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Abstract

We establish a quantitative isoperimetric inequality for weighted Riemannian
manifolds with Ric∞ ≥ 1. Precisely, we give an upper bound of the volume of
the symmetric difference between a Borel set and a sub-level (or super-level) set of
the associated guiding function (arising from the needle decomposition), in terms
of the deficit in Bakry–Ledoux’s Gaussian isoperimetric inequality. This is the
first quantitative isoperimetric inequality on noncompact spaces besides Euclidean
and Gaussian spaces. Our argument makes use of Klartag’s needle decomposition
(also called localization), and is inspired by a recent work of Cavalletti, Maggi
and Mondino on compact spaces. Besides the quantitative isoperimetry, a reverse
Poincaré inequality for the guiding function that we have as a key step, as well as
the way we use it, are of independent interest.

1 Introduction

Geometric and functional inequalities under various curvature bounds are one of the main
subjects of comparison geometry and geometric analysis. Beyond an inequality itself, its
rigidity (characterizing a space attaining equality, that we call a model space) and stability
(showing that the space is close to the model space when equality nearly holds) are
important subjects, for instance in connection with the theory of convergence of spaces.
One of the classical stability results is Colding’s ‘almost sphere theorem’ [Co1, Co2];
see Remark 6.4 for some more (classical and recent) results. There are at least two
strategies for stability problems. One is based on compactness arguments: we take a
sequence of spaces asymptotically satisfying equality in the inequality in question, and
apply a rigidity result to its limit space. This method usually provides implicit estimates.
Another strategy is an explicit quantitative estimate that we follow in this article.

Quantitative isoperimetric inequalities were intensively studied in the Euclidean spaces
([FiMP, FuMP]) and Gaussian spaces ([BBJ, CFMP, El, MN]). For the Gaussian space
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(Rn,γn), γn := (2π)−n/2e−|x|2/2 dx, it is known that isoperimetric minimizers are half-
spaces. Precisely, given θ ∈ (0, 1), a half-space Hw,aθ := {x ∈ Rn | ⟨x,w⟩ ≤ aθ} with
w ∈ Sn−1 and aθ ∈ R satisfying γn(Hw,aθ) = θ attains the minimum perimeter I(Rn,γn)(θ)
among sets with volume θ. Note that the isoperimetric profile I(Rn,γn) is independent of
n, and we will denote γ1 by γ. In [BBJ, El] it was shown that

min
w∈Sn−1

γn(A△Hw,aθ) ≤ C(θ)
√
P(A)− I(R,γ)(θ) (1.1)

holds for A ⊂ Rn with γn(A) = θ, where A△B is the symmetric difference of A and B
and P(A) denotes the perimeter of A with respect to γn. We call δ := P(A) − I(R,γ)(θ)

the deficit in the isoperimetric inequality. Note that the order
√
δ in (1.1) is independent

of n, and is known to be optimal.
In curved spaces (such as Riemannian manifolds) without any symmetry nor homo-

geneity, much less is known for quantitative isoperimetric inequalities. For instance, for
the Lévy–Gromov isoperimetric inequality whose model space is a sphere, the rigidity
was classical whereas there had not been any quantitative version until recently. A break-
through was made by Klartag [Kl], who established an alternative proof of isoperimetric
inequalities not relying on the deep regularity theory from geometric measure theory.
The method developed in [Kl] is the needle decomposition (also called the localization,
see Subsection 2.3), which has its roots in convex geometry and enables us to reduce an
inequality on a (high-dimensional) space into those on geodesics (called needles). Then
one only needs to perform a 1-dimensional analysis on geodesics, which is much simpler
especially for isoperimetric inequalities. This technique turned out useful also in rigidity
and stability problems.

In [CM], Cavalletti and Mondino generalized the needle decomposition to essentially
non-branching metric measure spaces satisfying the curvature-dimension condition CD(K,N)
with K ∈ R and N ∈ (1,∞), and established the Lévy–Gromov isoperimetric in-
equality, as well as its rigidity for RCD(K,N)-spaces. The curvature-dimension con-
dition CD(K,N) is a synthetic notion of the lower Ricci curvature bound, equivalent to
RicN ≥ K for weighted Riemannian or Finsler manifolds, and the Riemannian curvature-
dimension condition RCD(K,N) is its reinforced version coupled with the linearity of
heat flow (see Subsection 2.1). Then, with a deeper analysis via the needle decomposition,
Cavalletti, Maggi and Mondino [CMM] investigated the stability for CD(N−1, N)-spaces
(X, d,m) with N ∈ (1,∞). They showed that, for A ⊂ X with m(A) = θ,

m
(
A△Br(x)

)
≤ C(N, θ)

(
P(A)− IN(θ)

)N/(N2+2N−1)
(1.2)

holds for some x ∈ X, where Br(x) is the ball of center x and radius r, with the model
isoperimetric profile IN and appropriate r = r(N, θ). This means that A is close to a
ball in terms of m. We refer to [CES] for another quantitative study of isoperimetric
inequalities on closed Riemannian manifolds with a different method.

The aim of this article is to explore the possibility of applying the needle decomposition
to a quantitative isoperimetric inequality under Ric∞ ≥ K > 0. In general, stability
problems in terms of Ric∞ are more challenging than those of RicN with N ∈ (1,∞),
since Gromov’s precompactness theorem ([Gr, §5.A]) does not apply. Without loss of
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generality we assume K = 1 in the sequel. In this case, Bakry and Ledoux [BL] showed an
isoperimetric inequality with the Gaussian space (R,γ) as the model space (see [AM, Oh4]
for some generalizations). One of the most important differences between RicN ≥ N − 1
(or CD(N − 1, N)) and Ric∞ ≥ 1 from our viewpoint is that RicN ≥ N − 1 implies
the compactness (precisely, the diameter is bounded above by π by the Bonnet–Myers
theorem), while Ric∞ ≥ 1 can hold for noncompact spaces. In fact, the model space
for RicN ≥ N − 1 is a sphere and some stability estimates in terms of the diameter
were essentially used in [CMM]. In the case of Ric∞ ≥ 1, the possible unboundedness of
needles causes several difficulties. We perform careful estimates on needles to overcome
these difficulties (see for example Section 3), and our main theorem asserts the following.

Main Theorem (Theorem 7.5) Let (M, g,m) be a complete weighted Riemannian man-
ifold such that Ric∞ ≥ 1 and m(M) = 1. Fix θ ∈ (0, 1)\{1/2} and ε ∈ (0, 1), take a Borel
set A ⊂ M with m(A) = θ, and assume that P(A) ≤ I(R,γ)(θ) + δ holds for sufficiently
small δ > 0 (relative to θ and ε). Then, for the guiding function u associated with A such
that

∫
M
u dm = 0, we have

min
{
m
(
A△{u ≤ aθ}

)
,m
(
A△{u ≥ a1−θ}

)}
≤ C(θ, ε)δ(1−ε)/(9−3ε).

Here the guiding function u stems from the construction of the needle decomposition
(see Subsection 2.3). In the rigidity case, an isoperimetric minimizer is in fact given as
a sub-level set of the associated guiding function (see Theorem 2.8). Furthermore, the
guiding function is somehow related to the Busemann function, hence its sub-level set
can be viewed as ‘a half-space’ or ‘a ball with center at infinity’ (see Remark 7.6(a) for
a further account). Therefore our main theorem is regarded as a counterpart to (1.1) as
well as (1.2). We refer to Remark 7.6 for further discussions and related open problems.
Here we only remark that the case of θ = 1/2 is removed merely for technical reasons
(Remark 7.6(e)), and the main theorem holds true also for reversible Finsler manifolds
(Remark 7.6(c)).

Our careful calculation on needles provides further applications. We in particular show
that the guiding function u in the theorem enjoys the reverse Poincaré inequality

Var(M,m)(u) ≥
1

Λ′(θ, ε, δ)

∫
M

|∇u|2 dm

such that Λ′(θ, ε, δ) ≤ (1 − C(θ, ε)δ(1−ε)/(3−ε))−1 (Theorem 6.2). This is indeed a reverse
form of the Poincaré inequality

Var(M,m)(u) ≤
∫
M

|∇u|2 dm

induced from Ric∞ ≥ 1 (see (2.1)). The use of the reverse Poincaré inequality is inspired
by [Ma2] where we studied the rigidity problem, and reveals an interesting relation be-
tween the isoperimetric inequality and the spectral gap via the guiding function. The
reverse Poincaré inequality plays an essential role to integrate 1-dimensional estimates on
needles into an estimate onM in the proof of the main theorem (precisely, Proposition 7.3
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is a key ingredient). We refer to Remark 6.4(b) for related stability and rigidity results
for functional inequalities, and to [DMS, Ha] for more recent results.

The article is organized as follows. In Section 2 we review necessary notions related
to the weighted Ricci curvature, isoperimetric inequalities, and the needle decomposition.
Then Sections 3–5 are devoted to the 1-dimensional analysis. We first establish in Sec-
tion 3 that a small deficit in the isoperimetric inequality implies that the measure on the
needle is close to the Gaussian one (Proposition 3.2). This is the starting point of all the
estimates in the sequel. In Section 4 we show that a small deficit in the isoperimetric
inequality implies a small symmetric difference from a half-space (Proposition 4.1). In
Section 5 we establish a reverse Poincaré inequality on needles (Proposition 5.1). Coming
back to Riemannian manifolds, in Section 6 we derive a reverse Poincaré inequality for
a guiding function (Theorem 6.2) from the reverse Poincaré inequality on needles in the
previous section. Finally, we prove Main Theorem (Theorem 7.5) in Section 7.

2 Preliminaries

Throughout the article, let (M, g) be a connected, complete C∞-Riemannian manifold of
dimension n ≥ 2 without boundary. We denote by d the Riemannian distance function.
A weighted Riemannian manifold means a triple (M, g,m), where m = e−Ψ volg is a
measure modifying the Riemannian volume measure volg of (M, g) with a weight function
Ψ ∈ C∞(M).

2.1 Weighted Ricci curvature and spectral gap

On (M, g,m), we need to modify the Ricci curvature Ricg with respect to g taking into
account the behavior of m (namely Ψ).

Definition 2.1 (Weighted Ricci curvature) Given v ∈ TxM and N ∈ R\{n}, define
the weighted Ricci curvature RicN(v) (also called the Bakry–Émery–Ricci curvature) by

RicN(v) := Ricg(v) + HessΨ(v, v)− ⟨∇Ψ(x), v⟩2

N − n
.

As the limits of N → ∞ and N ↓ n, we also define

Ric∞(v) := Ricg(v) + HessΨ(v, v),

Ricn(v) :=

{
Ricg(v) + HessΨ(v, v) if ⟨∇Ψ(x), v⟩ = 0,

−∞ otherwise.

Note that RicN(cv) = c2RicN(v) for all c ∈ R. If Ψ is constant, then RicN(v) coincides
with Ricg(v) for all N . We will write RicN ≥ K for K ∈ R when RicN(v) ≥ K|v|2 holds
for all v ∈ TM . Several remarks on RicN are in order.

Remark 2.2 (a) By definition RicN enjoys the monotonicity

Ricn(v) ≤ RicN(v) ≤ Ric∞(v) ≤ RicN ′(v)
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for N ∈ (n,∞) and N ′ ∈ (−∞, n). Therefore, for example, Ric∞ ≥ K is a weaker
condition than RicN ≥ K with N ∈ [n,∞).

(b) The case of N ∈ [n,∞] has been intensively investigated by Bakry and his collabora-
tors in the context of Γ-calculus (see [BaGL]), including the isoperimetric inequality
under Ric∞ ≥ K > 0 by Bakry–Ledoux [BL]. The study of the case of N ∈ (−∞, n)
is rather recent, we refer to [GZ, KoMi, Ma1, Ma2, Mi2, Oh2, Wy] among others.

(c) The lower curvature bound RicN ≥ K is known to be equivalent to the curvature-
dimension condition CD(K,N) in the sense of Lott–Sturm–Villani, see [CoMcSc, LV2,
vRS, St1, St2, Vi] (as well as [Oh1] for a Finsler analogue). Metric measure spaces
satisfying CD(K,N) (CD(K,N)-spaces for short) share many analytic and geometric
properties with weighted Riemannian or Finsler manifolds of RicN ≥ K. Moreover,
requiring an additional condition on the linearity of heat flow, one can introduce a
reinforced version called the Riemannian curvature-dimension condition RCD(K,N)
(see [AGS, EKS]). This excludes Finsler manifolds and we can show, for instance, a
Cheeger–Gromoll-type splitting theorem [Gi1, Gi2].

We will also make use of the Laplacian associated with m.

Definition 2.3 (Weighted Laplacian) The weighted Laplacian (also called the Witten
Laplacian) acting on u ∈ C∞(M) is defined by

∆mu := ∆u− ⟨∇u,∇Ψ⟩,

where ∆ is the canonical Laplacian with respect to g.

The integration by parts formula for volg readily implies that for m, namely∫
M

ϕ∆mu dm = −
∫
M

⟨∇ϕ,∇u⟩ dm

holds for ϕ ∈ C∞(M) with compact support.
If Ric∞ ≥ K > 0, then m has a Gaussian decay and m(M) < ∞ holds ([St1, Theo-

rem 4.26]). Since adding a constant to Ψ does not change Ric∞, we can normalize m as
m(M) = 1 without loss of generality. From Ric∞ ≥ K > 0 we also have a lower bound of
the first nonzero eigenvalue λ1 of −∆m as λ1 ≥ K. This is a generalization of the classical
Lichnerowicz inequality to the Ric∞ context, and equivalent to the Poincaré inequality∫

M

u2 dm−
(∫

M

u dm

)2

≤ 1

K

∫
M

|∇u|2 dm. (2.1)

The LHS of (2.1) is the variance of u and will be denoted by Var(M,m)(u). The equality
case was studied in [CZ, Theorem 2] as follows, as a counterpart to the classical Obata
theorem in [Ob].

Theorem 2.4 (Rigidity of spectral gap) Let (M, g,m) be a complete weighted Rie-
mannian manifold satisfying m(M) = 1 and Ric∞ ≥ K for some K > 0. If equality
λ1 = K is achieved with an eigenfunction u, then we have the following.
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(i) (M, g,m) is isometric to the product space R × Σ as weighted Riemannian mani-
folds, where Σ = u−1(0) and (Σ, gΣ,mΣ) is an (n − 1)-dimensional weighted Rie-
mannian manifold of Ric∞ ≥ K, and R is equipped with the Gaussian measure√
K/(2π)e−Kx

2/2 dx.

(ii) The function u is constant on {t} × Σ for each t ∈ R, and we can moreover choose
as u(t, x) = t.

We remark that u being an eigenfunction with eigenvalue K implies equality in
(2.1) with

∫
M
u dm = 0. We refer to [GKKO] for a generalization of Theorem 2.4 to

RCD(K,∞)-spaces, and to [Ma1] for the case of RicN ≥ K > 0 with N < −1 where we
have a warped product splitting of hyperbolic nature instead of the isometric splitting.

2.2 Isoperimetric inequalities

An important geometric result on weighted Riemannian manifolds with lower Ricci curva-
ture bounds is an isoperimetric inequality. In order to state the isoperimetric inequality,
we define the perimeter of a Borel set A ⊂M with m(A) <∞ as

P(A) := inf
{ϕi}i∈N

lim inf
i→∞

∫
M

|∇ϕi| dm, (2.2)

where {ϕi}i∈N runs over all sequences of Lipschitz functions converging to the character-
istic function χA of A in L1(m). When P(A) <∞, we have P(M \ A) = P(A).

One can also consider the Minkowski exterior content (or boundary measure) defined
by

m+(A) := lim inf
ε→0

m(B(A, ε) \ A)
ε

for a Borel set A, where B(A, ε) denotes the open ε-neighborhood of A. By taking
ϕi(x) := max{1− i ·d(A, x), 0}, we see that m+(A) ≥ P(A) in general. If the boundary ∂A
is sufficiently smooth, then m+(A) = P(A) holds and they coincide with (e−ΨHn−1)(∂A),
whereHn−1 is the (n−1)-dimensional Hausdorff measure. This is the case for isoperimetric
minimizers by virtue of the regularity theory in geometric measure theory (see [Mi1, §2.2]
for instance). We refer to [AFP, Section 3.3], [BZ, Section 14] and [ADG] for more on the
perimeter.

Assuming m(M) = 1, we define the isoperimetric profile as

I(M,m)(θ) := inf{P(A) |A ⊂M, m(A) = θ}

for θ ∈ (0, 1), where A runs over all Borel sets with m(A) = θ. An isoperimetric inequality
under the condition Ric∞ ≥ K > 0 was first shown by Bakry–Ledoux [BL], having the
same form as that for the Gaussian spaces. Milman [Mi1, Mi2] then intensively studied
the combination of RicN ≥ K and a diameter bound diam(M) ≤ D, and showed the
following.

Theorem 2.5 (Isoperimetric inequalities) Let (M, g,m) be a complete weighted Rie-
mannian manifold satisfying m(M) = 1, diam(M) ≤ D with D ∈ (0,∞], and RicN ≥ K
for N ∈ (−∞, 0) ∪ [n,∞] and K ∈ R. Then we have I(M,m)(θ) ≥ I(K,N,D)(θ) for all
θ ∈ (0, 1), where I(K,N,D) is an explicitly given function depending only on K,N and D.
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The estimation is sharp in all the parameters K,N and D, and we stress that I(K,N,D)

is independent of the dimension n ofM . We refer to [Mi1, Mi2] for precise formulas of the
function I(K,N,D). Here we present the only relevant case in this article, namely K > 0
and N = ∞, for later use. Without the diameter bound (D = ∞), the model space is the
Gaussian space and

I(K,∞,∞)(θ) =

√
K

2π
e−Ka

2
θ/2, where

√
K

2π

∫ aθ

−∞
e−Kt

2/2 dt = θ.

For D ∈ (0,∞), we have
I(K,∞,D)(θ) = inf

ξ∈[−D,0]
fξ,D(θ)

with

fξ,D(θ) :=
e−Kb

2
θ,ξ,D/2∫ ξ+D

ξ
e−Kt2/2 dt

, where

∫ bθ,ξ,D
ξ

e−Kt
2/2 dt∫ ξ+D

ξ
e−Kt2/2 dt

= θ.

Let us have a closer look on how the diameter influences the isoperimetric profile, with
the help of some calculations in [Ma2, Lemma 3.1].

Lemma 2.6 (Difference between I(K,∞,D) and I(K,∞,∞)) Let K,D ∈ (0,∞). For θ ∈
(0, 1), we have

I(K,∞,D)(θ)− I(K,∞,∞)(θ) >

√
K

π

e−KD
2

√
KD + 1

.

Proof. Let us abbreviate in this proof as ID = I(K,∞,D) and I∞ = I(K,∞,∞). We deduce
from the definitions of aθ and bθ,ξ,D that

I∞(θ)
daθ
dθ

= fξ,D(θ)
∂bθ,ξ,D
∂θ

= 1. (2.3)

Then we find

I ′
∞(θ) = −KaθI∞(θ)

daθ
dθ

= −Kaθ, (2.4)

f ′
ξ,D(θ) = −Kbθ,ξ,Dfξ,D(θ)

∂bθ,ξ,D
∂θ

= −Kbθ,ξ,D.

Now, in order to estimate fξ,D(θ) − I∞(θ), it suffices to test at θ = 0, 1 and θ0 at where
I ′
∞(θ0) = f ′

ξ,D(θ0) holds. At such θ0, it follows from the calculations above that aθ0 =
bθ0,ξ,D, thereby

fξ,D(θ0)− I∞(θ0) =

(
1∫ ξ+D

ξ
e−Kt2/2 dt

−
√
K

2π

)
e−Kb

2
θ0,ξ,D

/2.

Noticing |bθ0,ξ,D| < D as well as I∞(0) = I∞(1) = 0, we obtain

ID(θ)− I∞(θ) >

(
1∫ D

−D e−Kt2/2 dt
−
√
K

2π

)
e−KD

2/2
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for all θ ∈ (0, 1). Since∫ D

−D
e−Kt

2/2 dt =
1√
K

∫ √
KD

−
√
KD

e−s
2/2 ds =

1√
K

(√
2π − 2

∫ ∞

√
KD

e−s
2/2 ds

)
and ∫ ∞

√
KD

e−s
2/2 ds ≥

∫ ∞

√
KD

s2 + s+ 1

(s+ 1)2
e−s

2/2 ds = −
[
e−s

2/2

s+ 1

]∞
√
KD

=
e−KD

2/2

√
KD + 1

,

we find

1∫ D
−D e−Kt2/2 dt

−
√
K

2π
≥
√
K

2π

{(
1−

√
2

π

e−KD
2/2

√
KD + 1

)−1

− 1

}
≥

√
K

π

e−KD
2/2

√
KD + 1

.

This completes the proof. 2

Note that the lower bound in Lemma 2.6 is uniform in θ. From the calculation in the
above proof, we also find a fundamental fact that the profile I(K,∞,∞) is strictly concave.

Lemma 2.7 (Concavity of I(K,∞,∞)) For θ ∈ (0, 1), we have

I ′′
(K,∞,∞)(θ) = − K

I(K,∞,∞)(θ)
.

Proof. This is straightforward from (2.4) and (2.3). 2

Let us close the subsection with a rigidity result of Morgan [Mo, Theorem 18.7] (see
[Ma2, Section 3] for an alternative proof based on the needle decomposition).

Theorem 2.8 (Rigidity of isoperimetric inequality) Let (M, g,m) be a complete weighted
Riemannian manifold satisfying m(M) = 1 and Ric∞ ≥ K for some K > 0. If m+(A) =
I(K,∞,∞)(θ) holds for some A ⊂M with θ = m(A) ∈ (0, 1), then we have the following.

(i) (M, g,m) is isometric to the product space R × Σ as weighted Riemannian mani-
folds, where (Σ, gΣ,mΣ) is an (n− 1)-dimensional weighted Riemannian manifold of
Ric∞ ≥ K, and R is equipped with the Gaussian measure

√
K/(2π)e−Kx

2/2 dx.

(ii) The set A is a half-space in this product structure, in the sense that A coincides with
(−∞, aθ]× Σ or [a1−θ,∞)× Σ.

Our main theorem (Theorem 7.5) will be a quantitative version of this theorem. Notice
that the first assertion on the splitting phenomenon is same as Theorem 2.4. In fact,
in [Ma2], we saw that the guiding function u associated with the set A (see the next
subsection) turns out providing the sharp spectral gap λ1 = K, and the isoperimetric
minimizer A is in fact a sub-level (or super-level) set of u. These facts motivate reverse
Poincaré inequalities below (Proposition 5.1, Theorem 6.2) as well as the formulation of
Theorem 7.5.

8



2.3 Needle decompositions

Now we recall the main ingredient of our argument, the needle decomposition (also called
the localization), established on weighted Riemannian manifolds by the seminal work of
Klartag [Kl]. The needle decomposition has its roots in convex geometry, going back to
[PW] and developed in [GM, KLS, LS]. Roughly speaking, via the needle decomposition
one can reduce an inequality on a high-dimensional space to those on geodesics (needles)
in that space. Then, especially in isoperimetric inequalities, the 1-dimensional analysis
on geodesics could be simpler than the direct analysis on the original space.

We first define transport rays associated with a 1-Lipschitz function. We say that a
function u :M −→ R is 1-Lipschitz if |u(x)− u(y)| ≤ d(x, y) holds for all x, y ∈M .

Definition 2.9 (Transport rays) Let u be a 1-Lipschitz function on M . We say that
X ⊂M is a transport ray associated with u if |u(x)−u(y)| = d(x, y) holds for all x, y ∈ X
and if, for all z ̸∈ X, there exists x ∈ X such that |u(x)− u(z)| < d(x, z).

Any transport ray is a closed set and necessarily the image of a minimal geodesic,
thereby equipped with the natural distance structure and identified with a closed interval.
We shall make use of the following kind of needle decomposition ([Kl, Theorems 1.2, 1.5]),
where u is called the guiding function acting as a ‘guide’ of the decomposition.

Theorem 2.10 (Needle decomposition) Let (M, g,m) be a complete weighted Rie-
mannian manifold satisfying RicN ≥ K, and take a function f ∈ L1(m) such that∫
M
f dm = 0 and

∫
M
|f(x)|d(x0, x)m(dx) < ∞ for some x0 ∈ M . Then there exists a

1-Lipschitz function u on M , a partition {Xq}q∈Q of M , a measure ν on Q and a family
of probability measures {mq}q∈Q on M satisfying the following.

(i) For any measurable set A ⊂ M , we have m(A) =
∫
Q
mq(A) ν(dq). Moreover, for

ν-almost every q ∈ Q, we have supp(mq) = Xq.

(ii) For ν-almost every q ∈ Q, Xq is a transport ray associated with u. Moreover, if
Xq is not a singleton, then the weighted Ricci curvature of (Xq, | · |,mq) satisfies
RicN ≥ K.

(iii) For ν-almost every q ∈ Q, we have
∫
Xq
f dmq = 0.

The first assertion (i) includes the measurability of mq(A) in q ∈ Q. We also observe
from (i) that ν(Q) = m(M). In (ii), by denoting mq = e−ψ dx along Xq, ψ is smooth on
the interior of Xq and RicN ≥ K means that ψ′′ ≥ K + (ψ′)2/(N − 1).

Our argument on quantitative isoperimetric inequalities is indebted to Klartag’s proof
in [Kl] of the isoperimetric inequality (Theorem 2.5) by the needle decomposition. Let us
recall it for later convenience.

Let (M, g,m) satisfy RicN ≥ K, diam(M) ≤ D and m(M) = 1. Given θ ∈ (0, 1), we
fix an arbitrary Borel set A ⊂M with m(A) = θ. Consider the function f(x) := χA(x)−θ.
Then we find

∫
M
f dm = 0, and obtain (Q, ν) and {(Xq,mq)}q∈Q associated with f as in

Theorem 2.10. Note that (iii) in Theorem 2.10 implies mq(A) = θ for ν-almost every
q ∈ Q (and hence Xq is not a singleton). Moreover, (Xq, | · |,mq) enjoys CD(K,N) by (ii)

9



and clearly diam(Xq) ≤ D. Therefore, the 1-dimensional isoperimetric inequality yields
P(A∩Xq) ≥ I(K,N,D)(θ) for ν-almost every q ∈ Q, where P(A∩Xq) denotes the perimeter
of A ∩Xq in (Xq, | · |,mq). Together with Lemma 6.1 below, we conclude that

P(A) ≥
∫
Q

P(A ∩Xq) ν(dq) ≥ I(K,N,D)(θ).

Taking the infimum in A completes the proof of I(M,m)(θ) ≥ I(K,N,D)(θ).

Remark 2.11 (Regularity of ψ) As we mentioned above, thanks to [Kl], mq has a
smooth density and RicN ≥ K is regarded as ψ′′ ≥ K + (ψ′)2/(N − 1). For our purpose,
however, the weak formulation CD(K,N) is sufficient. In the case of N = ∞, CD(K,∞)
is equivalent to ψ′′ ≥ K in the weak sense (also called the K-convexity), namely

ψ
(
(1− t)x+ ty

)
≤ (1− t)ψ(x) + tψ(y)− K

2
(1− t)td(x, y)2 (2.5)

for all x, y ∈ Xq and t ∈ (0, 1). In the non-smooth framework of essentially non-branching
CD(K,N)-spaces as in [CM, CMM], one cannot expect the smoothness and only the weak
formulation makes sense.

3 Difference of weight functions

Henceforth, we normalize as K = 1 without loss of generality. In this and the following
two sections, we work on 1-dimensional spaces enjoying CD(1,∞), appearing as needles
in Theorem 2.10. Let I ⊂ R be a (bounded or unbounded) closed interval equipped with
a measure m = e−ψ dx, where dx denotes the 1-dimensional Lebesgue measure and ψ is a
locally Lipschitz function. Then, as we mentioned in Remark 2.11, for (I, | · |,m) satisfying
CD(1,∞) means that ψ is 1-convex as in (2.5),

ψ
(
(1− t)x+ ty

)
≤ (1− t)ψ(x) + tψ(y)− (1− t)t

2
|x− y|2

for any x, y ∈ I and t ∈ (0, 1). The following useful property due to Bobkov ([Bo,
Proposition 2.1]) is then available.

Lemma 3.1 Let m = e−ψ dx be a probability measure on a closed interval I ⊂ R such
that ψ is convex. Then the minimum of P(A) on the class of all Borel sets A ⊂ I
with m(A) = θ coincides with the minimum on the subclass consisting of (semi-infinite)
intervals (−∞, a] ∩ I and [b,∞) ∩ I.

We remark that what follows from [Bo] is the analogous assertion for m+, however, one
can see that its minimum coincides with that of P by, for instance, [ADG, Theorem 3.6].
We shall compare m on I with the Gaussian measure γ on R with mean 0 and variance
1, denoted by

γ :=
1√
2π

e−x
2/2 dx = e−ψg(x) dx, ψg(x) := log

(√
2π
)
+

1

2
x2.
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Recall from Subsection 2.2 that the isoperimetric profile of (R, | · |,γ) is given by

I(R,γ)(θ) = I(1,∞,∞)(θ) = e−ψg(aθ), θ = γ
(
(−∞, aθ]

)
.

Our goal in this section is to show the following core estimate.

Proposition 3.2 (Difference of weight functions) Let I ⊂ R be a closed interval
equipped with a probability measure m = e−ψ dx such that ψ is 1-convex. Fix θ ∈ (0, 1)
and assume that ∫

I∩(−∞,aθ]

e−ψ dx = θ (3.1)

and that
e−ψ(aθ) ≤ e−ψg(aθ) + δ (3.2)

holds for sufficiently small δ > 0 (relative to θ). Then we have

ψ(x)−ψg(x) ≥
(
ψ′
+(aθ)− aθ

)
(x− aθ)− ω(θ)δ (3.3)

for every x ∈ I, and

ψ(x)−ψg(x) ≤
(
ψ′
+(aθ)− aθ

)
(x− aθ) + ω(θ)

√
δ (3.4)

for every x ∈ [S, T ] such that limδ→0 S = −∞ and limδ→0 T = ∞, where ψ′
+ denotes the

right derivative of ψ and ω(θ) is a constant depending only on θ.

Note that (3.1) is achieved by translating I in R. Moreover, thanks to Lemma 3.1, we
can assume I(I,m)(θ) = e−ψ(aθ) by reversing I if necessary. Since I(I,m)(θ) ≥ I(R,γ)(θ) =
e−ψg(aθ) holds in general (Theorem 2.5), δ > 0 represents the deficit in this isoperimetric
inequality. See (3.10) and (3.18) below for the precise choices of T and S, as well as
(3.11), (3.12) and (3.19) for their asymptotic behaviors as δ → 0. Finally, we stress that
the lower bound (3.3) holds on whole I whereas the upper bound (3.4) is valid only on
[S, T ]. This is natural since the decay of m near infinity does not effect the isoperimetric
profile and thus can be arbitrarily fast.

Proof. We will denote by ψ′
+ (resp. ψ′

−) the right (resp. left) derivative of ψ. The 1-
convexity of ψ implies that ψ′

+ and ψ′
− always exist and ψ′

− ≤ ψ′
+ holds. Put I− :=

I ∩ (−∞, aθ] and I+ := I ∩ [aθ,∞).

Step 1 (ψ′
+(aθ) and aθ) We first estimate the difference of ψ′

+(aθ) and ψ
′
g(aθ) = aθ. We

deduce from the 1-convexity of ψ and the hypothesis (3.2) that, for x ∈ I+,

ψ(x) ≥ ψ(aθ) + ψ′
+(aθ)(x− aθ) +

(x− aθ)
2

2

≥ − log(e−ψg(aθ) + δ) + ψ′
+(aθ)(x− aθ) +

(x− aθ)
2

2
. (3.5)
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Hence we have

1− θ =

∫
I+

e−ψ dx

≤ (e−ψg(aθ) + δ)

∫
I+

exp

(
−ψ′

+(aθ)(x− aθ)−
(x− aθ)

2

2

)
dx

= (1 + eψg(aθ)δ)

∫
I+

exp
(
−ψ′

+(aθ)(x− aθ) + aθx− a2θ
)
γ(dx)

= (1 + eψg(aθ)δ)

∫
I+

exp
((
aθ − ψ′

+(aθ)
)
(x− aθ)

)
γ(dx). (3.6)

Since γ([aθ,∞)) = 1−θ by the choice of aθ, this estimate shows that ψ′
+(aθ)−aθ ≤ c1(θ, δ)

with limδ→0 c1(θ, δ) = 0. We similarly observe ψ′
−(aθ)− aθ ≥ −c1, thereby

−c1 ≤ ψ′
−(aθ)− aθ ≤ ψ′

+(aθ)− aθ ≤ c1.

In order to obtain a more precise estimate, we assume α := ψ′
+(aθ) − aθ ≥ 0 and

deduce from e−t ≤ 1− t+ (t2/2) for t ≥ 0 that∫ ∞

aθ

exp
(
−α(x− aθ)

)
γ(dx)

≤
∫ ∞

aθ

(
1− α(x− aθ) +

α2

2
(x− aθ)

2

)
γ(dx)

=

(
1 + αaθ +

α2

2
a2θ

)
(1− θ)−

∫ ∞

aθ

(α + α2aθ)xγ(dx) +

∫ ∞

aθ

α2

2
x2 γ(dx)

=

(
1 + αaθ +

α2

2
a2θ

)
(1− θ)− (α + α2aθ)

e−a
2
θ/2

√
2π

+
α2

2

(
aθe

−a2θ/2
√
2π

+ 1− θ

)
=

(
1 + αaθ +

α2

2
(a2θ + 1)

)
(1− θ)−

(
α+

α2aθ
2

)
e−a

2
θ/2

√
2π

.

Substituting this into (3.6) yields

(1 + eψg(aθ)δ)

{(
α +

α2aθ
2

)
e−a

2
θ/2

√
2π

−
(
αaθ +

α2

2
(a2θ + 1)

)
(1− θ)

}
≤ (1− θ)eψg(aθ)δ.

Recalling limδ→0 α = 0, we obtain(
e−a

2
θ/2

√
2π

− aθ(1− θ)

)
lim sup
δ→0

α

δ
≤ (1− θ)

√
2πea

2
θ/2. (3.7)

In the LHS of (3.7), we shall show that

e−a
2
θ/2

√
2π

− aθ(1− θ) = I∞(θ)− aθ(1− θ) > 0, (3.8)
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where we put I∞ := I(R,γ) similarly to the proof of Lemma 2.6. Notice that the claim is
clear when θ ≤ 1/2 (aθ ≤ 0), thereby we assume θ > 1/2. Since

d

dθ

[
I∞(θ)− aθ(1− θ)

]
= I ′

∞(θ) + aθ −
daθ
dθ

(1− θ) = −daθ
dθ

(1− θ) < 0

by (2.4) (with K = 1), it suffices to see limθ→1 aθ(1− θ) = 0. Observe that

(2θ − 1)2 =
1

2π

(∫ aθ

−aθ
e−x

2/2 dx

)2

≥
∫ aθ

0

e−r
2/2r dr = 1− e−a

2
θ/2.

This yields
0 ≤ 4aθθ(1− θ) ≤ aθe

−a2θ/2 → 0

as θ → 1 (aθ → ∞). Thus we have the claim (3.8). This in particular shows that (3.7)
holds regardless of α ≥ 0 or not.

It follows from (3.7) that

lim sup
δ→0

ψ′
+(aθ)− aθ

δ
≤ 2π(1− θ)ea

2
θ/2

e−a
2
θ/2 −

√
2πaθ(1− θ)

.

One can similarly show that

lim inf
δ→0

ψ′
−(aθ)− aθ

δ
≥ − 2πθea

2
1−θ/2

e−a
2
1−θ/2 −

√
2πa1−θθ

= − 2πθea
2
θ/2

e−a
2
θ/2 +

√
2πaθθ

.

Therefore we conclude

− C2(θ) ≤ lim inf
δ→0

ψ′
−(aθ)− aθ

δ
≤ lim sup

δ→0

ψ′
+(aθ)− aθ

δ
≤ C2(θ) (3.9)

with C2(θ) > 0 depending only on θ.

Step 2 (Choice of T ) In order to fix a range where we estimate ψ from above, we take
T > aθ such that

(e−ψg(aθ) + δ)

∫ T

aθ

exp

(
−ψ′

+(aθ)(x− aθ)−
(x− aθ)

2

2

)
dx = 1− θ −

√
δ. (3.10)

Recall from (3.6) that

(e−ψg(aθ) + δ)

∫
I+

exp

(
−ψ′

+(aθ)(x− aθ)−
(x− aθ)

2

2

)
dx ≥ 1− θ,

therefore such T ∈ I+ indeed exists. Moreover, as δ → 0, we deduce from ψ′
+(aθ) → aθ

that T → ∞. Quantitatively, we put C ′
2 := C2(θ) + 1 and observe from (3.10) and (3.9)
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that, for sufficiently small δ,

1− θ −
√
δ ≤ (e−ψg(aθ) + δ)

∫ T

aθ

exp

(
−aθ(x− aθ)−

(x− aθ)
2

2
+ C ′

2(x− aθ)δ

)
dx

=
1 + eψg(aθ)δ√

2π

∫ T

aθ

exp

(
−x

2

2
+ C ′

2(x− aθ)δ

)
dx

=
1 + eψg(aθ)δ√

2π

∫ T

aθ

exp

(
−(x− C ′

2δ)
2

2
− C ′

2aθδ +
(C ′

2δ)
2

2

)
dx

= (1 + eψg(aθ)δ) exp

(
−C ′

2aθδ +
(C ′

2δ)
2

2

)
γ
(
[aθ − C ′

2δ, T − C ′
2δ]
)
.

Combining this with

γ
(
[aθ − C ′

2δ, T − C ′
2δ]
)
≤ γ

(
[aθ, T ]

)
+
C ′

2δ√
2π

= 1− θ − γ
(
[T,∞)

)
+
C ′

2δ√
2π
,

we obtain
γ
(
[T,∞)

)
≤

√
δ + C3(θ)δ. (3.11)

Then we also find from

γ
(
[T,∞)

)
≥ 1√

2π

∫ ∞

T

x2 + x+ 1

(x+ 1)2
e−x

2/2 dx = − 1√
2π

[
e−x

2/2

x+ 1

]∞
T

=
1√
2π

e−T
2/2

T + 1

that
e−T

2/2

T + 1
≤

√
2πδ +

√
2πC3(θ)δ. (3.12)

Step 3 (Estimates of ψ −ψg on I+) Now we put

ρ(x) := ψ(x)−ψg(x).

Our goal is to bound this difference of weight functions from below and above. Note first
that, by (3.5), for x ∈ I+,

ψ(x) ≥ − log(e−ψg(aθ) + δ) + ψ′
+(aθ)(x− aθ) +

(x− aθ)
2

2

= ψg(aθ)− log(1 + eψg(aθ)δ) + ψ′
+(aθ)(x− aθ) +

(x− aθ)
2

2
= ψg(x) +

(
ψ′
+(aθ)− aθ

)
(x− aθ)− log(1 + eψg(aθ)δ),

thereby
ρ(x) ≥

(
ψ′
+(aθ)− aθ

)
(x− aθ)− log(1 + eψg(aθ)δ). (3.13)

Next, for x ∈ I+ ∩ [T,∞), it follows from the 1-convexity of ψ that

ψ(x) ≥ ψ(T ) + ψ′
+(T )(x− T ) +

(x− T )2

2

≥ ψg(T ) + ρ(T ) +
(
ψ′
+(aθ) + (T − aθ)

)
(x− T ) +

(x− T )2

2
= ψg(x) + ρ(T ) +

(
ψ′
+(aθ)− aθ

)
(x− T ).
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By integration, we have on one hand∫
I+∩[T,∞)

e−ψ dx ≤ e−ρ(T )
∫
I+∩[T,∞)

exp
(
−
(
ψ′
+(aθ)− aθ

)
(x− T )

)
γ(dx),

and ∫ ∞

T

exp
(
−
(
ψ′
+(aθ)− aθ

)
(x− T )

)
γ(dx)

= exp

((
ψ′
+(aθ)− aθ)T +

(ψ′
+(aθ)− aθ)

2

2

)
× 1√

2π

∫ ∞

T

exp

(
−
(x+ ψ′

+(aθ)− aθ)
2

2

)
dx

= exp

((
ψ′
+(aθ)− aθ)T +

(ψ′
+(aθ)− aθ)

2

2

)
γ
(
[T + ψ′

+(aθ)− aθ,∞)
)
.

On the other hand, (3.1), (3.5) and (3.10) yield∫
I+∩[T,∞)

e−ψ dx = (1− θ)−
∫ T

aθ

e−ψ dx

≥ (1− θ)− (e−ψg(aθ) + δ)

∫ T

aθ

exp

(
−ψ′

+(aθ)(x− aθ)−
(x− aθ)

2

2

)
dx

=
√
δ.

Combining these we obtain

ρ(T ) ≤
(
ψ′
+(aθ)− aθ

)
T +

(ψ′
+(aθ)− aθ)

2

2
+ log

(
1√
δ
γ
(
[T + ψ′

+(aθ)− aθ,∞)
))
.

Now, for x ∈ [aθ, T ],

ψ(x) ≤ ψ(T )− ψ′
+(x)(T − x)− (T − x)2

2

≤ ψg(T ) + ρ(T )−
(
ψ′
+(aθ) + (x− aθ)

)
(T − x)− (T − x)2

2
= ψg(x) + ρ(T )−

(
ψ′
+(aθ)− aθ

)
(T − x).

Therefore we conclude, for x ∈ [aθ, T ],

ρ(x) ≤ ρ(T )−
(
ψ′
+(aθ)− aθ

)
(T − x)

≤
(
ψ′
+(aθ)− aθ

)
x+

(ψ′
+(aθ)− aθ)

2

2
+ log

(
1√
δ
γ
(
[T + ψ′

+(aθ)− aθ,∞)
))
. (3.14)

Thus we could estimate ρ from below (3.13) on I+ and from above (3.14) on [aθ, T ].
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Step 4 (Further estimate) Notice that the second term in the last line of (3.14) is
bounded above by (3.9). In order to understand the behavior of the third term as δ → 0,
we separately discuss the cases of ψ′

+(aθ) ≥ aθ and ψ′
+(aθ) < aθ. In the easier case of

ψ′
+(aθ) ≥ aθ, we deduce from (3.10) that

γ
(
[T + ψ′

+(aθ)− aθ,∞)
)
≤ γ

(
[T,∞)

)
≤ (1− θ)− 1√

2π

∫ T

aθ

exp

(
−x

2

2
−
(
ψ′
+(aθ)− aθ

)
(x− aθ)

)
dx

= (1− θ)− 1√
2π

1− θ −
√
δ

e−ψg(aθ) + δ
e−a

2
θ/2

=

√
δ +

√
2π(1− θ)ea

2
θ/2δ

1 +
√
2πea

2
θ/2δ

.

Since log(1 + t) ≤ t for t ≥ 0, we obtain

log

(
1√
δ
γ
(
[T + ψ′

+(aθ)− aθ,∞)
))

≤
√
2π(1− θ)ea

2
θ/2

√
δ. (3.15)

If ψ′
+(aθ) < aθ, then we need a sharper estimate via (3.9). Let us begin with

γ
(
[T + ψ′

+(aθ)− aθ,∞)
)
= (1− θ)− 1√

2π

∫ T+ψ′
+(aθ)−aθ

aθ

e−x
2/2 dx.

By (3.10),∫ T+ψ′
+(aθ)−aθ

aθ

e−x
2/2 dx

=

∫ T

2aθ−ψ′
+(aθ)

exp

(
−
(x+ ψ′

+(aθ)− aθ)
2

2

)
dx

≥
∫ T

aθ

exp

(
−
(x+ ψ′

+(aθ)− aθ)
2

2

)
dx−

(
aθ − ψ′

+(aθ)
)

= e−ψ
′
+(aθ)

2/2

∫ T

aθ

exp

(
−ψ′

+(aθ)(x− aθ)−
(x− aθ)

2

2

)
dx−

(
aθ − ψ′

+(aθ)
)

= e−ψ
′
+(aθ)

2/2 1− θ −
√
δ

e−ψg(aθ) + δ
−
(
aθ − ψ′

+(aθ)
)
.

Hence we have

1√
δ
γ
(
[T + ψ′

+(aθ)− aθ,∞)
)

≤ 1− θ√
δ

− e−ψ
′
+(aθ)

2/2 (1− θ)δ−1/2 − 1

e−a
2
θ/2 +

√
2πδ

+
aθ − ψ′

+(aθ)√
2πδ

=
1− θ√

δ

(
1− e−ψ

′
+(aθ)

2/2

e−a
2
θ/2 +

√
2πδ

)
+

e−ψ
′
+(aθ)

2/2

e−a
2
θ/2 +

√
2πδ

+
aθ − ψ′

+(aθ)√
2πδ

.
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Then we deduce from (3.9) and |(e−t2/2)′| ≤ e−1/2 < 1 for t ∈ R that, for sufficiently small
δ and C ′

2 := C2(θ) + 1,

1√
δ
γ
(
[T + ψ′

+(aθ)− aθ,∞)
)

≤ 1− θ√
δ

C ′
2δ +

√
2πδ

e−a
2
θ/2 +

√
2πδ

+
e−a

2
θ/2 + C ′

2δ

e−a
2
θ/2 +

√
2πδ

+
C ′

2√
2π

√
δ

≤ e−a
2
θ/2 + C4(θ)

√
δ

e−a
2
θ/2 +

√
2πδ

.

Therefore the same argument as (3.15) shows

log

(
1√
δ
γ
(
[T + ψ′

+(aθ)− aθ,∞)
))

≤ C4(θ)e
a2θ/2

√
δ. (3.16)

Step 5 (Estimates on I−) For x ∈ I− we can apply similar calculations, however, we
need an additional care to replace ψ′

−(aθ) with ψ
′
+(aθ). We have for x ∈ I− (x ≤ aθ) the

analogue to (3.5),

ψ(x) ≥ ψ(aθ) + ψ′
−(aθ)(x− aθ) +

(x− aθ)
2

2

≥ − log(e−ψg(aθ) + δ) + ψ′
+(aθ)(x− aθ) +

(x− aθ)
2

2
,

by the 1-convexity of ψ, (3.2) and ψ′
−(aθ) ≤ ψ′

+(aθ). This implies

ρ(x) ≥
(
ψ′
+(aθ)− aθ

)
(x− aθ)− log(1 + eψg(aθ)δ) (3.17)

on I− in the same way as (3.13).
In order to have an estimate from above, take S < aθ such that

(e−ψg(aθ) + δ)

∫ aθ

S

exp

(
−ψ′

+(aθ)(x− aθ)−
(x− aθ)

2

2

)
dx = θ −

√
δ. (3.18)

Since

(e−ψg(aθ) + δ)

∫
I−

exp

(
−ψ′

+(aθ)(x− aθ)−
(x− aθ)

2

2

)
dx ≥ m(I−) = θ

similarly to (3.6), we indeed can find S ∈ I−. Notice also that S → −∞ as δ → 0 and,
similarly to (3.11) and (3.12),

γ
(
(−∞, S]

)
≤

√
δ + C3(θ)δ,

e−S
2/2

1− S
≤

√
2πδ +

√
2πC3(θ)δ (3.19)

hold for sufficiently small δ (by replacing C3 if necessary).
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For x ∈ I− ∩ (−∞, S], we have

ψ(x) ≥ ψ(S) + ψ′
−(S)(x− S) +

(x− S)2

2

≥ ψg(S) + ρ(S) +
(
ψ′
+(aθ) + (S − aθ)

)
(x− S) +

(x− S)2

2
= ψg(x) + ρ(S) +

(
ψ′
+(aθ)− aθ

)
(x− S).

By integration we deduce that∫
I−∩(−∞,S]

e−ψ dx ≤ e−ρ(S)
∫
I−∩(−∞,S]

exp
(
−
(
ψ′
+(aθ)− aθ

)
(x− S)

)
γ(dx).

We also observe∫ S

−∞
exp

(
−
(
ψ′
+(aθ)− aθ

)
(x− S)

)
γ(dx)

= exp

((
ψ′
+(aθ)− aθ

)
S +

(ψ′
+(aθ)− aθ)

2

2

)
× 1√

2π

∫ S

−∞
exp

(
−
(x+ ψ′

+(aθ)− aθ)
2

2

)
dx

= exp

((
ψ′
+(aθ)− aθ

)
S +

(ψ′
+(aθ)− aθ)

2

2

)
γ
(
(−∞, S + ψ′

+(aθ)− aθ]
)
.

Combining this with∫
I−∩(−∞,S]

e−ψ dx = θ −
∫ aθ

S

e−ψ dx

≥ θ − (e−ψg(aθ) + δ)

∫ aθ

S

exp

(
−ψ′

+(aθ)(x− aθ)−
(x− aθ)

2

2

)
dx

=
√
δ,

we obtain

ρ(S) ≤
(
ψ′
+(aθ)− aθ

)
S +

(ψ′
+(aθ)− aθ)

2

2
+ log

(
1√
δ
γ
(
(−∞, S + ψ′

+(aθ)− aθ]
))
.

Then, for x ∈ [S, aθ], we have

ψ(x) ≤ ψ(S)− ψ′
−(x)(S − x)− (S − x)2

2

≤ ψg(S) + ρ(S)−
(
ψ′
+(aθ) + (x− aθ)

)
(S − x)− (S − x)2

2
= ψg(x) + ρ(S)−

(
ψ′
+(aθ)− aθ

)
(S − x)

and hence

ρ(x) ≤
(
ψ′
+(aθ)− aθ

)
x+

(ψ′
+(aθ)− aθ)

2

2
+ log

(
1√
δ
γ
(
(−∞, S + ψ′

+(aθ)− aθ]
))
. (3.20)
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We also observe, for sufficiently small δ,

log

(
1√
δ
γ
(
(−∞, S + ψ′

+(aθ)− aθ]
))

≤ C4(1− θ)ea
2
θ/2

√
δ (3.21)

in the same way as (3.15) and (3.16) by separately considering the cases of ψ′
+(aθ) ≤ aθ

and ψ′
+(aθ) > aθ.

Step 6 (Conclusion) Let us summarize the outcomes of our estimations to conclude the
proof. Recall ρ = ψ −ψg. On one hand, we obtain from (3.13), (3.17) and log(1 + t) ≤ t
for t ≥ 0 that

ψ(x)−ψg(x) ≥
(
ψ′
+(aθ)− aθ

)
(x− aθ)− eψg(aθ)δ

on whole I, yielding (3.3). On the other hand, combining (3.14) with (3.9), (3.15) and
(3.16) for x ∈ I+, and (3.20) with (3.9) and (3.21) for x ∈ I−, we have

ψ(x)−ψg(x) ≤
(
ψ′
+(aθ)− aθ

)
(x− aθ) + ω(θ)

√
δ

for sufficiently small δ and all x ∈ [S, T ]. This is (3.4) and completes the proof. 2

The estimates (3.3) and (3.4) on the weight function could be compared with [CMM,
Proposition A.3] which is, thanks to the finite-dimensionality, in terms of the deficit in
the diameter bound (not directly of the deficit δ in the isoperimetric profile as above).

We do not know if the order of δ in Proposition 3.2 is optimal. Improving the order
in each estimate will improve the order of δ in Theorem 7.5.

As a corollary to Proposition 3.2 together with (3.9), the unique minimizer of ψ is
close to that of ψg, namely 0 (notice that 0 ∈ I indeed holds when δ is small enough since
T → ∞ and S → −∞). This observation is behind the validity of Proposition 7.3.

4 Small deficit implies small symmetric difference

We continue the analysis on 1-dimensional spaces with the help of Proposition 3.2, and
the next proposition corresponds to [CMM, Proposition 3.1] in our setting. This may be
regarded as a quantitative version of Lemma 3.1.

Proposition 4.1 (Small symmetric difference) Let I ⊂ R be a closed interval equipped
with a probability measure m = e−ψ dx such that ψ is 1-convex. Fix θ ∈ (0, 1) and assume
that, for a Borel set A ⊂ I with m(A) = θ,

P(A) ≤ e−ψg(aθ) + δ

holds for sufficiently small δ > 0 (relative to θ). Then we have

min
{
m
(
A△ (−∞, r−m(θ)]

)
,m
(
A△ [r+m(θ),∞)

)}
≤

P(A)− I(I,m)(θ)

C5(θ, δ)
, (4.1)

where r−m(θ), r
+
m(θ) ∈ I are defined by

m
(
I ∩ (−∞, r−m(θ)]

)
= m

(
I ∩ [r+m(θ),∞)

)
= θ,

and limδ→0C5(θ, δ) = ∞.
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Proof. By reversing and translating I if necessary, we assume (3.1) and I(I,m)(θ) = e−ψ(aθ)

without loss of generality. Hence r−m(θ) = aθ and the estimates in Proposition 3.2 are
available. Moreover, by (3.3) and (3.4), r+m(θ) converges to −aθ as δ → 0.

Our goal is to show that A is necessarily close to either I∩(−∞, r−m(θ)] or I∩[r+m(θ),∞).
Since P(A) <∞, without loss of generality, let A be the union of open intervals (see, e.g.,
[Mag, Proposition 12.13]). If there is x ∈ ∂A ∩ [S, T ], then the hypothesis P(A) ≤
e−ψg(aθ) + δ and (3.4) yield that

e−ψg(aθ) + δ ≥ e−ψ(x) ≥ exp
(
−ψg(x)−

(
ψ′
+(aθ)− aθ

)
(x− aθ)− ω(θ)

√
δ
)
.

Together with (3.9), we obtain

ψg(x) ≥ ψg(aθ)− c(θ, δ)

with limδ→0 c(θ, δ) = 0. On one hand, this implies that ∂A cannot appear between
−|aθ| + ε and |aθ| − ε for some ε = ε(θ, δ) > 0 (provided that aθ ̸= 0). On the other
hand, if every x ∈ ∂A is far from ±aθ (say, e−ψg(x) < e−ψg(aθ)/2), then m(A) is too large
(when A ⊃ (−|aθ|, |aθ|)) or too small (when A ∩ (−|aθ|, |aθ|) = ∅). This latter argument
is valid also for aθ = 0. Therefore ∂A appears exactly once near either aθ or −aθ, and all
the other points of ∂A are far from ±aθ.

Since the proofs are common, we will assume that ∂A appears near aθ (as the right end
of a component) in the sequel. Concerning a connected component of A whose boundary
points are far from ±aθ, we can slide it (in I) in the direction opposite to aθ, with keeping
the total mass and hence the symmetric difference with (−∞, r−m(θ)], and decreasing the
perimeter. We eventually modify A into{

(−∞, α) ∪
(
β, r−m(θ) + ξ

)
∪ (ζ,∞)

}
∩ I

that we again call A, where α < β ≪ r±m(θ), ξ ∈ R and r±m(θ) ≪ ζ. We regard as ζ = ∞ if
A does not include the interval (ζ,∞), and similarly α = −∞ if (−∞, α) does not exist.
As δ → 0, we observe from the above discussion (by virtue of Proposition 3.2) that ξ → 0,
α→ −∞, β → −∞ and ζ → ∞.

Case 1 We first assume ξ ≥ 0.

For simplicity, we regard m as a measure on R in this proof, namely m((α, β)) will
mean m((α, β) ∩ I). If β ≤ inf I, then by m(A) = θ we have A = (−∞, r−m(θ)) ∩ I and
there is nothing to prove. Hence we assume inf I < β. Since m(A) = θ = m((−∞, r−m(θ)]),
we find

m
(
(r−m(θ), r

−
m(θ) + ξ) ∪ (ζ,∞)

)
= m

(
(α, β)

)
.

Thus the symmetric difference between A and (−∞, r−m(θ)] satisfies

m
(
A△ (−∞, r−m(θ)]

)
= 2m

(
(α, β)

)
≤ 2m

(
(−∞, β)

)
. (4.2)

It follows from the 1-convexity of ψ that, for x < β,

ψ(x) ≥ ψ(β) + ψ′
−(β)(x− β) +

(x− β)2

2

≥ ψ(β) +
(
ψ′
−(aθ)− (aθ − β)

)
(x− β) +

(x− β)2

2
.
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Put β̄ := β + ψ′
−(aθ)− aθ for brevity. Then we observe

m
(
(−∞, β)

)
≤ e−ψ(β)

∫ β

−∞
exp

(
−(x− β)2

2
− β̄(x− β)

)
dx

= e−ψ(β)
∫ 0

−∞
exp

(
−x

2

2
− β̄x

)
dx,

and∫ 0

−∞
exp

(
−x

2

2
− β̄x

)
dx =

∫ 0

−∞
exp

(
−(x+ β̄)2

2
+
β̄2

2

)
dx = eβ̄

2/2

∫ β̄

−∞
e−x

2/2 dx.

Hence
m((−∞, β))

e−ψ(β)
≤ eβ̄

2/2

∫ β̄

−∞
e−x

2/2 dx→ 0 (4.3)

as δ → 0, because by l’Hôpital’s rule

lim
b→−∞

∫ b
−∞ e−x

2/2 dx

e−b2/2
= lim

b→−∞

1

−b
= 0.

Now, if ψ(r−m(θ)) ≥ ψ(r−m(θ) + ξ), then we immediately obtain

P(A) ≥ e−ψ(β) + e−ψ(r
−
m (θ)+ξ) ≥ e−ψ(β) + e−ψ(r

−
m (θ)).

Therefore (4.2) and (4.3) show

P(A)− I(I,m)(θ)

m(A△ (−∞, r−m(θ)])
≥ e−ψ(β)

2m((−∞, β))
→ ∞

as δ → 0. In the other case of ψ(r−m(θ)) < ψ(r−m(θ) + ξ), let us consider

A′ :=
{
(−∞, r−m(θ) + ξ) ∪ (ζ,∞)

}
∩ I

and put
θ′ := m(A′) = θ +m

(
(α, β)

)
.

Note that r−m(θ) + ξ ≤ r−m(θ
′) and hence ψ(r−m(θ) + ξ) ≤ ψ(r−m(θ

′)) by the convexity of ψ.
Thus we have

P(A)− I(I,m)(θ) ≥ e−ψ(β) + e−ψ(r
−
m (θ)+ξ) − e−ψ(r

−
m (θ)) ≥ e−ψ(β) + e−ψ(r

−
m (θ′)) − e−ψ(r

−
m (θ)).

Since [r−m ]
′(θ) = eψ(r

−
m (θ)) by the definition of r−m (similarly to (2.3)) and ψ is convex, we

deduce that

e−ψ(r
−
m (θ)) − e−ψ(r

−
m (θ′)) ≤ ψ′

−
(
r−m(θ

′)
)
(θ′ − θ) ≤ ψ′

−
(
r−m(θ

′)
)
m
(
(−∞, β)

)
.

Therefore
P(A)− I(I,m)(θ) ≥ e−ψ(β) − ψ′

−
(
r−m(θ

′)
)
m
(
(−∞, β)

)
,

21



where, thanks to (4.3), the RHS is positive if δ is sufficiently small. Combining this with
(4.2), we conclude

P(A)− I(I,m)(θ)

m(A△ (−∞, r−m(θ)])
≥ e−ψ(β)

2m((−∞, β))
−
ψ′
−(r

−
m(θ

′))

2
→ ∞

as δ → 0.

Case 2 Next we assume ξ < 0.

In this case we can discuss similarly by reversing A. Since m((−∞, r−m(θ) + ξ)) < θ, it
necessarily holds ζ <∞. Then we have

m
(
A△ (−∞, r−m(θ)]

)
= 2m

(
(ζ,∞)

)
instead of (4.2), and

m((ζ,∞))

e−ψ(ζ)
→ 0 (4.4)

as δ → 0 similarly to (4.3). This is enough to conclude if ψ(r−m(θ)) ≥ ψ(r−m(θ) + ξ), since

P(A)− I(I,m)(θ)

m(A△ (−∞, r−m(θ)])
≥ e−ψ(ζ) + e−ψ(r

−
m (θ)+ξ) − e−ψ(r

−
m (θ))

2m((ζ,∞))
≥ e−ψ(ζ)

2m((ζ,∞))
→ ∞

as δ → 0. In the case of ψ(r−m(θ)) < ψ(r−m(θ) + ξ), we consider

A′ :=
{
(−∞, α) ∪

(
β, r−m(θ) + ξ

)}
∩ I, θ′ := m(A′) = θ −m

(
(ζ,∞)

)
.

Then r−m(θ
′) ≤ r−m(θ) + ξ and ψ(r−m(θ

′)) ≥ ψ(r−m(θ) + ξ) by the convexity of ψ, therefore

P(A)− I(I,m)(θ) ≥ e−ψ(ζ) + e−ψ(r
−
m (θ′)) − e−ψ(r

−
m (θ)) ≥ e−ψ(ζ) + ψ′

+

(
r−m(θ

′)
)
m
(
(ζ,∞)

)
.

Finally (4.4) implies

P(A)− I(I,m)(θ)

m(A△ (−∞, r−m(θ)])
≥ e−ψ(ζ)

2m((ζ,∞))
+
ψ′
+(r

−
m(θ

′))

2
→ ∞

as δ → 0.
Therefore we conclude, for sufficiently small δ,

P(A)− I(I,m)(θ) ≥ C(θ, δ)m
(
A△ (−∞, r−m(θ)]

)
and limδ→0C(θ, δ) = ∞. When ∂A appears near −aθ = a1−θ, we similarly obtain

P(A)− I(I,m)(θ) ≥ C(θ, δ)m
(
A△ [r+m(θ),∞)

)
(by using e−ψ(r

+
m (θ)) ≥ I(I,m)(θ)). 2
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5 Reverse Poincaré inequality on needles

In this section, we analyze the spectral gap of a 1-dimensional space with a small isoperi-
metric deficit. We shall see that affine functions achieve the sharp spectral gap asymp-
totically as the deficit goes to 0. Precisely, we show the following reverse form of the
Poincaré inequality, where

Var(I,m)(u) :=

∫
I

u2 dm−
(∫

I

u dm

)2

is the variance of u (recall (2.1)).

Proposition 5.1 (Reverse Poincaré inequality on needles) Let I ⊂ R be a closed
interval equipped with a probability measure m = e−ψ dx such that ψ is 1-convex. Fix
θ ∈ (0, 1) and assume (3.1) and e−ψ(aθ) ≤ e−ψg(aθ) + δ. Then, given ε ∈ (0, 1), if δ > 0 is
sufficiently small (relative to θ and ε), we have

Var(I,m)(u) ≥
1

Λ(θ, ε, δ)

∫
I

|u′|2 dm (5.1)

for every affine function u(x) = ax+b with a, b ∈ R, where Λ(θ, ε, δ) ≤ (1−C6(θ, ε)δ
(1−ε)/2)−1

and, in particular, limδ→0 Λ(θ, ε, δ) = 1.

Precisely, the assumption is read as I(I,m)(θ) ≤ I(R,γ)(θ) + δ (up to reversing and
translating I). Recall that the 1-convexity of ψ (Ric∞ ≥ 1 or CD(1,∞)) implies the
Poincaré inequality

Var(I,m)(u) ≤
∫
I

|u′|2 dm.

Hence Λ(θ, ε, δ) ≥ 1 necessarily holds. Note also that we obtain from (5.1) an upper
bound of the first nonzero eigenvalue λ1 of −∆m (recall Subsection 2.1):

1 ≤ λ1 ≤ Λ(θ, ε, δ).

Proof. We remark that the inequality (5.1) is invariant under affine transformations of u,
thereby it suffices to show (5.1) for some a, b with a ̸= 0. Thus, let u(x) = x+ψ′

+(aθ)−aθ
without loss of generality. First, it clearly holds∫

I

|u′|2 dm =

∫
I

e−ψ dx = 1. (5.2)

Second, we deduce from (3.4) and

x2

2
+
(
ψ′
+(aθ)− aθ

)
(x− aθ) =

(x+ ψ′
+(aθ)− aθ)

2

2
−
ψ′
+(aθ)

2 − a2θ
2

(5.3)

that∫
I

u2 dm ≥ 1√
2π

exp

(
ψ′
+(aθ)

2 − a2θ
2

− ω
√
δ

)∫ T

S

u(x)2 exp

(
−
(x+ ψ′

+(aθ)− aθ)
2

2

)
dx.
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Note that

exp

(
ψ′
+(aθ)

2 − a2θ
2

− ω
√
δ

)
≥ 1− C(θ)

√
δ

by (3.9), and ∫ T

S

u(x)2 exp

(
−
(x+ ψ′

+(aθ)− aθ)
2

2

)
dx

=

[
−
(
x+ ψ′

+(aθ)− aθ
)
exp

(
−
(x+ ψ′

+(aθ)− aθ)
2

2

)]T
S

+

∫ T

S

exp

(
−
(x+ ψ′

+(aθ)− aθ)
2

2

)
dx

= −
[(
x+ ψ′

+(aθ)− aθ
)
exp

(
−
(x+ ψ′

+(aθ)− aθ)
2

2

)]T
S

+ e−ψ
′
+(aθ)

2/2

∫ T

S

exp

(
−ψ′

+(aθ)(x− aθ)−
(x− aθ)

2

2

)
dx.

In the former term, we observe from |(te−t2/2)′| ≤ 1, (3.9) and (3.12) that

(
T + ψ′

+(aθ)− aθ
)
exp

(
−
(T + ψ′

+(aθ)− aθ)
2

2

)
≤ T e−T

2/2 + |ψ′
+(aθ)− aθ|

≤ T (T + 1)1−εe−εT
2/2

(
e−T

2/2

T + 1

)1−ε

+ (C2 + 1)δ ≤ C(θ, ε)δ(1−ε)/2.

We similarly obtain from (3.19) that

(
S + ψ′

+(aθ)− aθ
)
exp

(
−
(S + ψ′

+(aθ)− aθ)
2

2

)
≥ −C(θ, ε)δ(1−ε)/2.

Thanks to (3.10) and (3.18), the latter term coincides with

e−ψ
′
+(aθ)

2/2 1− 2
√
δ

e−ψg(aθ) + δ
= e(a

2
θ−ψ

′
+(aθ)

2)/2

√
2π(1− 2

√
δ)

1 +
√
2πea

2
θ/2δ

≥
√
2π − C(θ)

√
δ.

Hence we have ∫
I

u2 dm ≥ 1− C(θ, ε)δ(1−ε)/2. (5.4)
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Finally, by (3.3), (3.4) and (5.3),

√
2π

∫
I

u dm

≤ exp

(
ψ′
+(aθ)

2 − a2θ
2

+ ωδ

)∫ ∞

aθ−ψ′
+(aθ)

u(x) exp

(
−
(x+ ψ′

+(aθ)− aθ)
2

2

)
dx

+ exp

(
ψ′
+(aθ)

2 − a2θ
2

− ω
√
δ

)∫ aθ−ψ′
+(aθ)

S

u(x) exp

(
−
(x+ ψ′

+(aθ)− aθ)
2

2

)
dx

= − exp

(
ψ′
+(aθ)

2 − a2θ
2

+ ωδ

)[
exp

(
−
(x+ ψ′

+(aθ)− aθ)
2

2

)]∞
aθ−ψ′

+(aθ)

− exp

(
ψ′
+(aθ)

2 − a2θ
2

− ω
√
δ

)[
exp

(
−
(x+ ψ′

+(aθ)− aθ)
2

2

)]aθ−ψ′
+(aθ)

S

=
(
eωδ − e−ω

√
δ
)
exp

(
ψ′
+(aθ)

2 − a2θ
2

)
+ exp

(
ψ′
+(aθ)

2 − a2θ
2

− ω
√
δ

)
exp

(
−
(S + ψ′

+(aθ)− aθ)
2

2

)
.

We similarly find
√
2π

∫
I

u dm

≥ exp

(
ψ′
+(aθ)

2 − a2θ
2

− ω
√
δ

)∫ T

aθ−ψ′
+(aθ)

u(x) exp

(
−
(x+ ψ′

+(aθ)− aθ)
2

2

)
dx

+ exp

(
ψ′
+(aθ)

2 − a2θ
2

+ ωδ

)∫ aθ−ψ′
+(aθ)

−∞
u(x) exp

(
−
(x+ ψ′

+(aθ)− aθ)
2

2

)
dx

=
(
e−ω

√
δ − eωδ

)
exp

(
ψ′
+(aθ)

2 − a2θ
2

)
− exp

(
ψ′
+(aθ)

2 − a2θ
2

− ω
√
δ

)
exp

(
−
(T + ψ′

+(aθ)− aθ)
2

2

)
.

Therefore we obtain from (3.9), (3.12), (3.19) and |(e−t2/2)′| ≤ e−1/2 < 1 that∣∣∣∣ ∫
I

u dm

∣∣∣∣ ≤ C(θ, ε)δ(1−ε)/2. (5.5)

Thanks to (5.4) and (5.5), we obtain

Var(I,m)(u) ≥ 1− C(θ, ε)δ(1−ε)/2.

Combining this with (5.2) completes the proof. 2

6 Reverse Poincaré inequality on M and applications

Henceforth we consider Riemannian manifolds and apply the 1-dimensional analysis in
the previous sections via the needle decomposition. This section is devoted to a reverse
Poincaré inequality on M derived from Proposition 5.1, followed by several applications.

25



6.1 Decomposition of deficit

Let (M, g,m) be a complete C∞-Riemannian manifold equipped with a measure m =
e−Ψ volg such that Ric∞ ≥ 1 and m(M) = 1. Fix θ ∈ (0, 1) and take a Borel set A ⊂ M
with m(A) = θ.

Put f := χA − θ and denote by (Q, ν) and {(Xq,mq)}q∈Q the elements of the needle
decomposition as in Theorem 2.10. Then (Xq,mq) enjoys Ric∞ ≥ 1 (or CD(1,∞)) for
ν-almost every q ∈ Q. Recall from Subsection 2.3 that this needle decomposition can
be used to prove the isoperimetric inequality I(M,m) ≥ I(R,γ) on M via those on needles
(Xq,mq). We also define Aq := A ∩ Xq for q ∈ Q. By [CMM, Lemma 4.1], one can
decompose the isoperimetric deficit of A into those of Aq as follows.

Lemma 6.1 (Decomposition of deficit) We have

P(A)− I(R,γ)(θ) ≥
∫
Q

(
P(Aq)− I(R,γ)(θ)

)
ν(dq),

where P(Aq) denotes the perimeter of Aq in (Xq,mq).

We remark that what we need to take care is the measurability of P(Aq) in q ∈ Q,
then the inequality itself follows from Fatou’s lemma.

6.2 Reverse Poincaré inequality

Let u : M −→ R be the guiding function associated with f = χA − θ above (recall
Subsection 2.3). Notice that u ∈ L1(m) holds since u is 1-Lipschitz and the measure m
has the Gaussian decay. Recall from (2.1) that we have the Poincaré inequality

Var(M,m)(u) ≤
∫
M

|∇u|2 dm = 1,

where |∇u| = 1 m-almost everywhere since ν-almost every needle is not a singleton (by
f ̸= 0 and Theorem 2.10(iii)). We shall show a reverse inequality by integrating (5.1) on
needles.

Theorem 6.2 (Reverse Poincaré inequality) Let (M, g,m) be a complete weighted
Riemannian manifold such that Ric∞ ≥ 1 and m(M) = 1. Fix θ, ε ∈ (0, 1) and take a
Borel set A ⊂ M with m(A) = θ and P(A) ≤ I(R,γ)(θ) + δ for sufficiently small δ > 0
(relative to θ and ε). Then the guiding function u associated with f = χA − θ satisfies

Var(M,m)(u) ≥
1

Λ′(θ, ε, δ)

∫
M

|∇u|2 dm,

where Λ′(θ, ε, δ) ≤ (1− C7(θ, ε)δ
(1−ε)/(3−ε))−1 and in particular limδ→0 Λ

′(θ, ε, δ) = 1.

Proof. We set a := (1− ε)/(3− ε) and consider

Q′ := {q ∈ Q |mq(Aq) = θ, P(Aq)− I(R,γ)(θ) < δ1−a}.
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Then we deduce from Lemma 6.1 that ν(Q′) ≥ 1 − δa. Precisely, assuming in contrary
ν(Q′) < 1− δa, we have

δ ≥
∫
Q

(
P(Aq)− I(R,γ)(θ)

)
ν(dq) ≥ δ1−a · ν(Q \Q′) > δ,

a contradiction.
For ν-almost every q ∈ Q′, since u is affine and |u′| ≡ 1 on Xq, (5.1) yields

Var(Xq ,mq)(u) ≥
1

Λ(θ, ε, δ1−a)

for Λ from Proposition 5.1. Integrating in q implies

Var(M,m)(u) =

∫
Q

∫
Xq

u2 dmq ν(dq)−
(∫

Q

∫
Xq

u dmq ν(dq)

)2

≥
∫
Q

{∫
Xq

u2 dmq −
(∫

Xq

u dmq

)2}
ν(dq)

≥ 1− δa

Λ(θ, ε, δ1−a)
, (6.1)

where we used Theorem 2.10(i) as well as the Cauchy–Schwarz inequality on (Q, ν). Re-
calling the choice of Λ in Proposition 5.1 and a = (1− ε)/(3− ε), we obtain

Λ(θ, ε, δ1−a)

1− δa
≤ 1

(1− δa)(1− C6(θ, ε)δ(1−a)(1−ε)/2)
≤ 1

1− C(θ, ε)δ(1−ε)/(3−ε)
.

This completes the proof. 2

Now let us choose the guiding function u :M −→ R so that∫
M

u dm = 0

(by replacing u with u −
∫
M
u dm). Then, combining (6.1) with the Poincaré inequality

(2.1), we obtain∫
Q

(∫
Xq

u dmq

)2

ν(dq) ≤
∫
M

u2 dm− 1

Λ′(θ, ε, δ)
≤ 1− 1

Λ′(θ, ε, δ)
≤ C7(θ, ε)δ

(1−ε)/(3−ε).

(6.2)
Therefore

∫
Xq
u dmq is close to 0 on most needles q.

Since most needles are long and the measures on them are close to the Gaussian
measure γ, (6.2) shows that, on most needles, the guiding function u attains 0 at a
point close to the maximum of the density function (minimum of the weight function
ψ). This observation plays an essential role to integrate the estimates on needles (see
Proposition 7.3 and the proofs of Proposition 7.4 and Theorem 7.5), and we stress that
the guiding function u is the key ingredient.
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6.3 Reverse logarithmic Sobolev inequality

Going back to the seminal work of Otto–Villani [OV], it is now well known that the
logarithmic Sobolev inequality,∫

M

f log f dm ≤ 1

2λ

∫
M

|∇f |2

f
dm

for nonnegative locally Lipschitz functions f with
∫
M
f dm = 1, implies the Talagrand

inequality,

W2(µ,m)2 ≤ 2

λ
Entm(µ)

for µ ∈ P2(M), and the Talagrand inequality implies the Poincaré inequality

Var(M,m)(u) ≤
1

λ

∫
M

|∇u|2 dm

(both without loss of constants). In the Talagrand inequality, W2 is the L2-Wasserstein
distance, P2(M) is the set of Borel probability measures on M of finite second moment,
and Entm(µ) :=

∫
M
ρ log ρ dm with µ = ρm is the relative entropy. We refer to [Vi, Theo-

rem 22.17] for a precise statement that is available in our setting, and to the bibliographical
notes in [Vi, Chapter 22] for a historical account and related results.

By reversing these implications, we deduce from Theorem 6.2 the following reverse
forms of logarithmic Sobolev and Talagrand inequalities.

Corollary 6.3 (Reverse Talagrand & log-Sobolev inequalities) Let (M, g,m) be as
in Theorem 6.2 and assume I(M,m)(θ) ≤ I(R,γ)(θ) + δ for some θ ∈ (0, 1) and sufficiently
small δ > 0. Then, for any λ > Λ′(θ, ε, δ), we have the following.

(i) There exists some µ ∈ P2(M) \ {m} such that

W2(µ,m)2 ≥ 2

λ
Entm(µ). (6.3)

(ii) There exists some nonconstant, nonnegative, locally Lipschitz function f such that∫
M
f dm = 1 and ∫

M

f log f dm ≥ 1

2λ

∫
M

|∇f |2

f
dm. (6.4)

The proofs of the above implications (log-Sobolev to Talagrand, Talagrand to Poincaré)
are based on dual formulations and semigroup approaches (employing heat semigroup [OV]
or Hamilton–Jacobi semigroup [BoGL, LV1]), and then the relation of u from Theorem 6.2,
µ in (6.3), and f in (6.4) is seemingly unclear.

In the direct implication from the logarithmic Sobolev inequality to the Poincaré
inequality in [LV2, Theorem 6.18], we have a more explicit argument and can build f
from u as follows. Given any λ > Λ′(θ, ε, δ), truncating u in Theorem 6.2, we obtain
uσ := max{min{u, σ},−σ} for some (large) σ > 0 satisfying

Var(M,m)(uσ) ≥
1

λ

∫
M

|∇uσ|2 dm. (6.5)
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Now let us put h := uσ −
∫
M
uσ dm and consider the function fε := 1 + εh for |ε| <

(2∥h∥L∞)−1. Note that fε > 0 and
∫
M
fε dm = 1. Then we calculate∫

M

|∇fε|2

fε
dm = ε2

∫
M

|∇h|2

1 + εh
dm ≤ ε2

1− ε∥h∥L∞

∫
M

|∇h|2 dm.

Moreover, it follows from

(1 + t) log(1 + t) ≥ t+ at2 for −1 < t ≤ 1

2a
− 1, a ∈

(
0,

1

2

)
that∫

M

fε log fε dm ≥
∫
M

(
εh+

1

2(1 + ε∥h∥L∞)
(εh)2

)
dm =

ε2

2(1 + ε∥h∥L∞)

∫
M

h2 dm.

Combining these with (6.5) yields the reverse logarithmic Sobolev inequality∫
M

fε log fε dm ≥ 1− ε∥h∥L∞

1 + ε∥h∥L∞

1

2λ

∫
M

|∇fε|2

fε
dm.

We close the section with some remarks on related investigations.

Remark 6.4 (Related results) (a) The stability of geometric inequalities on Rieman-
nian manifolds is an important problem and known to have applications in the study
of limit spaces. For instance, Colding [Co1, Co2] showed that an n-dimensional Rie-
mannian manifold (M, g) satisfying Ricg ≥ n − 1 is close to the unit sphere Sn in
the Gromov–Hausdorff distance if and only if the volume volg(M) is close to that of
Sn. We will denote the volume of Sn by ωn. Notice that volg(M) is not greater than
ωn by the Bishop comparison theorem (see [Cha]), and the almost maximal volume
implies that the manifold is homeomorphic to Sn by [Per]. It is also shown in [Co2]
that, if the radius of M as above is close to π, then its volume is close to ωn (thereby
M is homeomorphic to Sn), where the radius ofM is defined as infx∈M supy∈M d(x, y)
and is not greater than π. Another result on this kind of ‘almost sphere theorem’
by Petersen [Pet] asserts that the radius is close to π if and only if the (n + 1)-th
eigenvalue of the Laplacian is close to n (later improved to the n-th eigenvalue by
Aubry [Au]). We refer to [HM, KaMo] for recent generalizations of some of these
results to RCD-spaces (recall Remark 2.2(c)).

(b) Among functional inequalities, the relation between the Poincaré inequality (spec-
tral gap) and the diameter of Riemannian manifolds has been well investigated (see
[BBG, Be, Che, Cr]). We refer to [CaMoSe] for a recent generalization to essentially
non-branching CD(N − 1, N)-spaces (N ∈ (1,∞)). In [CaMoSe] they make use of
the needle decomposition in the same spirit as [CMM] on quantitative isoperimetric
inequalities. See also [OT] for the rigidity of the logarithmic Sobolev inequality on
weighted Riemannian manifolds with Ric∞ ≥ K > 0 (the case of RicN ≥ K > 0 with
N ∈ [n,∞) is open). In the Euclidean setting, quantitative estimates in comparison
with the Gaussian spaces are studied in [DF, CF] for the Poincaré inequality, and in
[BGRS, FIL, CF] for the logarithmic Sobolev inequality.

(c) We refer to a recent paper [ABS, Theorem 2.1] for another kind of rigidity result
concerning a gradient estimate on RCD(0, N)-spaces.
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7 Quantitative isoperimetric inequality

As in the previous section, let (M, g,m) be a weighted Riemannian manifold with Ric∞ ≥ 1
and m(M) = 1, fix θ ∈ (0, 1) and take a Borel set A ⊂ M with m(A) = θ. We employ
the needle decomposition associated with f := χA − θ as in Subsection 2.3: (Q, ν),
{(Xq,mq)}q∈Q, and the guiding function u with

∫
M
u dm = 0. Set Aq := A ∩Xq as in the

previous section.
Put δ(A) := P(A)− I(R,γ)(θ) and define

Qℓ :=
{
q ∈ Q

∣∣mq(Aq) = θ, P(Aq)− I(R,γ)(θ) <
√
δ(A)

}
(7.1)

as a set of ‘long’ needles (recall from Lemma 2.6 that small deficit implies large diame-
ter). Notice that Qℓ is a measurable set since the function q 7→ P(Aq) is measurable by
[CMM, Lemma 4.1]. We observe from Lemma 6.1 the following (similarly to the proof of
Theorem 6.2).

Lemma 7.1 (Qℓ is large) We have ν(Qℓ) ≥ 1−
√
δ(A).

For further analyzing the behavior of long needles, we define

Q−
ℓ :=

{
q ∈ Qℓ

∣∣mq

(
Aq△ (−∞, r−mq

(θ)]
)
≤
√
δ(A)

}
,

Q+
ℓ :=

{
q ∈ Qℓ

∣∣mq

(
Aq△ [r+mq

(θ),∞)
)
≤
√
δ(A)

}
,

(7.2)

where Xq is parametrized by u and r±mq
(θ) ∈ Xq are defined by

mq

(
Xq ∩ (−∞, r−mq

(θ)]
)
= mq

(
Xq ∩ [r+mq

(θ),∞)
)
= θ

as in Proposition 4.1. The measurability of Q+
ℓ and Q−

ℓ can be shown as in [CMM] (see
Lemma 6.1 and the paragraph following it). Then the next lemma is a consequence of
Proposition 4.1.

Lemma 7.2 (Q−
ℓ ∪Q+

ℓ is large) If δ(A) is sufficiently small, then we have

ν
(
Qℓ \ (Q−

ℓ ∪Q+
ℓ )
)
≤
√
δ(A).

Proof. Recall from Theorem 2.10 that, for ν-almost every q ∈ Q, (Xq,mq) satisfies
Ric∞ ≥ 1 and mq(Aq) = θ. Then we deduce from (4.1) and limδ→0C5(θ, δ) = ∞ that

P(Aq)− I(Xq ,mq)(θ) ≥ min
{
mq

(
Aq△ (−∞, r−mq

(θ)]
)
,mq

(
Aq△ [r+mq

(θ),∞)
)}

for q ∈ Qℓ provided that δ(A) is sufficiently small. Hence

P(Aq)− I(R,γ)(θ) ≥ P(Aq)− I(Xq ,mq)(θ) >
√
δ(A)

for q ∈ Qℓ \ (Q−
ℓ ∪Q+

ℓ ), and it follows from Lemma 6.1 that

δ(A) ≥
√
δ(A) · ν

(
Qℓ \ (Q−

ℓ ∪Q+
ℓ )
)
.

2
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Next we shall show that one of Q−
ℓ and Q+

ℓ necessarily has a small volume. This is
the most technical step in this section and the structure of the proof differs from that
of [CMM, Proposition 6.4], due to the fact that the diameter of M is not bounded and
needles can be infinitely long (cf., for example, [CMM, Proposition 5.1, Corollary 5.4]).
The following observation by virtue of (6.2) will play a crucial role. Recall that aθ ∈ R is
defined by γ((−∞, aθ]) = θ.

Proposition 7.3 (u is nearly centered on most needles) If δ(A) is sufficiently small,
then there exists a measurable set Qc ⊂ Q such that ν(Qc) ≥ 1− δ(A)(1−ε)/(9−3ε) and

max
{
|aθ − r−mq

(θ)|, |a1−θ − r+mq
(θ)|
}
≤ C8(θ, ε)δ(A)

(1−ε)/(9−3ε) (7.3)

for every q ∈ Qc ∩Qℓ.

Proof. We set δ := δ(A) and

a :=
2(1− ε)

3(3− ε)

for simplicity, and observe from (6.2) that the set Qc ⊂ Q consisting of q with(∫
Xq

u dmq

)2

≤ C7(θ, ε)δ
a (7.4)

satisfies ν(Qc) ≥ 1 − δ(1−ε)/(3−ε)−a. Fix a needle q ∈ Qc ∩ Qℓ and put mq = e−ψ dx,
r− := r−mq

(θ) and r+ := r+mq
(θ) for brevity.

Since the assertion is symmetric, by reversingXq if necessary, we can assume I(Xq ,mq)(θ) =

e−ψ(r
−). Then we have e−ψ(r

−) ≤ P(Aq) ≤ I(R,γ)(θ) +
√
δ and deduce from (3.3) that

ψ(x)−ψg

(
(x− r−) + aθ

)
≥
(
ψ′
+(r

−)− aθ
)
(x− r−)− ω(θ)

√
δ

on Xq, where we recall that Xq is parametrized by u. We similarly observe from (3.4)
that

ψ(x)−ψg

(
(x− r−) + aθ

)
≤
(
ψ′
+(r

−)− aθ
)
(x− r−) + ω(θ)δ1/4

on [S + r− − aθ, T + r− − aθ]. Let us set α := aθ − r−, β := ψ′
+(r

−) − aθ and observe

|β| ≤ (C2 + 1)
√
δ from (3.9). By (7.4) we also find that α → 0 as δ → 0, our goal is to

make this quantitative.
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We have∫
Xq

u dmq =

∫
Xq

xmq(dx)

≤
∫ ∞

0

x exp
(
−ψg(x+ α)− β(x− r−) + ω

√
δ
)
dx

+

∫ 0

S−α
x exp

(
−ψg(x+ α)− β(x− r−)− ωδ1/4

)
dx

=
1√
2π

∫ ∞

0

x exp

(
−(x+ α + β)2

2
+ αβ +

β2

2
+ βr− + ω

√
δ

)
dx

+
1√
2π

∫ 0

S−α
x exp

(
−(x+ α + β)2

2
+ αβ +

β2

2
+ βr− − ωδ1/4

)
dx

= exp

(
αβ +

β2

2
+ βr− + ω

√
δ

)∫ ∞

α+β

(x− α− β)γ(dx)

+ exp

(
αβ +

β2

2
+ βr− − ωδ1/4

)∫ α+β

S+β

(x− α− β)γ(dx).

Since |β| ≤ (C2 + 1)
√
δ and α→ 0 as δ → 0, we find

exp

(
αβ +

β2

2
+ βr− + ω

√
δ

)
≤ 1 + C(θ)

√
δ,

exp

(
αβ +

β2

2
+ βr− − ωδ1/4

)
≥ 1− C(θ)δ1/4.

Moreover, we observe∫ α+β

S+β

(x− α− β)γ(dx) =

∫ α+β

−∞
(x− α− β)γ(dx)−

∫ S+β

−∞
(x− α− β)γ(dx)

=

∫ α+β

−∞
(x− α− β)γ(dx) +

1√
2π

[
e−x

2/2
]S+β
−∞ + (α + β)γ

(
(−∞, S + β]

)
and, assuming that δ is sufficiently small,

e−(S+β)2/2 ≤ e−(1−ε)S2/2 = (1− S)(1−ε)
2

e−ε(1−ε)S
2/2

(
e−S

2/2

1− S

)(1−ε)2

≤ C(θ, ε)δ(1−ε)
2/4

and

γ
(
(−∞, S + β]

)
≤ γ

(
(−∞, S]

)
+

|β|√
2π

≤ C(θ)δ1/4

by (3.19) and (7.1). Therefore we obtain∫
Xq

u dmq ≤
∫ ∞

−∞
(x− α− β)γ(dx) + C(θ, ε)δ(1−ε)

2/4

= −α− β + C(θ, ε)δ(1−ε)
2/4

≤ −α + C(θ, ε)δ(1−ε)
2/4.
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A similar calculation shows∫
Xq

u dmq ≥ −α− C(θ, ε)δ(1−ε)
2/4

as well. Combining these with (7.4) yields (provided that a/2 ≤ (1− ε)2/4)

|α| ≤
∣∣∣∣α +

∫
Xq

u dmq

∣∣∣∣+ ∣∣∣∣ ∫
Xq

u dmq

∣∣∣∣ ≤ C(θ, ε)δa/2. (7.5)

In order to bound |a1−θ − r+|, let us recall

e−ψ(x) ≤ 1√
2π

exp

(
αβ +

β2

2
+ βr− + ω

√
δ

)
exp

(
−(x+ α + β)2

2

)
≤
(
1 + C(θ)

√
δ
)
e−ψg(x+α+β)

on Xq. Therefore, on one hand, for Θ > −(α + β) with e−ψg(a1−θ+Θ+α+β) ≥ e−ψg(a1−θ)/2,

mq

(
[a1−θ +Θ,∞)

)
≤
(
1 + C(θ)

√
δ
)
γ
(
[a1−θ +Θ+ α + β,∞)

)
≤
(
1 + C(θ)

√
δ
)(
θ − e−ψg(a1−θ)

2
(Θ + α + β)

)
.

Then choosing
Θ = 2eψg(a1−θ)θC(θ)

√
δ − α− β

implies mq([a1−θ +Θ,∞)) < θ and hence

r+ < a1−θ +Θ ≤ a1−θ + C(θ, ε)δa/2,

where we used (7.5). On the other hand, for Ξ > α + β with e−ψg(a1−θ−Ξ+α+β) ≥
e−ψg(a1−θ)/2, we observe

mq

(
[a1−θ − Ξ,∞)

)
≥ 1−

(
1 + C(θ)

√
δ
)
γ
(
(−∞, a1−θ − Ξ + α+ β]

)
≥ 1−

(
1 + C(θ)

√
δ
)(

(1− θ)− e−ψg(a1−θ)

2
(Ξ− α− β)

)
.

This yields mq([a1−θ − Ξ,∞)) > θ with Ξ = 2eψg(a1−θ)(1− θ)C(θ)
√
δ + α + β, and hence

r+ > a1−θ − Ξ ≥ a1−θ − C(θ, ε)δa/2.

This completes the proof. 2

Let us explain the geometric intuition of the proof of the next proposition. If both
ν(Q−

ℓ ) and ν(Q
+
ℓ ) have a certain volume, then the strict concavity of I(R,γ) implies that the

sum of the perimeters of regions A− and A+ corresponding to Q−
ℓ and Q+

ℓ , respectively,
is larger than I(R,γ)(θ). This contradicts the assumed small deficit when the gap between
P(A) and P(A−)+P(A+) is sufficiently small. In order to construct such a decomposition
of A (A−

r̂ and A+
r̂ in the proof), we need an additional assumption θ ̸= 1/2.
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Proposition 7.4 (One of Q−
ℓ and Q+

ℓ is small) Assume θ ̸= 1/2. Then we have

min{ν(Q−
ℓ ), ν(Q

+
ℓ )} ≤ C9(θ)δ(A)

(1−ε)/(9−3ε),

provided that δ(A) is sufficiently small.

Proof. Put δ = δ(A) again in this proof. Let us first assume θ ∈ (0, 1/2) and consider
the decomposition of A,

A−
r := A ∩ {u ≤ r}, A+

r := A ∩ {u ≥ r},

for r ∈ (r1, r2) with

r1 :=
2

3
aθ +

1

3
a1−θ, r2 :=

1

3
aθ +

2

3
a1−θ.

Note that aθ < 0 < a1−θ = −aθ since θ < 1/2. Moreover, letting δ smaller if necessary,
we find from (7.3) that r1 ≥ r−mq

(θ) holds for q ∈ Qc ∩Qℓ.
Since |∇u| = 1 almost everywhere, we obtain from the coarea formula (see, e.g., [Cha])

that

m
(
A ∩ {r1 < u < r2}

)
=

∫
A∩{r1<u<r2}

|∇u| dm =

∫ r2

r1

|A ∩ u−1(r)| dr,

where | · | denotes the (n − 1)-dimensional measure induced from m (precisely, e−ΨHn−1

where Hn−1 is the (n− 1)-dimensional Hausdorff measure). For q ∈ Qc ∩Q−
ℓ , we deduce

from r1 ≥ r−mq
(θ) and (7.2) that

mq

(
Aq ∩ (−∞, r1]

)
= mq(Aq)−mq

(
Aq \ (−∞, r1]

)
≥ θ −

√
δ. (7.6)

Similarly mq(Aq ∩ [r2,∞)) ≥ θ −
√
δ holds for q ∈ Qc ∩ Q+

ℓ . Then it follows from
Theorem 2.10(i), Lemmas 7.1, 7.2 and Proposition 7.3 that

m(A−
r1
∪ A+

r2
) ≥

∫
Qc∩Q−

ℓ

mq

(
Aq ∩ (−∞, r1]

)
ν(dq) +

∫
Qc∩Q+

ℓ

mq

(
Aq ∩ [r2,∞)

)
ν(dq)

≥ (θ −
√
δ)ν
(
Qc ∩ (Q−

ℓ ∪Q+
ℓ )
)

≥ (θ −
√
δ)(1− 2

√
δ − δ(1−ε)/(9−3ε))

≥ θ − (1 + 2θ)
√
δ − θδ(1−ε)/(9−3ε)

≥ θ − δ(1−ε)/(9−3ε).

Therefore we obtain∫ r2

r1

|A ∩ u−1(r)| dr = θ −m(A−
r1
∪ A+

r2
) ≤ δ(1−ε)/(9−3ε),

and we can choose some r̂ ∈ (r1, r2) satisfying

|A ∩ u−1(r̂)| ≤ δ(1−ε)/(9−3ε)

r2 − r1
=

3δ(1−ε)/(9−3ε)

a1−θ − aθ
=

3δ(1−ε)/(9−3ε)

2|aθ|
.
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This yields that

P(A−
r̂ ) + P(A+

r̂ )− P(A) ≤ 2|A ∩ u−1(r̂)| ≤ 3δ(1−ε)/(9−3ε)

|aθ|
. (7.7)

In the first inequality, take a sequence {ϕi}i∈N of Lipschitz functions such that 0 ≤ ϕi ≤
χA, ϕi → χA in L1(m) and limi→∞

∫
M
|∇ϕi| dm = P(A) (recall (2.2) for the definition of

P(A)), and put

ρ+i (x) := min
{
i ·max{u(x)− r̂, 0}, 1

}
, ρ−i (x) := 1− ρ+i (x).

Then ρ±i ϕi → χA±
r̂
in L1(m) and

P(A−
r̂ ) + P(A+

r̂ ) ≤ lim inf
i→∞

∫
M

(
|∇(ρ−i ϕi)|+ |∇(ρ+i ϕi)|

)
dm

≤ lim
i→∞

∫
M

(ρ−i + ρ+i )|∇ϕi| dm+ lim inf
i→∞

∫
M

(
|∇ρ−i |+ |∇ρ+i |

)
ϕi dm

≤ P(A) + lim
i→∞

∫
A∩{r̂<u<r̂+i−1}

2i dm

= P(A) + 2|A ∩ u−1(r̂)|.

Now, it follows from Lemma 2.7 that I ′′
(R,γ) ≤ −I(R,γ)(θ)

−1 on (0, θ] (since θ < 1/2),
which implies

P(A−
r̂ ) ≥ I(R,γ)

(
m(A−

r̂ )
)
≥ m(A−

r̂ )

θ
I(R,γ)(θ) +

1

2I(R,γ)(θ)

(
1− m(A−

r̂ )

θ

)
m(A−

r̂ )

θ
θ2.

Concerning the second term in the RHS, on one hand, we observe from (7.6) that

m(A−
r̂ ) ≥ (θ −

√
δ)ν(Qc ∩Q−

ℓ ) ≥
θ

2
ν(Qc ∩Q−

ℓ ).

On the other hand, we similarly find

m(A−
r̂ ) = θ −m(A+

r̂ ) ≤ θ − θ

2
ν(Qc ∩Q+

ℓ ).

Therefore, setting V := min{ν(Qc ∩Q−
ℓ ), ν(Qc ∩Q+

ℓ )} ≤ 1/2, we obtain

P(A−
r̂ ) ≥

m(A−
r̂ )

θ
I(R,γ)(θ) +

1

2I(R,γ)(θ)

(
1− V

2

)
V

2
θ2.

We have a similar inequality for A+
r̂ in the same way. Summing up, we obtain

P(A−
r̂ ) + P(A+

r̂ ) ≥ I(R,γ)(θ) +
1

I(R,γ)(θ)

(
1− V

2

)
V

2
θ2 ≥ I(R,γ)(θ) + c(θ)V.

Combining this with (7.7) and I(R,γ)(θ) = P(A)− δ yields

3δ(1−ε)/(9−3ε)

|aθ|
≥ P(A−

r̂ ) + P(A+
r̂ )− P(A) ≥ c(θ)V − δ
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and hence, by Proposition 7.3,

min{ν(Q−
ℓ ), ν(Q

+
ℓ )} ≤ V + δ(1−ε)/(9−3ε)

≤ 1

c(θ)

(
3δ(1−ε)/(9−3ε)

|aθ|
+ δ

)
+ δ(1−ε)/(9−3ε)

≤ C(θ)δ(1−ε)/(9−3ε).

This completes the proof for θ < 1/2.
When θ > 1/2, the complement Ac of A satisfies P(Ac) = P(A) and m(Ac) = 1− θ <

1/2. Note also that I(R,γ)(θ) = I(R,γ)(1− θ) and r−mq
(θ) = r+mq

(1− θ), r+mq
(θ) = r−mq

(1− θ).
Hence we have, since E \ F = E ∩ F c = F c \ Ec,

Aq△ (−∞, r−mq
(θ)] = Acq△ (r−mq

(θ),∞) = Acq△ (r+mq
(1− θ),∞)

and similarly Aq△ [r+mq
(θ),∞) = Acq△ (−∞, r−mq

(1 − θ)). Therefore we can obtain the
claim for A by applying the above argument to Ac. 2

From the proof of Proposition 7.4, we find that C9(1−θ) = C9(θ) and limθ→1/2C9(θ) =
∞ (since a1/2 = 0). Hence the case of θ = 1/2 is not covered.

We finally prove our main theorem. We employ the sub-level and super-level sets of
the guiding function u instead of balls in [CMM].

Theorem 7.5 (Quantitative isoperimetry) Let (M, g,m) be a complete weighted Rie-
mannian manifold such that Ric∞ ≥ 1 and m(M) = 1. Fix θ ∈ (0, 1)\{1/2} and ε ∈ (0, 1),
take a Borel set A ⊂ M with m(A) = θ, and assume that P(A) ≤ I(R,γ)(θ) + δ holds for
sufficiently small δ > 0 (relative to θ and ε). Then, for the guiding function u associated
with A such that

∫
M
u dm = 0, we have

min
{
m
(
A△{u ≤ aθ}

)
,m
(
A△{u ≥ a1−θ}

)}
≤ C(θ, ε)δ(1−ε)/(9−3ε). (7.8)

Proof. We set again δ = δ(A). Thanks to Proposition 7.4, we first assume ν(Q+
ℓ ) ≤

C9(θ)δ
(1−ε)/(9−3ε). Then we deduce from Lemmas 7.1 and 7.2 that

ν(Q \Q−
ℓ ) = ν(Q \Qℓ) + ν

(
Qℓ \ (Q−

ℓ ∪Q+
ℓ )
)
+ ν(Q+

ℓ ) ≤ 2
√
δ + C9(θ)δ

(1−ε)/(9−3ε).

Therefore we obtain

m
(
A△{u ≤ aθ}

)
≤
∫
Q−

ℓ

mq

(
Aq△ (−∞, aθ]

)
ν(dq) + ν(Q \Q−

ℓ )

≤
∫
Q−

ℓ

mq

(
Aq△ (−∞, r−mq

(θ)]
)
ν(dq) +

∫
Q−

ℓ

mq

(
(−∞, aθ]△ (−∞, r−mq

(θ)]
)
ν(dq)

+ ν(Q \Q−
ℓ )

≤
∫
Q−

ℓ

mq

(
(−∞, aθ]△ (−∞, r−mq

(θ)]
)
ν(dq) + 3

√
δ + C9(θ)δ

(1−ε)/(9−3ε). (7.9)
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In order to estimate the first term, we recall from Proposition 7.3 that |aθ − r−mq
(θ)| ≤

C8(θ, ε)δ
(1−ε)/(9−3ε) for q ∈ Qc ∩Qℓ. This implies

mq

(
(−∞, aθ]△ (−∞, r−mq

(θ)]
)
= mq

((
min{aθ, r−mq

(θ)},max{aθ, r−mq
(θ)}

])
≤ C(θ, ε)δ(1−ε)/(9−3ε)

for q ∈ Qc ∩Qℓ. Substituting this into (7.9), we obtain

m
(
A△{u ≤ aθ}

)
≤ C(θ, ε)δ(1−ε)/(9−3ε) + ν(Q−

ℓ \Qc) + 3
√
δ + C9(θ)δ

(1−ε)/(9−3ε)

≤ C(θ, ε)δ(1−ε)/(9−3ε).

In the case of ν(Q−
ℓ ) ≤ C9(θ)δ

(1−ε)/(9−3ε), we similarly have m(A△{u ≥ a1−θ}) ≤
C(θ, ε)δ(1−ε)/(9−3ε). This completes the proof. 2

We conclude with several remarks and open problems related to Theorem 7.5.

Remark 7.6 (a) If we assert only the existence of ‘some’ 1-Lipschitz function u enjoy-
ing (7.8), then one can merely take u(x) := d(A, x) + aθ. Therefore the novelty of
Theorem 7.5 lies in the construction of u as the guiding function of the needle de-
composition. By construction the guiding function u seems closely related to the
Busemann function. When there is a straight line η : R −→ M (meaning that
d(η(s), η(t)) = |s− t| for all s, t ∈ R), the associated Busemann function b :M −→ R
is defined by

b(x) := lim
t→∞

{
t− d

(
x, η(t)

)}
.

By construction b is 1-Lipschitz and sometimes regarded as ‘a distance function from
infinity’. In Cheeger–Gromoll-type splitting theorems (under RicN ≥ 0, see also
(b) below), we show that b is totally geodesic and M is split into R × Σ, where
{t} × Σ = b−1(t) and ηx(t) := (t, x) is a straight line for every x ∈ Σ. This is
a similar phenomenon to the rigidity of the Bakry–Ledoux isoperimetric inequality
(under Ric∞ ≥ K > 0) in Theorem 2.8, where the guiding function plays a similar
role to the Busemann function (see [Ma2] for details). Going back to our quantitative
investigation, the guiding function u shares several properties with the Busemann
function: u is 1-Lipschitz, most needles are long in both directions (limδ→0 S = −∞
and limδ→0 T = ∞ in Proposition 3.2), and the direction of most needles are the same
(Proposition 7.4). When, for instance, some needle is a straight line, one may relate
the associated Busemann function with the guiding function and obtain (7.8) in terms
of that Busemann function. In this direction, moreover, one could expect an ‘almost
splitting theorem’ as metric measure spaces, namely (M, g,m) is close to the product
space (R, | · |,γ) × Y in some sense (even when there is no infinite needle). This is
an interesting and challenging problem, let us recall that Gromov’s precompactness
theorem ([Gr, §5.A]) does not apply under Ric∞ ≥ K > 0.

(b) In comparison with the Cheeger–Gromoll-type splitting theorem under Ric∞ ≥ 0 in
[Li, FLZ], we remark that the upper boundedness of the weight function Ψ was not
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assumed in Theorem 7.5. In the splitting theorem we claim that the space splits
off the real line endowed with the Lebesgue measure, and hence an upper bound of
Ψ is necessary to rule out Gaussian spaces (and hyperbolic spaces with very convex
weight functions). Compare this with the rigidity results under Ric∞ ≥ K > 0 in
Theorems 2.4, 2.8.

(c) Since the needle decomposition is available also for Finsler manifolds by [CM, Oh3],
one can prove the analogue of Theorem 7.5 for reversible Finsler manifolds verbatim.
In the non-reversible case, however, the needle decomposition does not provide the
sharp isoperimetric inequality and it is unclear if one can generalize Theorem 7.5. See
[Oh3] for more details on the non-reversible situation, and [Oh4] for a derivation of
the sharp Bakry–Ledoux isoperimetric inequality for non-reversible Finsler manifolds.

(d) In Theorem 7.5 we restrict ourselves to weighted Riemannian manifolds since the
needle decomposition is not yet known for metric measure spaces satisfying CD(1,∞)
or RCD(1,∞). We refer to [AM] for the Bakry–Ledoux isoperimetric inequality on
RCD(1,∞)-spaces.

(e) There are two open problems related to Theorem 7.5. The first one is the case of
θ = 1/2. The condition θ ̸= 1/2 was used only in Proposition 7.4, where we showed
that one of Q−

ℓ and Q+
ℓ has a small volume. If this step is established in some other

way, then all the other steps of the proof work and we can obtain Theorem 7.5 for
θ = 1/2.

(f) Another open problem is the optimal order of δ in (7.8). Our estimate δ(1−ε)/(9−3ε)

seems not optimal at all and, compared with the case of Gaussian spaces (recall
(1.1)), the optimal order is likely

√
δ. We remark that the optimal order is not known

also for CD(N − 1, N)-spaces studied in [CMM] (N ∈ (1,∞)), where they obtained
δN/(N

2+2N−1) depending on N (recall (1.2)).

(g) Inspired by [DF, CF], we expect that the push-forward measure u∗m is close to γ
in the Wasserstein distance W1 or W2 over R. We may make use of the Talagrand
inequality W2(u∗m,γ)

2 ≤ 2Entγ(u∗m) (recall Subsection 6.3).
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