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Abstract

Concerning quantitative isoperimetry for a weighted Riemannian manifold sat-
isfying Ric∞ ≥ 1, we give an L1-estimate exhibiting that the push-forward of the
reference measure by the guiding function (arising from the needle decomposition)
is close to the Gaussian measure. We also show Lp- and W2-estimates in the 1-
dimensional case.

1 Introduction

This short article is devoted to several further applications of the detailed estimates in
[MO] to quantitative isoperimetry. In [MO], on a weighted Riemannian manifold (M, g,m)
(with m = e−Ψ volg) satisfying m(M) = 1 and Ric∞ ≥ 1, we investigated the stability of
the Bakry–Ledoux isoperimetric inequality [BL]:

P(A) ≥ I(R,γ)
(
m(A)

)
(1.1)

for any Borel set A ⊂M , where P(A) is the perimeter of A, γ(dx) = (2π)−1/2e−x
2/2 dx is

the Gaussian measure on R, and I(R,γ) is its isoperimetric profile written as

I(R,γ)(θ) =
e−a

2
θ/2

√
2π

, θ = γ
(
(−∞, aθ]

)
. (1.2)

It is known by [Mo, Theorem 18.7] (see also [Ma, §3]) that equality holds in (1.1) for some
A with θ = m(A) ∈ (0, 1) if and only if (M, g,m) is isometric to the product of (R, | · |,γ)
and a weighted Riemannian manifold (Σ, gΣ,mΣ) of Ric∞ ≥ 1. Moreover, A is necessarily
of the form (−∞, aθ] × Σ or [−aθ,∞) × Σ (so-called a half-space). Then, the stability
result [MO, Theorem 7.5] asserts that, if equality in (1.1) nearly holds, then A is close to
a kind of half-space in the sense that the symmetric difference between them has a small
volume.
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The proof as well as the formulation of [MO, Theorem 7.5] are based on the needle
decomposition paradigm (also called the localization), which was established by Klartag
[Kl] for Riemannian manifolds and has provided a significant contribution specifically
in the study of isoperimetric inequalities (we refer to [CM] for a generalization to metric
measure spaces satisfying the curvature-dimension condition, and to [CMM] for a stability
result). The half-space we mentioned above is in fact a sub-level or super-level set of the
guiding function arising in the needle decomposition (see Section 3 and [MO] for more
details). The needle decomposition enables us to decompose a global inequality onM into
the corresponding 1-dimensional inequalities on minimal geodesics inM (called needles or
transport rays). Therefore, a more detailed 1-dimensional analysis on needles will furnish
a better estimate on M .

The 1-dimensional analysis in [MO] is concentrated in Proposition 3.2 in it (restated
in Proposition 2.1 below), which gives a very detailed estimate on the difference from the
Gaussian measure γ. In this article, as an application of the analysis developed in [MO],
we show an L1-bound between γ and the push-forward measure u∗m of m by the guiding
function u:

∥ρ · eψg − 1∥L1(γ) ≤ C(θ, ε)δ(1−ε)/(9−3ε),

where u∗m = ρ dx and γ = e−ψg dx (see Theorem 3.1 for the precise statement). In the
1-dimensional case (on intervals), we also prove an Lp-bound with the improved (and
sharp) order δ1/p (Proposition 2.2; see Example 2.3 for the sharpness) and an estimate
of the L2-Wasserstein distance W2 (Proposition 2.4). The use of Lp and W2 (instead of
the volume of the symmetric difference) is inspired by stability results for the Poincaré
and log-Sobolev inequalities (e.g., [BF, BGRS, CF, IK, IM]). We refer to Remark 3.2 for
some further related works and open problems.

Acknowledgements. We are grateful to Emanuel Indrei, whose question on the Lp-estimate
led us to write this paper. CHM was supported by Grant-in-Aid for JSPS Fellows
20J11328. SO was supported in part by JSPS Grant-in-Aid for Scientific Research (KAK-
ENHI) 19H01786.

2 Quantitative estimates on intervals

We first consider the 1-dimensional case (on intervals) and establish quantitative sta-
bility estimates in terms of the Lp-norm and the W2-distance. The L1-bound will be
instrumental to study the Riemannian case in the next section.

2.1 An Lp-estimate

Throughout this section, let I ⊂ R be an open interval equipped with a probability
measure m = e−ψ dx such that ψ is 1-convex in the sense that

ψ
(
(1− t)x+ ty

)
≤ (1− t)ψ(x) + tψ(y)− 1

2
(1− t)t|x− y|2

for all x, y ∈ I and t ∈ (0, 1). This means that (I, | · |,m) satisfies Ric∞ ≥ 1 (or the
curvature-dimension condition CD(1,∞)), and (1.1) holds. The 1-dimensional isoperi-
metric inequality is well investigated in convex analysis. An important fact due to Bobkov
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[Bo, Proposition 2.1] is that an isoperimetric minimizer can be always taken as a half-
space of the form (−∞, a]∩ I or [b,∞)∩ I. Now we restate [MO, Proposition 3.2], which
is the source of all the estimates. Recall that γ = e−ψg dx is the Gaussian measure.

Proposition 2.1 ([MO]) Fix θ ∈ (0, 1) and suppose that

m
(
(−∞, aθ] ∩ I

)
= θ (2.1)

and
e−ψ(aθ) ≤ e−ψg(aθ) + δ (2.2)

hold for sufficiently small δ > 0 (relative to θ). Then we have

ψ(x)−ψg(x) ≥
(
ψ′
+(aθ)− aθ

)
(x− aθ)− C(θ)δ (2.3)

for every x ∈ I, and

ψ(x)−ψg(x) ≤
(
ψ′
+(aθ)− aθ

)
(x− aθ) + C(θ)

√
δ (2.4)

for every x ∈ [S, T ] ⊂ I such that limδ→0 S = −∞ and limδ→0 T = ∞, where ψ′
+ denotes

the right derivative of ψ and C(θ) is a positive constant depending only on θ.

The first condition (2.1) means that I is “centered” in comparison with γ which
satisfies γ((−∞, aθ]) = θ (as in (1.2)). Note also that e−ψ(aθ) ≥ e−ψg(aθ) holds by the
isoperimetric inequality (1.1) (since P((−∞, aθ] ∩ I) = e−ψ(aθ)), and then (2.2) tells that
the deficit of (−∞, aθ] ∩ I in the isoperimetric inequality is less than or equal to δ.

Besides the above proposition, we also need the following estimate in its proof (see
[MO, (3.9)]):

lim sup
δ→0

|ψ′
+(aθ)− aθ|

δ
≤ C(θ). (2.5)

The lower bound (2.3) enables us to obtain the following Lp-estimate between γ = e−ψg dx
and m = eψg−ψ γ|I . (We remark that the upper bound (2.4) will not be used.)

Proposition 2.2 (An Lp-estimate on I) Assume (2.1) and (2.2). Then we have

∥eψg−ψ − 1∥Lp(γ) ≤ C(p, θ)δ1/p

for all p ∈ [1,∞) and sufficiently small δ > 0 (relative to θ and p), where we set eψg−ψ := 0
on R \ I.

Proof. In this proof, we denote by C a positive constant depending on θ, and put a := aθ
for brevity. Since eψg−ψ − 1 ≥ −1 and m(I) = γ(R) = 1, we find

∥eψg−ψ − 1∥pLp(γ) =

∫
I

[
eψg−ψ − 1

]p
+
dγ +

∫ ∞

−∞

[
1− eψg−ψ

]p
+
dγ

≤
∫
I

[
eψg−ψ − 1

]p
+
dγ +

∫ ∞

−∞

[
1− eψg−ψ

]
+
dγ

=

∫
I

[
eψg−ψ − 1

]p
+
dγ +

∫
I

[
eψg−ψ − 1

]
+
dγ,
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where [r]+ := max{r, 0}. Thus, we need to estimate only [eψg−ψ − 1]+. Observe that[
e(ψg−ψ)(x) − 1

]p
+
≤

(
eCδ|x−a|+Cδ − 1

)p ≤ ep(Cδ|x−a|+Cδ) − 1

from (2.3) and (2.5), and hence∫
I

[
eψg−ψ − 1

]p
+
dγ ≤

∫ ∞

−∞

(
ep(Cδ|x−a|+Cδ) − 1

)
γ(dx)

=
epCδ√
2π

∫ ∞

−∞
exp

(
−x

2

2
+ pCδ|x− a|

)
dx− 1.

Dividing the integral into (−∞, a] and [a,∞), we continue the calculation as∫ a

−∞
exp

(
−x

2

2
− pCδ(x− a)

)
dx+

∫ ∞

a

exp

(
−x

2

2
+ pCδ(x− a)

)
dx

=

∫ a

−∞
exp

(
−(x+ pCδ)2

2
+

(pCδ)2

2
+ pCaδ

)
dx

+

∫ ∞

a

exp

(
−(x− pCδ)2

2
+

(pCδ)2

2
− pCaδ

)
dx

≤ exp

(
(pCδ)2

2
+ pCaδ

){∫ a

−∞
e−x

2/2 dx+ pCδ

}
+ exp

(
(pCδ)2

2
− pCaδ

){∫ ∞

a

e−x
2/2 dx+ pCδ

}
≤ exp

(
(pCδ)2

2
+ pC|a|δ

)(√
2π + 2pCδ

)
.

Therefore, we obtain∫
I

[
eψg−ψ − 1

]p
+
dγ ≤ exp

(
pCδ + pC|a|δ + (pCδ)2

2

)(
1 +

2pCδ√
2π

)
− 1

≤ C(p, θ)δ.

This completes the proof. 2

We remark that, since{
exp

(
pCδ +

(pCδ)2

2

)
− 1

}1/p

≥ exp

(
Cδ +

p(Cδ)2

2

)
− 1,

the constant C(p, θ) given by the above proof necessarily depends on p. The order δ1/p in
Proposition 2.2 may be compared with Lp-estimates in [IK] for the log-Sobolev inequality
on Gaussian spaces. One can see that the order δ1/p is optimal from the following example.

Example 2.3 Let I = (−D,D) and m = (1 + δ) · γ|I , where δ > 0 is given by γ(I) =
(1 + δ)−1. Then, at θ = 1/2, we have a1/2 = 0, m((−∞, 0] ∩ I) = 1/2,

e−ψ(0) − e−ψg(0) =
δ√
2π
,

and

∥eψg−ψ − 1∥Lp(γ) =

(
δp

1 + δ
+

δ

1 + δ

)1/p

=

(
1 + δp−1

1 + δ

)1/p

δ1/p.
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2.2 A W2-estimate

From Proposition 2.1, one can also derive an upper bound of the L2-Wasserstein distance
between m and γ. We refer to [Vi] for the basics of optimal transport theory. What we
need is only the following Talagrand inequality with γ as the base measure (see [Ta], [Vi,
Theorem 22.14]):

W 2
2 (m,γ) ≤ 2Entγ(m) = 2

∫
I

(ψg − ψ)eψg−ψ dγ, (2.6)

where Entγ(m) is the relative entropy of m with respect to γ. We remark that both γ
and m have finite second moment (by the 1-convexity of ψ).

Proposition 2.4 (A W2-estimate on I) Assume (2.1) and (2.2). Then we have

W2(m,γ) ≤ C(θ)
√
δ

for sufficiently small δ > 0 (relative to θ).

Proof. We again denote aθ by a, and C will be a positive constant depending only on θ.
Similarly to the proof of Proposition 2.2, we observe from (2.3) and (2.5) that∫

I

(ψg − ψ)eψg−ψ dγ ≤
∫ ∞

−∞
(Cδ|x− a|+ Cδ)eCδ|x−a|+Cδ γ(dx)

=
Cδ√
2π

eCδ
∫ ∞

−∞
(|x− a|+ 1) exp

(
−x

2

2
+ Cδ|x− a|

)
dx

≤ Cδ

{∫ ∞

−∞
|x− a| exp

(
−x

2

2
+ Cδ|x− a|

)
dx+ C

}
,

where we used ∫ ∞

−∞
exp

(
−x

2

2
+ Cδ|x− a|

)
dx ≤ C

from the proof of Proposition 2.2. Then we have∫ a

−∞
(a− x) exp

(
−x

2

2
− Cδ(x− a)

)
dx

= exp

(
Caδ +

(Cδ)2

2

)∫ a

−∞
(a− x) exp

(
−(x+ Cδ)2

2

)
dx

≤ (1 + Cδ)

{
(a+ Cδ)

∫ a

−∞
exp

(
−(x+ Cδ)2

2

)
dx+

[
exp

(
−(x+ Cδ)2

2

)]a
−∞

}
≤ (1 + Cδ)

{
a

∫ a

−∞
e−x

2/2 dx+ Cδ + exp

(
−(a+ Cδ)2

2

)}
≤ a

∫ a

−∞
e−x

2/2 dx+ e−a
2/2 + Cδ.
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We similarly find∫ ∞

a

(x− a) exp

(
−x

2

2
+ Cδ(x− a)

)
dx

= exp

(
−Caδ + (Cδ)2

2

)∫ ∞

a

(x− a) exp

(
−(x− Cδ)2

2

)
dx

≤ (1 + Cδ)

{
(−a+ Cδ)

∫ ∞

a

exp

(
−(x− Cδ)2

2

)
dx−

[
exp

(
−(x− Cδ)2

2

)]∞
a

}
≤ (1 + Cδ)

{
−a

∫ ∞

a

e−x
2/2 dx+ Cδ + exp

(
−(a− Cδ)2

2

)}
≤ −a

∫ ∞

a

e−x
2/2 dx+ e−a

2/2 + Cδ.

Therefore, together with the Talagrand inequality (2.6), we obtain the desired estimate
W 2

2 (m,γ) ≤ Cδ. 2

We do not know whether the order
√
δ in Proposition 2.4 is optimal. SinceWp(m,γ) ≤

W2(m,γ) for any p ∈ [1, 2) by the Hölder inequality, we have, in particular, a bound of
the L1-Wasserstein distance:

W1(m,γ) ≤ C(θ)
√
δ.

One can alternatively infer this estimate from the Kantorovich–Rubinstein duality (see
[Vi]); in fact,

W1(m,γ) ≤
∫ ∞

−∞
|x− a|·|e(ψg−ψ)(x) − 1|γ(dx) ≤ C(θ)

√
δ.

We also remark that, when we take a detour via the reverse Poincaré inequality in
[MO, Proposition 5.1] and the stability result [CF, Theorem 1.2], we arrive at a weaker
estimate

W1(m,γ) ≤ C(θ, ε)δ(1−ε)/4.

We refer to [CMS, FGS] for stability results for the Poincaré inequality (equivalently, the
spectral gap) on CD(N − 1, N)-spaces and RCD(N − 1, N)-spaces with N ∈ (1,∞).

3 An L1-estimate on weighted Riemannian manifolds

Next, we consider a weighted Riemannian manifold, namely a connected, complete C∞-
Riemannian manifold (M, g) of dimension n ≥ 2 equipped with a probability measure
m = e−Ψ volg, where Ψ ∈ C∞(M) and volg is the Riemannian volume measure. Assuming
Ric∞ ≥ 1, we have the Bakry–Ledoux isoperimetric inequality (1.1).

We begin with an outline of the proof of (1.1) via the needle decomposition (see
[Kl]). Given a Borel set A ⊂ M with θ = m(A) ∈ (0, 1), we employ the function
f := χA − θ (χA denotes the characteristic function of A) and an associated 1-Lipschitz
function u :M −→ R attaining the maximum of

∫
M
fϕ dm among all 1-Lipschitz functions

ϕ. Then, analyzing the behavior of u, one can build a partition {Xq}q∈Q of M consisting
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of (the image of) minimal geodesics (called needles), and Q is endowed with a probability
measure ν. For ν-almost every q ∈ Q, u|Xq has slope 1 (|u(x) − u(y)| = d(x, y) for all
x, y ∈ Xq) and Xq is equipped with a probability measure mq such that mq(A ∩Xq) = θ
and (Xq, | · |,mq) satisfies Ric∞ ≥ 1. Moreover, we have∫

M

h dm =

∫
Q

(∫
Xq

h dmq

)
ν(dq) (3.1)

for all h ∈ L1(m). Then, (1.1) for A is obtained by integrating its 1-dimensional counter-
parts for A ∩Xq with respect to ν.

The 1-Lipschitz function u is called the guiding function. We can assume
∫
M
u dm = 0

without loss of generality, and Xq will be identified with an interval via u (in other words,
Xq is parametrized by u). Denote mq = e−σq dx and µ := u∗m = ρ dx. Note that suppµ
is an interval and may not be the whole R. Through the parametrization of Xq by u, we
deduce from (3.1) that

ρ(x) =

∫
Q

e−σq(x) ν(dq), (3.2)

where we set e−σq(x) := 0 if x ̸∈ Xq.

Theorem 3.1 (An L1-estimate on M) Assume Ric∞ ≥ 1 and fix ε ∈ (0, 1). If P(A) ≤
I(R,γ)(θ)+δ holds for some Borel set A ⊂M with θ = m(A) ∈ (0, 1) and sufficiently small
δ (relative to θ and ε), then u∗m = ρ dx satisfies

∥ρ · eψg − 1∥L1(γ) ≤ C(θ, ε)δ(1−ε)/(9−3ε),

where u is the guiding function associated with A such that
∫
M
u dm = 0.

Proof. First of all, by (3.2) and Fubini’s theorem, we have

∥ρ · eψg − 1∥L1(γ) =

∫ ∞

−∞

∣∣∣∣∫
Q

(eψg−σq − 1) ν(dq)

∣∣∣∣ dγ ≤
∫
Q

∥eψg−σq − 1∥L1(γ) ν(dq).

We shall estimate ∥eψg−σq − 1∥L1(γ) by dividing into “good” needles and “bad” needles.

Note that ν(Qℓ) ≥ 1−
√
δ holds for

Qℓ :=
{
q ∈ Q

∣∣mq(A ∩Xq) = θ, P(A ∩Xq) < I(R,γ)(θ) +
√
δ
}

by [MO, Lemma 7.1], where P(A ∩Xq) denotes the perimeter of A ∩Xq in (Xq, | · |,mq).
Moreover, it follows from [MO, Proposition 7.3] that there exists a measurable set Qc ⊂ Q
such that ν(Qc) ≥ 1− δ(1−ε)/(9−3ε) and

max
{
|aθ − r−q |, |a1−θ − r+q |

}
≤ C(θ, ε)δ(1−ε)/(9−3ε)

for all q ∈ Qc ∩ Qℓ, where mq((−∞, r−q ] ∩ Xq) = mq([r
+
q ,∞) ∩ Xq) = θ (recall that

γ((−∞, aθ]) = γ([a1−θ,∞)) = θ).
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On the one hand, for q ∈ Qc∩Qℓ, note that either P(A∩Xq) ≥ e−σq(r
−
q ) or P(A∩Xq) ≥

e−σq(r
+
q ) holds by [Bo, Proposition 2.1] (recall Subsection 2.1). When P(A∩Xq) ≥ e−σq(r

−
q ),

we put

γq(dx) = e−ψg,q(x) dx := e−ψg(x+aθ−r−q ) dx,

which is a translation of γ satisfying γq((−∞, r−q ]) = θ. Then, it follows from Proposi-

tion 2.2 (with e−σq(r
−
q ) ≤ P(A ∩Xq) ≤ e−ψg,q(r

−
q ) +

√
δ) and Cavalieri’s principle that

∥eψg−σq − 1∥L1(γ) ≤ ∥eψg,q−σq − 1∥L1(γq) + ∥e−ψg,q − e−ψg∥L1(dx)

≤ C(θ)
√
δ + 2

|aθ − r−q |√
2π

≤ C(θ, ε)δ(1−ε)/(9−3ε).

We have the same bound also in the case where P(A ∩ Xq) ≥ e−σq(r
+
q ) by reversing I in

Proposition 2.2.
On the other hand, for q ∈ Q \ (Qc ∩Qℓ), we have the trivial bound

∥eψg−σq − 1∥L1(γ) ≤ ∥eψg−σq∥L1(γ) + ∥1∥L1(γ) = 2.

Therefore, we obtain

∥ρ · eψg − 1∥L1(γ) ≤ C(θ, ε)δ(1−ε)/(9−3ε) + 2
(
1− ν(Qc ∩Qℓ)

)
≤ C(θ, ε)δ(1−ε)/(9−3ε).

2

Note that q ∈ Qc ∩ Qℓ is well-behaved and can be handled by the 1-dimensional
analysis, whereas one has a priori no information of q ∈ Q \ (Qc ∩ Qℓ). This could
be a common problem for stability estimates via the needle decomposition (see, e.g.,
[MO, Theorem 6.2] showing a reverse Poincaré inequality on a manifold from a sharper
estimate on intervals). In particular, it may be difficult to achieve the same order δ as in
the 1-dimensional case (Proposition 2.2) by the needle decomposition. In the Lp-case, it is
unclear (to the authors) with what we can replace the trivial bound ∥eψg−σq −1∥L1(γ) ≤ 2.
For the Wasserstein distance W2 or W1, we have the same problem on the control of
q ∈ Q \ (Qc ∩Qℓ).

Remark 3.2 (Further related works and open problems) (a) Theorem 3.1 holds
true also for reversible Finsler manifolds by the same proof (see [MO, Remark 7.6(c)]
and [Oh1, Oh2]).

(b) As we mentioned in the introduction, our Lp- and W2-estimates are inspired by the
quantitative stability for functional inequalities. We refer to [BGRS, FIL, IK, IM] for
the study of the log-Sobolev inequality on the Gaussian space:

Entγ(fγ) ≤
1

2
Iγ(fγ) =

1

2

∫
Rn

∥∇f∥2

f
dγ,

where Iγ(fγ) is the Fisher information of a probability measure fγ with respect to
γ. They investigated the difference between γ and fγ, in terms of the additive deficit
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δ(f) = Iγ(fγ)/2− Entγ(fγ). For instance, W2-bounds (under certain convexity and
concavity conditions on f) were given in [BGRS, IM], and L1- and Lp-bounds can be
found in [IK]. In the setting of weighted Riemannian manifolds satisfying Ric∞ ≥ 1
(as in Theorem 3.1), we have only the rigidity (see [OT]) and the stability is an open
problem.

(c) We have seen in [MO, §6] that the reverse forms of the Poincaré and log-Sobolev
inequalities can be derived from the isoperimetric deficit. The reverse Poincaré in-
equality then implies a W1-estimate for the push-forward by an eigenfunction thanks
to [BF, Theorem 1.3] (see also [FGS]). We also expect a direct W1- or W2-estimate
for the push-forward by the guiding function, which remains an open question (see
[MO, Remark 7.6(g)]).

(d) Another direction of research is a generalization to negative effective dimension, i.e.,
RicN ≥ K > 0 with N < −1. We have established rigidity in the isoperimetric
inequality in [Ma], thereby it is natural to consider quantitative isoperimetry, though
it seems to require longer calculations.
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