is called a(n e-)path from b to a and written as γ : b a.
Remind that, for each U ∈ Ob(C), γU(s) is defined for elements s ∈ ωa(U). [In e-form, we
may imagine that the waving arrow γ : b a flows like an electronic current that conveys
electron s ∈ ωa(U) back into ωb(U).] We shall use the notation

(B.1) π1(C; b, a) := Isom(ωa, ωb)

to designate the set of t-paths from a to b as well as the set of e-paths from b to a.
Accordingly, if γ1 ∈ Isom(ωa, ωb) and γ2 ∈ Isom(ωb, ωc), then the composite γ2γ1 ∈
Isom(ωa, ωc) is defined. We have

[a
γ2γ1
−99Kc] = [b

γ2
99Kc] · [a

γ1
99Kb]

(
viz. [c

γ2γ1
L99−a] = [c

γ2
L99 b] · [b

γ1
L99 a]

)
,(B.2)

[c
γ2γ1  a] = [c

γ2 b] · [b γ1 a].(B.3)

Next, let F be a subfield of C and let C be the Galois category of finite étale covers of
an algebraic variety V over F . If a is an F -rational (tangential) points on V , then the
sequence of finite sets {ωa(U)}U∈Ob(C) have compatible actions by GF , which defines the
map GF → Isom(ωa, ωa) = π1(V, a). For two such points a, b, we define the canonical
left GF -action on Isom(ωa, ωb) by γ 7→ σγσ−1 (σ ∈ GF ). Observe that, concerning Galois
actions, no difference occurs between t-form and e-form.

Suppose now that V = P1
Q − {0, 1,∞}. Denote by x, y the standard loops based at

−→
01

running around the punctures 0, 1 respectively with anticlockwise t-arrows 99K, and let
x, y be those loops with anticlockwise e-arrows  . Then, x = x−1, y = y−1. Let z be a
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F -rational (tangential) point on V . For a t-path γ :
−→
0199Kz on V ⊗F , we define a Galois

associator in t-form by

(B.4) fγ(σ) := γ−1 · σ(γ) ∈ πét
1 (V,

−→
01) (σ ∈ GF )

as in §2 of the present paper, whereas, for an e-path δ :
−→
01 z on V ⊗F , we define another

Galois associator in e-form by

(B.5) fδσ := δ · σ(δ)−1 ∈ πét
1 (V,

−→
01) (σ ∈ GF )

as in [NW1]. Therefore, assuming δ = γ−1, we find

(B.6) fγ(σ) = fδσ (σ ∈ GF ).

Given a prime `, let πQ` be the pro-unipotent completion of the maximal pro-` quotient

of π1(VQ,
−→
01). Consider the above x, y, x, y as Q`-loops based at

−→
01 on V , and regard

γ :
−→
0199Kz and δ :

−→
01 z as Q`-paths on V . If δ = γ−1, then (γxα)−1 = xαδ; hence it

follows from (B.6) that

(B.7) fγxα(σ) = f x
αδ

σ (δ = γ−1, σ ∈ GF , α ∈ Q`).

Now, let us compare `-adic Galois polylogarithms in t-form and e-form. Define gener-
ators X, Y (resp. X̄, Ȳ ) of Lie(πQ`) so that eX , eY (resp. eX̄ , eȲ ) are the `-adic images of
x, y (resp. x, y) in πQ` . Then X = −X̄, Y = −Ȳ . Let IY (resp. IȲ ) denote the ideal of
Lie(πQ`) generated by those Lie words in X, Y (resp. X̄, Ȳ ) containing Y (resp. Ȳ ) twice
or more. Obviously we have IY = IȲ ⊂ Lie(πQ`). In e-form, we have the Lie expansion

(B.8) log(fδσ)−1 ≡ ρz,δ(σ)X̄ +
∞∑
k=1

`ik(z)δ(σ)(ad X̄)k−1(Ȳ ) mod IȲ

extending [NW2, Definition 5.4] to any Q`-paths δ :
−→
01 z. Note that interpretation of

ρz,δ as a Kummer 1-cocycle along power roots of z is basically available only when γ is a
pro-` path. On the side of t-form, one also has

(B.9) log(fγ(σ)) ≡ ρz,γ(σ)X +
∞∑
k=1

`ik(z)γ(σ)[..[Y,X], . . . , X︸ ︷︷ ︸
k−1

] mod IY

extending [W1, Definition 11.0.1] for any Q`-path γ :
−→
0199Kz. Comparing (B.8) and (B.9)

under the situation (B.6), we see that the ρz and the `-adic polylogarithms `im(z) (written

also as `m(z) in older papers) for γ :
−→
0199Kz in t-form and for δ :

−→
01 z in e-form coincide

with each other as functions on GF as long as δ = γ−1, that is,

(B.10) ρz,γ(σ) = ρz,δ(σ), `ik(z)γ(σ) = `ik(z)δ(σ) (σ ∈ GF , k ≥ 1, δ = γ−1).

Next, embed Lie(πQ`) into the ring of non-commutative power series Q`〈〈X, Y 〉〉 = Q`〈〈X̄, Ȳ 〉〉
and expand fγ(σ) = fδσ into series in X, Y or in X̄, Ȳ . The coefficient at Y Xk−1 appearing
in the former expansion is the `-adic polylogarithm Lik(z)γ(σ) in §4.1 of this paper in
t-form (with ` = p), while the coefficient at Ȳ X̄k−1 in the latter expansion, which we
denote by L ik(z)δ(σ) in e-form, was discussed in [NW3, §6]. By definition, we have

(B.11) Lik(z)−→
01

γ
99Kz

(σ) = (−1)kL ik(z)−→
01

δ
 z

(σ) (σ ∈ GF , k ≥ 1, δ = γ−1).
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Finally, we recall from [NW3, §6]. the function

χ̃z,δ
k : GF → Q`

associated to any Q`-path δ :
−→
01 z for k ≥ 1 by the equation:

(B.12) χ̃z,δ
k (σ) = (−1)k+1(k − 1)!

k∑
i=1

ρz,δ(σ)k−i

(k + 1− i)!
`ii(z)δ(σ).

It is related to the above L ik(z)−→
01

δ
 z

(σ) by

(B.13) − χ̃z,δ
k (σ)

(k − 1)!
= L ik(z)−→

01
δ
 z

(σ) (σ ∈ GF , k ≥ 1).

When δ :
−→
01 z is a pro-` path, then χ̃z,δ

k is the polylogarithmic character studied in
[NW1] and is known to be valued in Z` with explicit Kummer properties along a sequence
of numbers.

For a path γ :
−→
0199Kz in t-form, we employ the notation

(B.14) χ̃k(z)γ(σ) := χ̃z,δ
k (σ) (σ ∈ GF )

where δ = γ−1 :
−→
01 z is the corresponding path in e-form. It follows then that

(B.15)
χ̃k(z)γ(σ)

(k − 1)!
= (−1)k−1Lik(z)−→

01
γ
99Kz

(σ) (σ ∈ GF )

for any Q`-path γ :
−→
0199Kz.
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