Quantitative estimates for the Bakry-Ledoux isoperimetric inequality. II

Cong Hung MAI* Shin-ichi OHTA*, ${ }^{*}$

July 27, 2022

Abstract

Concerning quantitative isoperimetry for a weighted Riemannian manifold satisfying $\operatorname{Ric}_{\infty} \geq 1$, we give an L^{1}-estimate exhibiting that the push-forward of the reference measure by the guiding function (arising from the needle decomposition) is close to the Gaussian measure. We also show L^{p} - and W_{2}-estimates in the 1dimensional case.

1 Introduction

This short article is devoted to several further applications of the detailed estimates in [MO] to quantitative isoperimetry. In [MO], on a weighted Riemannian manifold (M, g, \mathfrak{m}) (with $\mathfrak{m}=\mathrm{e}^{-\Psi}$ vol $_{g}$) satisfying $\mathfrak{m}(M)=1$ and $\operatorname{Ric}_{\infty} \geq 1$, we investigated the stability of the Bakry-Ledoux isoperimetric inequality [BL]:

$$
\begin{equation*}
\mathrm{P}(A) \geq \mathcal{I}_{(\mathbb{R}, \gamma)}(\mathfrak{m}(A)) \tag{1.1}
\end{equation*}
$$

for any Borel set $A \subset M$, where $\mathrm{P}(A)$ is the perimeter of $A, \gamma(d x)=(2 \pi)^{-1 / 2} \mathrm{e}^{-x^{2} / 2} d x$ is the Gaussian measure on \mathbb{R}, and $\mathcal{I}_{(\mathbb{R}, \gamma)}$ is its isoperimetric profile written as

$$
\begin{equation*}
\mathcal{I}_{(\mathbb{R}, \gamma)}(\theta)=\frac{\mathrm{e}^{-a_{\theta}^{2} / 2}}{\sqrt{2 \pi}}, \quad \theta=\gamma\left(\left(-\infty, a_{\theta}\right]\right) \tag{1.2}
\end{equation*}
$$

It is known by [Mo, Theorem 18.7] (see also [Ma, §3]) that equality holds in (1.1) for some A with $\theta=\mathfrak{m}(A) \in(0,1)$ if and only if (M, g, \mathfrak{m}) is isometric to the product of $(\mathbb{R},|\cdot|, \gamma)$ and a weighted Riemannian manifold $\left(\Sigma, g_{\Sigma}, \mathfrak{m}_{\Sigma}\right)$ of $\operatorname{Ric}_{\infty} \geq 1$. Moreover, A is necessarily of the form $\left(-\infty, a_{\theta}\right] \times \Sigma$ or $\left[-a_{\theta}, \infty\right) \times \Sigma$ (so-called a half-space). Then, the stability result [MO, Theorem 7.5] asserts that, if equality in (1.1) nearly holds, then A is close to a kind of half-space in the sense that the symmetric difference between them has a small volume.

[^0]The proof as well as the formulation of [MO, Theorem 7.5] are based on the needle decomposition paradigm (also called the localization), which was established by Klartag [Kl] for Riemannian manifolds and has provided a significant contribution specifically in the study of isoperimetric inequalities (we refer to [CM] for a generalization to metric measure spaces satisfying the curvature-dimension condition, and to [CMM] for a stability result). The half-space we mentioned above is in fact a sub-level or super-level set of the guiding function arising in the needle decomposition (see Section 3 and [MO] for more details). The needle decomposition enables us to decompose a global inequality on M into the corresponding 1-dimensional inequalities on minimal geodesics in M (called needles or transport rays). Therefore, a more detailed 1-dimensional analysis on needles will furnish a better estimate on M.

The 1-dimensional analysis in [MO] is concentrated in Proposition 3.2 in it (restated in Proposition 2.1 below), which gives a very detailed estimate on the difference from the Gaussian measure $\boldsymbol{\gamma}$. In this article, as an application of the analysis developed in [MO], we show an L^{1}-bound between γ and the push-forward measure $u_{*} \mathfrak{m}$ of \mathfrak{m} by the guiding function u :

$$
\left\|\rho \cdot \mathrm{e}^{\psi_{\mathrm{g}}}-1\right\|_{L^{1}(\gamma)} \leq C(\theta, \varepsilon) \delta^{(1-\varepsilon) /(9-3 \varepsilon)},
$$

where $u_{*} \mathfrak{m}=\rho d x$ and $\gamma=\mathrm{e}^{-\boldsymbol{\psi}_{\mathfrak{g}}} d x$ (see Theorem 3.1 for the precise statement). In the 1-dimensional case (on intervals), we also prove an L^{p}-bound with the improved (and sharp) order $\delta^{1 / p}$ (Proposition 2.2; see Example 2.3 for the sharpness) and an estimate of the L^{2}-Wasserstein distance W_{2} (Proposition 2.4). The use of L^{p} and W_{2} (instead of the volume of the symmetric difference) is inspired by stability results for the Poincaré and \log-Sobolev inequalities (e.g., [BF, BGRS, CF, IK, IM]). We refer to Remark 3.2 for some further related works and open problems.
Acknowledgements. We are grateful to Emanuel Indrei, whose question on the L^{p}-estimate led us to write this paper. CHM was supported by Grant-in-Aid for JSPS Fellows 20J11328. SO was supported in part by JSPS Grant-in-Aid for Scientific Research (KAKENHI) 19H01786.

2 Quantitative estimates on intervals

We first consider the 1-dimensional case (on intervals) and establish quantitative stability estimates in terms of the L^{p}-norm and the W_{2}-distance. The L^{1}-bound will be instrumental to study the Riemannian case in the next section.

2.1 An L^{p}-estimate

Throughout this section, let $I \subset \mathbb{R}$ be an open interval equipped with a probability measure $\mathfrak{m}=\mathrm{e}^{-\psi} d x$ such that ψ is 1 -convex in the sense that

$$
\psi((1-t) x+t y) \leq(1-t) \psi(x)+t \psi(y)-\frac{1}{2}(1-t) t|x-y|^{2}
$$

for all $x, y \in I$ and $t \in(0,1)$. This means that $(I,|\cdot|, \mathfrak{m})$ satisfies $\operatorname{Ric}_{\infty} \geq 1$ (or the curvature-dimension condition $\mathrm{CD}(1, \infty)$), and (1.1) holds. The 1-dimensional isoperimetric inequality is well investigated in convex analysis. An important fact due to Bobkov
[Bo, Proposition 2.1] is that an isoperimetric minimizer can be always taken as a halfspace of the form $(-\infty, a] \cap I$ or $[b, \infty) \cap I$. Now we restate [MO, Proposition 3.2], which is the source of all the estimates. Recall that $\gamma=\mathrm{e}^{-\psi_{\mathrm{g}}} d x$ is the Gaussian measure.

Proposition 2.1 ([MO]) Fix $\theta \in(0,1)$ and suppose that

$$
\begin{equation*}
\mathfrak{m}\left(\left(-\infty, a_{\theta}\right] \cap I\right)=\theta \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{e}^{-\psi\left(a_{\theta}\right)} \leq \mathrm{e}^{-\psi_{\mathrm{g}}\left(a_{\theta}\right)}+\delta \tag{2.2}
\end{equation*}
$$

hold for sufficiently small $\delta>0$ (relative to θ). Then we have

$$
\begin{equation*}
\psi(x)-\boldsymbol{\psi}_{\mathbf{g}}(x) \geq\left(\psi_{+}^{\prime}\left(a_{\theta}\right)-a_{\theta}\right)\left(x-a_{\theta}\right)-C(\theta) \delta \tag{2.3}
\end{equation*}
$$

for every $x \in I$, and

$$
\begin{equation*}
\psi(x)-\boldsymbol{\psi}_{\mathrm{g}}(x) \leq\left(\psi_{+}^{\prime}\left(a_{\theta}\right)-a_{\theta}\right)\left(x-a_{\theta}\right)+C(\theta) \sqrt{\delta} \tag{2.4}
\end{equation*}
$$

for every $x \in[S, T] \subset I$ such that $\lim _{\delta \rightarrow 0} S=-\infty$ and $\lim _{\delta \rightarrow 0} T=\infty$, where ψ_{+}^{\prime} denotes the right derivative of ψ and $C(\theta)$ is a positive constant depending only on θ.

The first condition (2.1) means that I is "centered" in comparison with γ which satisfies $\gamma\left(\left(-\infty, a_{\theta}\right]\right)=\theta$ (as in (1.2)). Note also that $\mathrm{e}^{-\psi\left(a_{\theta}\right)} \geq \mathrm{e}^{-\boldsymbol{\psi}_{\mathrm{g}}\left(a_{\theta}\right)}$ holds by the isoperimetric inequality (1.1) (since $\left.\mathrm{P}\left(\left(-\infty, a_{\theta}\right] \cap I\right)=\mathrm{e}^{-\psi\left(a_{\theta}\right)}\right)$, and then (2.2) tells that the deficit of $\left(-\infty, a_{\theta}\right] \cap I$ in the isoperimetric inequality is less than or equal to δ.

Besides the above proposition, we also need the following estimate in its proof (see [MO, (3.9)]):

$$
\begin{equation*}
\limsup _{\delta \rightarrow 0} \frac{\left|\psi_{+}^{\prime}\left(a_{\theta}\right)-a_{\theta}\right|}{\delta} \leq C(\theta) . \tag{2.5}
\end{equation*}
$$

The lower bound (2.3) enables us to obtain the following L^{p}-estimate between $\boldsymbol{\gamma}=\mathrm{e}^{-\boldsymbol{\psi}_{\mathrm{g}}} d x$ and $\mathfrak{m}=\left.\mathrm{e}^{\psi_{\mathfrak{g}}-\psi} \gamma\right|_{I}$. (We remark that the upper bound (2.4) will not be used.)

Proposition 2.2 (An L^{p}-estimate on I) Assume (2.1) and (2.2). Then we have

$$
\left\|\mathrm{e}^{\psi_{\mathbf{g}}-\psi}-1\right\|_{L^{p}(\gamma)} \leq C(p, \theta) \delta^{1 / p}
$$

for all $p \in[1, \infty)$ and sufficiently small $\delta>0$ (relative to θ and p), where we set $\mathrm{e}^{\psi_{\mathrm{g}}-\psi}:=0$ on $\mathbb{R} \backslash I$.

Proof. In this proof, we denote by C a positive constant depending on θ, and put $a:=a_{\theta}$ for brevity. Since $\mathrm{e}^{\psi_{\mathfrak{g}}-\psi}-1 \geq-1$ and $\mathfrak{m}(I)=\gamma(\mathbb{R})=1$, we find

$$
\begin{aligned}
\left\|\mathrm{e}^{\psi_{g}-\psi}-1\right\|_{L^{p}(\gamma)}^{p} & =\int_{I}\left[\mathrm{e}^{\psi_{g}-\psi}-1\right]_{+}^{p} d \boldsymbol{\gamma}+\int_{-\infty}^{\infty}\left[1-\mathrm{e}^{\psi_{g}-\psi}\right]_{+}^{p} d \boldsymbol{\gamma} \\
& \leq \int_{I}\left[\mathrm{e}^{\psi_{g}-\psi}-1\right]_{+}^{p} d \boldsymbol{\gamma}+\int_{-\infty}^{\infty}\left[1-\mathrm{e}^{\psi_{g}-\psi}\right]_{+} d \boldsymbol{\gamma} \\
& =\int_{I}\left[\mathrm{e}^{\psi_{g}-\psi}-1\right]_{+}^{p} d \boldsymbol{\gamma}+\int_{I}\left[\mathrm{e}^{\psi_{g}-\psi}-1\right]_{+} d \boldsymbol{\gamma}
\end{aligned}
$$

where $[r]_{+}:=\max \{r, 0\}$. Thus, we need to estimate only $\left[\mathrm{e}^{\boldsymbol{\psi}_{g}-\psi}-1\right]_{+}$. Observe that

$$
\left[\mathrm{e}^{\left(\psi_{\mathrm{g}}-\psi\right)(x)}-1\right]_{+}^{p} \leq\left(\mathrm{e}^{C \delta|x-a|+C \delta}-1\right)^{p} \leq \mathrm{e}^{p(C \delta|x-a|+C \delta)}-1
$$

from (2.3) and (2.5), and hence

$$
\begin{aligned}
\int_{I}\left[\mathrm{e}^{\psi_{g}-\psi}-1\right]_{+}^{p} d \gamma & \leq \int_{-\infty}^{\infty}\left(\mathrm{e}^{p(C \delta|x-a|+C \delta)}-1\right) \gamma(d x) \\
& =\frac{\mathrm{e}^{p C \delta}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left(-\frac{x^{2}}{2}+p C \delta|x-a|\right) d x-1 .
\end{aligned}
$$

Dividing the integral into $(-\infty, a]$ and $[a, \infty)$, we continue the calculation as

$$
\begin{aligned}
& \int_{-\infty}^{a} \exp \left(-\frac{x^{2}}{2}-p C \delta(x-a)\right) d x+\int_{a}^{\infty} \exp \left(-\frac{x^{2}}{2}+p C \delta(x-a)\right) d x \\
& =\int_{-\infty}^{a} \exp \left(-\frac{(x+p C \delta)^{2}}{2}+\frac{(p C \delta)^{2}}{2}+p C a \delta\right) d x \\
& +\int_{a}^{\infty} \exp \left(-\frac{(x-p C \delta)^{2}}{2}+\frac{(p C \delta)^{2}}{2}-p C a \delta\right) d x \\
& \leq \exp \left(\frac{(p C \delta)^{2}}{2}+p C a \delta\right)\left\{\int_{-\infty}^{a} \mathrm{e}^{-x^{2} / 2} d x+p C \delta\right\} \\
& +\exp \left(\frac{(p C \delta)^{2}}{2}-p C a \delta\right)\left\{\int_{a}^{\infty} \mathrm{e}^{-x^{2} / 2} d x+p C \delta\right\} \\
& \leq \exp \left(\frac{(p C \delta)^{2}}{2}+p C|a| \delta\right)(\sqrt{2 \pi}+2 p C \delta) .
\end{aligned}
$$

Therefore, we obtain

$$
\begin{aligned}
\int_{I}\left[\mathrm{e}^{\psi_{\mathbf{g}}-\psi}-1\right]_{+}^{p} d \gamma & \leq \exp \left(p C \delta+p C|a| \delta+\frac{(p C \delta)^{2}}{2}\right)\left(1+\frac{2 p C \delta}{\sqrt{2 \pi}}\right)-1 \\
& \leq C(p, \theta) \delta
\end{aligned}
$$

This completes the proof.
We remark that, since

$$
\left\{\exp \left(p C \delta+\frac{(p C \delta)^{2}}{2}\right)-1\right\}^{1 / p} \geq \exp \left(C \delta+\frac{p(C \delta)^{2}}{2}\right)-1
$$

the constant $C(p, \theta)$ given by the above proof necessarily depends on p. The order $\delta^{1 / p}$ in Proposition 2.2 may be compared with L^{p}-estimates in [IK] for the log-Sobolev inequality on Gaussian spaces. One can see that the order $\delta^{1 / p}$ is optimal from the following example.

Example 2.3 Let $I=(-D, D)$ and $\mathfrak{m}=\left.(1+\delta) \cdot \gamma\right|_{I}$, where $\delta>0$ is given by $\gamma(I)=$ $(1+\delta)^{-1}$. Then, at $\theta=1 / 2$, we have $a_{1 / 2}=0, \mathfrak{m}((-\infty, 0] \cap I)=1 / 2$,

$$
\mathrm{e}^{-\psi(0)}-\mathrm{e}^{-\psi_{\mathbf{g}}(0)}=\frac{\delta}{\sqrt{2 \pi}}
$$

and

$$
\left\|\mathrm{e}^{\psi_{\mathrm{g}}-\psi}-1\right\|_{L^{p}(\gamma)}=\left(\frac{\delta^{p}}{1+\delta}+\frac{\delta}{1+\delta}\right)^{1 / p}=\left(\frac{1+\delta^{p-1}}{1+\delta}\right)^{1 / p} \delta^{1 / p}
$$

2.2 A W_{2}-estimate

From Proposition 2.1, one can also derive an upper bound of the L^{2}-Wasserstein distance between \mathfrak{m} and $\boldsymbol{\gamma}$. We refer to [Vi] for the basics of optimal transport theory. What we need is only the following Talagrand inequality with $\boldsymbol{\gamma}$ as the base measure (see [Ta], [Vi, Theorem 22.14]):

$$
\begin{equation*}
W_{2}^{2}(\mathfrak{m}, \gamma) \leq 2 \operatorname{Ent}_{\gamma}(\mathfrak{m})=2 \int_{I}\left(\boldsymbol{\psi}_{\mathrm{g}}-\psi\right) \mathrm{e}^{\psi_{\mathfrak{g}}-\psi} d \boldsymbol{\gamma} \tag{2.6}
\end{equation*}
$$

where $\operatorname{Ent}_{\boldsymbol{\gamma}}(\mathfrak{m})$ is the relative entropy of \mathfrak{m} with respect to $\boldsymbol{\gamma}$. We remark that both $\boldsymbol{\gamma}$ and \mathfrak{m} have finite second moment (by the 1 -convexity of ψ).

Proposition 2.4 (A W_{2}-estimate on I) Assume (2.1) and (2.2). Then we have

$$
W_{2}(\mathfrak{m}, \gamma) \leq C(\theta) \sqrt{\delta}
$$

for sufficiently small $\delta>0$ (relative to θ).
Proof. We again denote a_{θ} by a, and C will be a positive constant depending only on θ. Similarly to the proof of Proposition 2.2, we observe from (2.3) and (2.5) that

$$
\begin{aligned}
\int_{I}\left(\boldsymbol{\psi}_{\mathrm{g}}-\psi\right) \mathrm{e}^{\boldsymbol{\psi}_{\mathrm{g}}-\psi} d \boldsymbol{\gamma} & \leq \int_{-\infty}^{\infty}(C \delta|x-a|+C \delta) \mathrm{e}^{C \delta|x-a|+C \delta} \gamma(d x) \\
& =\frac{C \delta}{\sqrt{2 \pi}} \mathrm{e}^{C \delta} \int_{-\infty}^{\infty}(|x-a|+1) \exp \left(-\frac{x^{2}}{2}+C \delta|x-a|\right) d x \\
& \leq C \delta\left\{\int_{-\infty}^{\infty}|x-a| \exp \left(-\frac{x^{2}}{2}+C \delta|x-a|\right) d x+C\right\}
\end{aligned}
$$

where we used

$$
\int_{-\infty}^{\infty} \exp \left(-\frac{x^{2}}{2}+C \delta|x-a|\right) d x \leq C
$$

from the proof of Proposition 2.2. Then we have

$$
\begin{aligned}
& \int_{-\infty}^{a}(a-x) \exp \left(-\frac{x^{2}}{2}-C \delta(x-a)\right) d x \\
& =\exp \left(C a \delta+\frac{(C \delta)^{2}}{2}\right) \int_{-\infty}^{a}(a-x) \exp \left(-\frac{(x+C \delta)^{2}}{2}\right) d x \\
& \leq(1+C \delta)\left\{(a+C \delta) \int_{-\infty}^{a} \exp \left(-\frac{(x+C \delta)^{2}}{2}\right) d x+\left[\exp \left(-\frac{(x+C \delta)^{2}}{2}\right)\right]_{-\infty}^{a}\right\} \\
& \leq(1+C \delta)\left\{a \int_{-\infty}^{a} \mathrm{e}^{-x^{2} / 2} d x+C \delta+\exp \left(-\frac{(a+C \delta)^{2}}{2}\right)\right\} \\
& \leq a \int_{-\infty}^{a} \mathrm{e}^{-x^{2} / 2} d x+\mathrm{e}^{-a^{2} / 2}+C \delta
\end{aligned}
$$

We similarly find

$$
\begin{aligned}
& \int_{a}^{\infty}(x-a) \exp \left(-\frac{x^{2}}{2}+C \delta(x-a)\right) d x \\
& =\exp \left(-C a \delta+\frac{(C \delta)^{2}}{2}\right) \int_{a}^{\infty}(x-a) \exp \left(-\frac{(x-C \delta)^{2}}{2}\right) d x \\
& \leq(1+C \delta)\left\{(-a+C \delta) \int_{a}^{\infty} \exp \left(-\frac{(x-C \delta)^{2}}{2}\right) d x-\left[\exp \left(-\frac{(x-C \delta)^{2}}{2}\right)\right]_{a}^{\infty}\right\} \\
& \leq(1+C \delta)\left\{-a \int_{a}^{\infty} \mathrm{e}^{-x^{2} / 2} d x+C \delta+\exp \left(-\frac{(a-C \delta)^{2}}{2}\right)\right\} \\
& \leq-a \int_{a}^{\infty} \mathrm{e}^{-x^{2} / 2} d x+\mathrm{e}^{-a^{2} / 2}+C \delta
\end{aligned}
$$

Therefore, together with the Talagrand inequality (2.6), we obtain the desired estimate $W_{2}^{2}(\mathfrak{m}, \gamma) \leq C \delta$.

We do not know whether the order $\sqrt{\delta}$ in Proposition 2.4 is optimal. Since $W_{p}(\mathfrak{m}, \gamma) \leq$ $W_{2}(\mathfrak{m}, \gamma)$ for any $p \in[1,2)$ by the Hölder inequality, we have, in particular, a bound of the L^{1}-Wasserstein distance:

$$
W_{1}(\mathfrak{m}, \gamma) \leq C(\theta) \sqrt{\delta}
$$

One can alternatively infer this estimate from the Kantorovich-Rubinstein duality (see [Vi]); in fact,

$$
W_{1}(\mathfrak{m}, \boldsymbol{\gamma}) \leq \int_{-\infty}^{\infty}|x-a| \cdot\left|\mathrm{e}^{\left(\boldsymbol{\psi}_{\mathfrak{g}}-\psi\right)(x)}-1\right| \boldsymbol{\gamma}(d x) \leq C(\theta) \sqrt{\delta}
$$

We also remark that, when we take a detour via the reverse Poincaré inequality in [MO, Proposition 5.1] and the stability result [CF, Theorem 1.2], we arrive at a weaker estimate

$$
W_{1}(\mathfrak{m}, \boldsymbol{\gamma}) \leq C(\theta, \varepsilon) \delta^{(1-\varepsilon) / 4}
$$

We refer to [CMS, FGS] for stability results for the Poincaré inequality (equivalently, the spectral gap) on $\operatorname{CD}(N-1, N)$-spaces and $\operatorname{RCD}(N-1, N)$-spaces with $N \in(1, \infty)$.

3 An L^{1}-estimate on weighted Riemannian manifolds

Next, we consider a weighted Riemannian manifold, namely a connected, complete \mathcal{C}^{∞} Riemannian manifold (M, g) of dimension $n \geq 2$ equipped with a probability measure $\mathfrak{m}=\mathrm{e}^{-\Psi} \operatorname{vol}_{g}$, where $\Psi \in \mathcal{C}^{\infty}(M)$ and vol_{g} is the Riemannian volume measure. Assuming $\operatorname{Ric}_{\infty} \geq 1$, we have the Bakry-Ledoux isoperimetric inequality (1.1).

We begin with an outline of the proof of (1.1) via the needle decomposition (see [K1]). Given a Borel set $A \subset M$ with $\theta=\mathfrak{m}(A) \in(0,1)$, we employ the function $f:=\chi_{A}-\theta\left(\chi_{A}\right.$ denotes the characteristic function of $\left.A\right)$ and an associated 1-Lipschitz function $u: M \longrightarrow \mathbb{R}$ attaining the maximum of $\int_{M} f \phi d \mathfrak{m}$ among all 1-Lipschitz functions ϕ. Then, analyzing the behavior of u, one can build a partition $\left\{X_{q}\right\}_{q \in Q}$ of M consisting
of (the image of) minimal geodesics (called needles), and Q is endowed with a probability measure ν. For ν-almost every $q \in Q,\left.u\right|_{X_{q}}$ has slope $1(|u(x)-u(y)|=d(x, y)$ for all $\left.x, y \in X_{q}\right)$ and X_{q} is equipped with a probability measure \mathfrak{m}_{q} such that $\mathfrak{m}_{q}\left(A \cap X_{q}\right)=\theta$ and $\left(X_{q},|\cdot|, \mathfrak{m}_{q}\right)$ satisfies $\operatorname{Ric}_{\infty} \geq 1$. Moreover, we have

$$
\begin{equation*}
\int_{M} h d \mathfrak{m}=\int_{Q}\left(\int_{X_{q}} h d \mathfrak{m}_{q}\right) \nu(d q) \tag{3.1}
\end{equation*}
$$

for all $h \in L^{1}(\mathfrak{m})$. Then, (1.1) for A is obtained by integrating its 1-dimensional counterparts for $A \cap X_{q}$ with respect to ν.

The 1-Lipschitz function u is called the guiding function. We can assume $\int_{M} u d \mathfrak{m}=0$ without loss of generality, and X_{q} will be identified with an interval via u (in other words, X_{q} is parametrized by u). Denote $\mathfrak{m}_{q}=\mathrm{e}^{-\sigma_{q}} d x$ and $\mu:=u_{*} \mathfrak{m}=\rho d x$. Note that supp μ is an interval and may not be the whole \mathbb{R}. Through the parametrization of X_{q} by u, we deduce from (3.1) that

$$
\begin{equation*}
\rho(x)=\int_{Q} \mathrm{e}^{-\sigma_{q}(x)} \nu(d q), \tag{3.2}
\end{equation*}
$$

where we set $\mathrm{e}^{-\sigma_{q}(x)}:=0$ if $x \notin X_{q}$.
Theorem 3.1 (An L^{1}-estimate on M) Assume $\operatorname{Ric}_{\infty} \geq 1$ and fix $\varepsilon \in(0,1)$. If $\mathrm{P}(A) \leq$ $\mathcal{I}_{(\mathbb{R}, \gamma)}(\theta)+\delta$ holds for some Borel set $A \subset M$ with $\theta=\mathfrak{m}(A) \in(0,1)$ and sufficiently small δ (relative to θ and ε), then $u_{*} \mathfrak{m}=\rho d x$ satisfies

$$
\left\|\rho \cdot \mathrm{e}^{\psi_{g}}-1\right\|_{L^{1}(\gamma)} \leq C(\theta, \varepsilon) \delta^{(1-\varepsilon) /(9-3 \varepsilon)}
$$

where u is the guiding function associated with A such that $\int_{M} u d \mathfrak{m}=0$.
Proof. First of all, by (3.2) and Fubini's theorem, we have

$$
\left\|\rho \cdot \mathrm{e}^{\psi_{\mathfrak{g}}}-1\right\|_{L^{1}(\gamma)}=\int_{-\infty}^{\infty}\left|\int_{Q}\left(\mathrm{e}^{\psi_{\mathfrak{g}}-\sigma_{q}}-1\right) \nu(d q)\right| d \boldsymbol{\gamma} \leq \int_{Q}\left\|\mathrm{e}^{\psi_{\mathfrak{g}}-\sigma_{q}}-1\right\|_{L^{1}(\gamma)} \nu(d q)
$$

We shall estimate $\left\|\mathrm{e}^{\psi_{\mathrm{g}}-\sigma_{q}}-1\right\|_{L^{1}(\gamma)}$ by dividing into "good" needles and "bad" needles. Note that $\nu\left(Q_{\ell}\right) \geq 1-\sqrt{\delta}$ holds for

$$
Q_{\ell}:=\left\{q \in Q \mid \mathfrak{m}_{q}\left(A \cap X_{q}\right)=\theta, \mathrm{P}\left(A \cap X_{q}\right)<\mathcal{I}_{(\mathbb{R}, \gamma)}(\theta)+\sqrt{\delta}\right\}
$$

by [MO, Lemma 7.1], where $\mathrm{P}\left(A \cap X_{q}\right)$ denotes the perimeter of $A \cap X_{q}$ in $\left(X_{q},|\cdot|, \mathfrak{m}_{q}\right)$. Moreover, it follows from [MO, Proposition 7.3] that there exists a measurable set $Q_{c} \subset Q$ such that $\nu\left(Q_{c}\right) \geq 1-\delta^{(1-\varepsilon) /(9-3 \varepsilon)}$ and

$$
\max \left\{\left|a_{\theta}-r_{q}^{-}\right|,\left|a_{1-\theta}-r_{q}^{+}\right|\right\} \leq C(\theta, \varepsilon) \delta^{(1-\varepsilon) /(9-3 \varepsilon)}
$$

for all $q \in Q_{c} \cap Q_{\ell}$, where $\mathfrak{m}_{q}\left(\left(-\infty, r_{q}^{-}\right] \cap X_{q}\right)=\mathfrak{m}_{q}\left(\left[r_{q}^{+}, \infty\right) \cap X_{q}\right)=\theta$ (recall that $\left.\gamma\left(\left(-\infty, a_{\theta}\right]\right)=\gamma\left(\left[a_{1-\theta}, \infty\right)\right)=\theta\right)$.

On the one hand, for $q \in Q_{c} \cap Q_{\ell}$, note that either $\mathrm{P}\left(A \cap X_{q}\right) \geq \mathrm{e}^{-\sigma_{q}\left(r_{q}^{-}\right)}$or $\mathrm{P}\left(A \cap X_{q}\right) \geq$ $\mathrm{e}^{-\sigma_{q}\left(r_{q}^{+}\right)}$holds by [Bo, Proposition 2.1] (recall Subsection 2.1). When $\mathrm{P}\left(A \cap X_{q}\right) \geq \mathrm{e}^{-\sigma_{q}\left(r_{q}^{-}\right)}$, we put

$$
\boldsymbol{\gamma}_{q}(d x)=\mathrm{e}^{-\boldsymbol{\psi}_{\mathbf{g}, q}(x)} d x:=\mathrm{e}^{-\boldsymbol{\psi}_{\mathbf{g}}\left(x+a_{\theta}-r_{q}^{-}\right)} d x
$$

which is a translation of $\boldsymbol{\gamma}$ satisfying $\gamma_{q}\left(\left(-\infty, r_{q}^{-}\right]\right)=\theta$. Then, it follows from Proposition 2.2 (with $\left.\mathrm{e}^{-\sigma_{q}\left(r_{q}^{-}\right)} \leq \mathrm{P}\left(A \cap X_{q}\right) \leq \mathrm{e}^{-\boldsymbol{\psi}_{\mathbf{g}, q}\left(r_{q}^{-}\right)}+\sqrt{\delta}\right)$ and Cavalieri's principle that

$$
\begin{aligned}
\left\|\mathrm{e}^{\boldsymbol{\psi}_{\mathbf{g}}-\sigma_{q}}-1\right\|_{L^{1}(\gamma)} & \leq\left\|\mathrm{e}^{\psi_{\mathbf{g}, q}-\sigma_{q}}-1\right\|_{L^{1}\left(\gamma_{q}\right)}+\left\|\mathrm{e}^{-\boldsymbol{\psi}_{\mathbf{g}, q}}-\mathrm{e}^{-\boldsymbol{\psi}_{\mathrm{g}}}\right\|_{L^{1}(d x)} \\
& \leq C(\theta) \sqrt{\delta}+2 \frac{\left|a_{\theta}-r_{q}^{-}\right|}{\sqrt{2 \pi}} \\
& \leq C(\theta, \varepsilon) \delta^{(1-\varepsilon) /(9-3 \varepsilon)} .
\end{aligned}
$$

We have the same bound also in the case where $\mathrm{P}\left(A \cap X_{q}\right) \geq \mathrm{e}^{-\sigma_{q}\left(r_{q}^{+}\right)}$by reversing I in Proposition 2.2.

On the other hand, for $q \in Q \backslash\left(Q_{c} \cap Q_{\ell}\right)$, we have the trivial bound

$$
\left\|\mathrm{e}^{\boldsymbol{\psi}_{\mathrm{g}}-\sigma_{q}}-1\right\|_{L^{1}(\gamma)} \leq\left\|\mathrm{e}^{\boldsymbol{\psi}_{\mathrm{g}}-\sigma_{q}}\right\|_{L^{1}(\gamma)}+\|1\|_{L^{1}(\gamma)}=2 .
$$

Therefore, we obtain

$$
\left\|\rho \cdot \mathrm{e}^{\psi_{\mathrm{g}}}-1\right\|_{L^{1}(\gamma)} \leq C(\theta, \varepsilon) \delta^{(1-\varepsilon) /(9-3 \varepsilon)}+2\left(1-\nu\left(Q_{c} \cap Q_{\ell}\right)\right) \leq C(\theta, \varepsilon) \delta^{(1-\varepsilon) /(9-3 \varepsilon)} .
$$

Note that $q \in Q_{c} \cap Q_{\ell}$ is well-behaved and can be handled by the 1-dimensional analysis, whereas one has a priori no information of $q \in Q \backslash\left(Q_{c} \cap Q_{\ell}\right)$. This could be a common problem for stability estimates via the needle decomposition (see, e.g., [MO, Theorem 6.2] showing a reverse Poincaré inequality on a manifold from a sharper estimate on intervals). In particular, it may be difficult to achieve the same order δ as in the 1 -dimensional case (Proposition 2.2) by the needle decomposition. In the L^{p}-case, it is unclear (to the authors) with what we can replace the trivial bound $\left\|\mathrm{e}^{\psi_{g}-\sigma_{q}}-1\right\|_{L^{1}(\gamma)} \leq 2$. For the Wasserstein distance W_{2} or W_{1}, we have the same problem on the control of $q \in Q \backslash\left(Q_{c} \cap Q_{\ell}\right)$.

Remark 3.2 (Further related works and open problems) (a) Theorem 3.1 holds true also for reversible Finsler manifolds by the same proof (see [MO, Remark 7.6(c)] and [Oh1, Oh2]).
(b) As we mentioned in the introduction, our L^{p} - and W_{2}-estimates are inspired by the quantitative stability for functional inequalities. We refer to [BGRS, FIL, IK, IM] for the study of the log-Sobolev inequality on the Gaussian space:

$$
\operatorname{Ent}_{\boldsymbol{\gamma}}(f \boldsymbol{\gamma}) \leq \frac{1}{2} \mathrm{I}_{\boldsymbol{\gamma}}(f \boldsymbol{\gamma})=\frac{1}{2} \int_{\mathbb{R}^{n}} \frac{\|\nabla f\|^{2}}{f} d \boldsymbol{\gamma},
$$

where $\mathrm{I}_{\boldsymbol{\gamma}}(f \gamma)$ is the Fisher information of a probability measure $f \boldsymbol{\gamma}$ with respect to $\boldsymbol{\gamma}$. They investigated the difference between $\boldsymbol{\gamma}$ and $f \boldsymbol{\gamma}$, in terms of the additive deficit
$\delta(f)=\mathrm{I}_{\gamma}(f \boldsymbol{\gamma}) / 2-\operatorname{Ent}_{\gamma}(f \boldsymbol{\gamma})$. For instance, W_{2}-bounds (under certain convexity and concavity conditions on f) were given in [BGRS, IM], and L^{1} - and L^{p}-bounds can be found in [IK]. In the setting of weighted Riemannian manifolds satisfying $\operatorname{Ric}_{\infty} \geq 1$ (as in Theorem 3.1), we have only the rigidity (see [OT]) and the stability is an open problem.
(c) We have seen in $[\mathrm{MO}, \S 6]$ that the reverse forms of the Poincaré and log-Sobolev inequalities can be derived from the isoperimetric deficit. The reverse Poincaré inequality then implies a W_{1}-estimate for the push-forward by an eigenfunction thanks to [BF, Theorem 1.3] (see also [FGS]). We also expect a direct W_{1-} or W_{2}-estimate for the push-forward by the guiding function, which remains an open question (see [MO, Remark 7.6(g)]).
(d) Another direction of research is a generalization to negative effective dimension, i.e., $\operatorname{Ric}_{N} \geq K>0$ with $N<-1$. We have established rigidity in the isoperimetric inequality in [Ma], thereby it is natural to consider quantitative isoperimetry, though it seems to require longer calculations.

References

[BL] D. Bakry and M. Ledoux, Lévy-Gromov's isoperimetric inequality for an infinitedimensional diffusion generator. Invent. Math. 123 (1996), 259-281.
[BF] J. Bertrand and M. Fathi, Stability of eigenvalues and observable diameter in $\operatorname{RCD}(1, \infty)$ spaces. Preprint (2021). Available at arXiv:2107.05324
[Bo] S. Bobkov, Extremal properties of half-spaces for log-concave distributions. Ann. Probab. 24 (1996), 35-48.
[BGRS] S. G. Bobkov, N. Gozlan, C. Roberto and P.-M. Samson, Bounds on the deficit in the logarithmic Sobolev inequality. J. Funct. Anal. 267 (2014), 4110-4138.
[CMM] F. Cavalletti, F. Maggi and A. Mondino, Quantitative isoperimetry à la Levy-Gromov. Comm. Pure Appl. Math. 72 (2019), 1631-1677.
[CM] F. Cavalletti and A. Mondino, Sharp and rigid isoperimetric inequalities in metricmeasure spaces with lower Ricci curvature bounds. Invent. Math. 208 (2017), 803-849.
[CMS] F. Cavalletti, A. Mondino and D. Semola, Quantitative Obata's theorem. Anal. PDE (to appear). Available at arXiv:1910.06637
[CF] T. A. Courtade and M. Fathi, Stability of the Bakry-Émery theorem on \mathbb{R}^{n}. J. Funct. Anal. 279 (2020), 108523, 28 pp.
[FGS] M. Fathi, I. Gentil and J. Serres, Stability estimates for the sharp spectral gap bound under a curvature-dimension condition. Preprint (2022). Available at arXiv:2202.03769
[FIL] M. Fathi, E. Indrei and M. Ledoux, Quantitative logarithmic Sobolev inequalities and stability estimates. Discrete Contin. Dyn. Syst. 36 (2016), 6835-6853.
[IK] E. Indrei and D. Kim, Deficit estimates for the logarithmic Sobolev inequality. Differential Integral Equations 34 (2021), 437-466.
[IM] E. Indrei and D. Marcon, A quantitative log-Sobolev inequality for a two parameter family of functions. Int. Math. Res. Not. IMRN 2014, 5563-5580.
[Kl] B. Klartag, Needle decompositions in Riemannian geometry. Mem. Amer. Math. Soc. 249 (2017), no. 1180.
[Ma] C. H. Mai, Rigidity for the isoperimetric inequality of negative effective dimension on weighted Riemannian manifolds. Geom. Dedicata 202 (2019), 213-232.
[MO] C. H. Mai and S. Ohta, Quantitative estimates for the Bakry-Ledoux isoperimetric inequality. Comment. Math. Helv. 96 (2021), 693-739.
[Mo] F. Morgan, Geometric measure theory. A beginner's guide. Fifth edition. Elsevier/Academic Press, Amsterdam, 2016.
[Oh1] S. Ohta, Needle decompositions and isoperimetric inequalities in Finsler geometry. J. Math. Soc. Japan 70 (2018), 651-693.
[Oh2] S. Ohta, Comparison Finsler geometry. Springer Monographs in Mathematics. Springer, Cham, 2021.
[OT] S. Ohta and A. Takatsu, Equality in the logarithmic Sobolev inequality. Manuscripta Math. 162 (2020), 271-282.
[Ta] M. Talagrand, Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6 (1996), 587-600.
[Vi] C. Villani, Optimal transport, old and new. Springer-Verlag, Berlin, 2009.

[^0]: *Department of Mathematics, Osaka University, Osaka 560-0043, Japan (hungmcuet@gmail.com, s.ohta@math.sci.osaka-u.ac.jp)
 ${ }^{\dagger}$ RIKEN Center for Advanced Intelligence Project (AIP), 1-4-1 Nihonbashi, Tokyo 103-0027, Japan

