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The probability of two Fq-polynomials to be coprime

Hiroshi Sugita† and Satoshi Takanobu‡

Abstract.

By means of the adelic compactification R̂ of the polynomial ring
R := Fq[x], q being a prime, we give a probabilistic proof to a density
theorem:

#{(m, n) ∈ {0, 1, . . . , N − 1}2 ; ϕm and ϕn are coprime}
N2

→ q − 1
q

,

as N → ∞, for a suitable enumeration {ϕn}∞n=0 of R. Then establishing
a maximal ergodic inequality for the family of shifts {R̂ � f �→ f+ϕn ∈
R̂}∞n=0, we prove a strong law of large numbers as an extension of the
density theorem.

§1. Introduction

Dirichlet [2] discovered a density theorem that asserts the probabil-
ity of two integers to be coprime be 6/π2, that is,
(1)

lim
N→∞

#{(m, n) ∈ N
2 ; 1 ≤ m, n ≤ N, gcd(m, n) = 1}

N2
= ζ(2)−1 =

6
π2

.

The notion of density is something like a probability, but it is not exactly
a probability. In order to give a rigorous probabilistic interpretation to
this theorem, Kubota-Sugita [5] gave an adelic version of (1), that is,
the probability of two adelic integers to be coprime is precisely 6/π2,
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and they derived (1) from the adelic version. Soon after that, Sugita-
Takanobu [11] established a strong law of large numbers (S.L.L.N. for
short) in Kubota-Sugita [5]’s setting, and furthermore, discovered a new
limit theorem which corresponds to the central limit theorem in usual
cases.

In this paper, we discuss an analogy of these works for the polyno-
mial ring Fq[x] =: R, q being a prime, using again the adelic compacti-
fication R̂ of R. As a result, an S.L.L.N. holds in this case, too.

However, the proofs here are not a complete analogue of the pre-
vious ones. Indeed, in many points R and R̂ resemble Z and its adelic
compactification Ẑ respectively, but in some points they are quite dif-
ferent. For example, Z has a natural linear order, while R does not,
so that we need to define an appropriate enumeration R = {ϕn}∞n=0.
And the family of shifts {x �→ x + n}∞n=0 in Ẑ forms a semigroup with
respect to the addition of the parameter n, while the family of shifts
{f �→ f + ϕn}∞n=0 in R̂ does not, i.e., in general, ϕm + ϕn �= ϕm+n. In
particular, the latter is a strong obstacle in proving an S.L.L.N. (The-
orem 2 below), which is finally overcome by adopting a modification of
Stroock [10, § 5.3]’s method due to Miki [8].

§2. Summary of theorems

We here present three theorems as well as definitions and a lemma
to state them. The proof of the theorems will be given in the following
sections.

Definition 1. Let q be a prime, Fq := Z/qZ ∼= {0, 1, . . . , q − 1}
be the finite field consisting of q elements, and R be the ring of all
Fq-polynomials, i.e., R := Fq[x]. We enumerate R as follows:

ϕn(x) :=
∞∑

i=1

b
(q)
i (n)xi−1, n = 0, 1, 2, . . . ,

where b
(q)
i (n) ∈ {0, 1, . . . , q − 1} denotes the i-th digit of n in its q-adic

expansion, namely

n =
∞∑

i=1

b
(q)
i (n)qi−1, n ∈ N ∪ {0}.

Both of infinite sums above are actually finite sums for each n.

The following density theorem is an analogue of (1).
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Theorem 1. The probability of two elements in R to be coprime is
(q − 1)/q. More precisely1,

(2) lim
N→∞

#{(m, n) ∈ {0, 1, . . . , N − 1}2 ; gcd(ϕm, ϕn) = 1 }
N2

=
q − 1

q
.

More generally, for any f, g ∈ R, we have

lim
N→∞

#{(m, n) ∈ {0, 1, . . . , N − 1}2 ; gcd(f + ϕm, g + ϕn) = 1 }
N2

(3)

=
q − 1

q
.

The limit (q − 1)/q appearing in Theorem 1 is equal to ζR(2)−1,
where

ζR(s) :=
(

1 − 1
qs−1

)−1

is the zeta function associated with R. See § 4 below.
Let us introduce the adelic compactification R̂ of R. We say p ∈ R

is irreducible, if it is not a constant (or, an element of Fq) and if p cannot
be divided by any f ∈ R with 0 < deg f < deg p. Let P denote the set
of all monic irreducible polynomials.

Definition 2. For each p ∈ P , we define a metric dp on R by

dp(f, g) = inf{ q−ndeg p ; pn|(f − g) }, f, g ∈ R.

Let Rp denote the completion of R by the metric dp. It is a compact
ring and has a unique Borel probability measure λp which is invariant
under the shifts {Rp � f �→ f + g}g∈Rp (Haar probability measure).

Now we define

R̂ :=
∏
p∈P

Rp, λ :=
∏
p∈P

λp.

The arithmetic operation ‘+’ and ‘×’ being defined coordinate-wise, R̂
becomes a compact ring under the product topology. And λ becomes
the unique Haar probability measure on R̂.

1The function ‘gcd(f, g)’ is assumed to return the greatest common divisor
of f and g that is monic. In particular, if there is no common divisor other
than constants (or, elements of Fq), we have gcd(f, g) = 1 and say ‘f and g are
coprime’. When f = g = 0, any monic polynomial is their common divisor, so
we do not define gcd(0, 0).
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R̂ is metrizable with the following metric2:

d((f1, f2, . . .), (g1, g2, . . .)) :=
∞∑

i=1

2−idpi(fi, gi),

f = (f1, f2, . . .), g = (g1, g2, . . .) ∈ R̂.

Lemma 1. The diagonal set D := { (f, f, . . .) ∈ R̂ ; f ∈ R } is dense
in R̂.

Proof. According to the Chinese remainder theorem, for any k, m ∈
N and any f1, . . . , fk ∈ R, there exists f ∈ R such that f = fi mod
pm

i , i = 1, . . . , k. This implies that D is dense in R × R × · · · with
respect to the metric d. �

Identifying R with D, we can regard R as a dense subring of R̂ by
Lemma 1. Since R is countable, we have λ(R) = 0.

Now we can mention an S.L.L.N.

Theorem 2. For each F ∈ L1(R̂l, λl),

lim
N→∞

1
N l

N−1∑
n1,...,nl=0

F (f1 + ϕn1 , . . . , fl + ϕnl
)

=
∫

R̂l

F (f̂1, . . . , f̂l)λl(df̂1 · · · df̂l), λl-a.e.(f1, . . . , fl).

As a special case of Theorem 2, we have an S.L.L.N.-version of
Theorem 1.

Definition 3. For f, g ∈ R̂, we define

ρp(f) :=

{
1 (f ∈ pR̂),

0 (f �∈ pR̂),

X(f, g) :=
∏
p∈P

(1 − ρp(f)ρp(g)).

Note that for f, g ∈ R, X(f, g) = 1 if and only if gcd(f, g) = 1.

Theorem 3.

lim
N→∞

1
N2

N−1∑
m,n=0

X(f + ϕm, g + ϕn) =
q − 1

q
, λ2-a.e.(f, g).

2We enumerate P = {pi}∞i=1 in the order given by Definition 1.
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§3. R̂ — Preliminaries

3.1. Basic properties
Although all lemmas in this subsection can be proved essentially in

the same way as in the case of Ẑ, we give them proofs to make this paper
self-contained.

Lemma 2. Let p, p′ ∈ P, p �= p′, and k ∈ N.
(i) pkRp is a closed and open ball.
(ii) pkRp′ = Rp′ .

Proof. (i) That

pkRp = {f ∈ Rp ; dp(f, 0) ≤ q−k deg p}
= {f ∈ Rp ; dp(f, 0) < q−(k−1) deg p}

shows pkRp is closed and open.
(ii) Since pkRp′ ⊂ Rp′ is clear, we show the converse inclusion. To this
end, it is sufficient to show the existence of g ∈ Rp′ for which pkg = 1.
For each m ∈ N, there exists gm ∈ R such that pkgm ≡ 1 mod (p′)m,
i.e., dp′(pkgm, 1) ≤ q−m deg p′

. Then for n > m, we have pk(gn − gm) ≡
0 mod (p′)m, and hence

dp′(pkgn, pkgm) = dp′(gn, gm) ≤ q−m deg p′
.

This implies {gm}∞m=1 is a Cauchy sequence in Rp′ . Then its limit
g ∈ Rp′ satisfies

dp′(pkg, 1) = lim
m→∞

dp′(pkgm, 1) = 0,

in other words, pkg = 1. �
Lemma 3. Let f ∈ R and deg f ≥ 1.

(i) For 3 −∞ ≤ deg g ≤ deg f − 1, the set (fR̂ + g) is closed and open.
(ii) R̂ = ∪g∈R;−∞≤deg g≤deg f−1(fR̂ + g), which is a disjoint union.

Proof. (i) We may assume f to be monic. Let f =
∏

p∈P pαp(f) be
the prime factor decomposition, where αp(f) = 0 holds except for finite
number of p ∈ P . By Lemma 2,

(4) fR̂ =
∏
p∈P

fRp =
∏
p∈P

pαp(f)Rp,

3deg 0 := −∞.



460 H. Sugita and S. Takanobu

where each pαp(f)Rp is closed and open, and hence fR̂ is closed and
open, too. Since the shift R̂ � f �→ (f + g) ∈ R̂ is a homeomorphism,
(fR̂ + g) is closed and open, too.
(ii) Since R is dense in R̂ and h �→ fh + g is a continuous and closed
mapping, we have fR + g = fR̂ + g. On the other hand, since R =
∪g∈R;−∞≤deg g≤deg f−1(fR + g), we see

R̂ =
⋃

g∈R;
−∞≤deg g≤deg f−1

(fR̂ + g).

Let us next show that the above union is disjoint. Let g, g′ be distinct
polynomials both of which are of lower degree than f . By (i), A :=
(fR̂ + g) ∩ (fR̂ + g′) is an open set. If A �= ∅, then R ∩ A �= ∅, because
R is dense in R̂. But then, for l ∈ R ∩ A, we see that

dp(l − g, 0) ≤ p−αp(f), dp(l − g′, 0) ≤ p−αp(f), p ∈ P ,

which means that for any p ∈ P , pαp(f)|(g − g′). Thus we see f |(g − g′),
which is impossible. Consequently, we must have A = ∅. �

Lemma 4. For f ∈ R \ {0} and A ∈ B(R̂), we have fA ∈ B(R̂)
and that

(5) λ(fA) = q− deg fλ(A).

Proof. Since R̂ is a complete separable metric space and the mul-
tiplication R̂ � g �→ fg ∈ R̂ is injective and Borel measurable, it holds
that fA ∈ B(R̂) (cf. [9, Chapter I Theorem 3.9]). Next, let ν be a
Borel probability measure on R̂ defined by

ν(A) =
λ(fA)

λ(fR̂)
, A ∈ B(R̂).

Then ν is clearly shift invariant, and hence ν = λ by the uniqueness of
the Haar measure. Thus we see λ(fA) = λ(fR̂)λ(A). Lemma 3 and the
shift invariance of λ imply

1 = λ(R̂) =
∑
g∈R;

−∞≤deg g≤deg f−1

λ(fR̂ + g) = qdeg fλ(fR̂),

from which (5) immediately follows. �
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3.2. Zeta function associated with R

Let us define the zeta function associated with R:

(6) ζR(s) :=
∑

f∈R : monic

1
N(f)s

, Re s > 1,

where

(7) N(f) := the number of residue classes R/fR = qdeg f .

Since the polynomial ring R is a unique factorization domain, and

N(fg) = N(f)N(g),

we have an Euler product representation of ζR:

(8) ζR(s) =
∏
p∈P

(
1 − 1

N(p)s

)−1

=
∏
p∈P

(
1 − 1

qs deg p

)−1

.

Surprisingly, the following extremely simple formula holds:

(9) ζR(s) =
(

1 − 1
qs−1

)−1

.

Let us show (9). Let g(m) :=
∑

d|m µ(m
d )qd, where µ is the Möbius

function. Then the Möbius inversion formula implies

qn =
∑
d|n

g(d), n ∈ N.

We must also recall that (See [7, 3.25. Theorem])

#{p ∈ P ; deg p = m} =
1
m

g(m).

Now noting that log(1 − t)−1 =
∑∞

n=1
tn

n (|t| < 1),

log ζR(s) =
∑
p∈P

log
(

1 − 1
qs deg p

)−1

=
∑
p∈P

∞∑
n=1

1
n

1
qns deg p

=
∞∑

m=1

∞∑
n=1

1
n

1
qsmn

#{p ∈ P ; deg p = m} =
∞∑

m,n=1

1
mn

1
qsmn

g(m)

=
∞∑
l=1

1
l

1
qsl

∑
m|l

g(m) =
∞∑
l=1

1
l

(
1

qs−1

)l
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= log
(

1 − 1
qs−1

)−1

.

Thus we have (9).

Theorem 3 follows from the next lemma and Theorem 2.

Lemma 5. ∫
R̂2

X(f, g)λ2(dfdg) =
q − 1

q
.

Proof.∫
R̂2

X(f, g)λ2(dfdg) =
∏
p∈P

∫
R̂2

(1 − ρp(f)ρp(g))λ2(dfdg)

=
∏
p∈P

(
1 −
∫

R̂

ρp(f)λ(df)
∫

R̂

ρp(g)λ(dg)
)

=
∏
p∈P

(
1 − q− deg pq− deg p

)
=
∏
p∈P

(
1 − q−2 deg p

)
.

On the other hand, plugging s = 2 into (8) and (9), we see that∏
p∈P

(
1 − q−2 deg p

)−1
= ζR(2) =

(
1 − 1

q

)−1

,

and hence ∫
R̂2

X(f, g)λ2(dfdg) =
1

ζR(2)
=

q − 1
q

. �

3.3. Uniform distributivity of {ϕn}∞
n=0 in R̂

We begin with a characterization of continuous functions on R̂.

Definition 4. Let f ∈ R̂ and h ∈ R \ {0}. When deg h ≥ 1,
by Lemma 3(ii), there exists a unique g ∈ R such that −∞ ≤ deg g ≤
deg h−1 and f−g ∈ hR̂. This g is denoted by f mod h. When deg h = 0,
i.e., h is non-zero constant, we always set f mod h := 0.

Definition 5. A function F : R̂ → R is said to be periodic, if there
exists h ∈ R, deg h ≥ 1, such that
(10)

F (f) = F (f mod h) =
∑
g∈R;

−∞≤deg g≤deg h−1

F (g)1hR̂+g(f), f ∈ R̂.
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And F : R̂ → R is said to be almost periodic, if there exists a sequence
{Fm}∞m=1 of periodic functions that converges to F uniformly .

Lemma 6. A function F : R̂ → R is continuous, if and only if it is
almost periodic.

Proof. Lemma 3 implies that periodic functions on R̂ are continuous,
and hence their uniformly convergent limits, that is, almost periodic
functions are continuous.

Conversely, let F be a continuous function on R̂. Since R̂ is compact,
F is uniformly continuous, in particular, for any ε > 0, there is δ > 0
such that for any h ∈ R, d(0, h) < δ, and any f ∈ R̂, it holds that
|F (f) − F (f + h)| < ε. Now fix such an h ∈ R, and define a periodic
function F ′ by

F ′(f) := F (f mod h), f ∈ R̂.

Then we have |F (f)−F ′(f)| < ε, f ∈ R̂. Thus F is almost periodic. �
We next introduce the following lemma, which shows an important

property of our enumeration {ϕn}∞n=0.

Lemma 7. Let m ∈ N and let h ∈ R be a monic polynomial of
degree m. Then, for any j ∈ N, {ϕn mod h ; (j − 1)qm ≤ n < jqm}
forms a complete residue system modulo h. Namely,

{ϕn mod h ; (j − 1)qm ≤ n < jqm} = {g ∈ R ; −∞ ≤ deg g < m}
= {ϕn ; 0 ≤ n < qm}.

Proof. This lemma is due to Hodges [4, p.71]. Since the enumeration
{ϕn}∞n=0 is systematic, we can present a shorter proof here. Let j ∈ N

and let (j − 1)qm ≤ n < jqm. According to the definition of {ϕn}∞n=0,
since

n = (n − (j − 1)qm) + (j − 1)qm, 0 ≤ n − (j − 1)qm < qm,

we have
ϕn = ϕn−(j−1)qm + ϕj−1ϕqm ,

where

deg ϕn−(j−1)qm < m, deg ϕj−1ϕqm

{
≥ m (j > 1),

= −∞ (j = 1).

Noting that r := ϕj−1ϕqm mod h is of degree < m, we see that

{ϕn mod h ; (j − 1)qm ≤ n < jqm}
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= {(ϕn−(j−1)qm + ϕj−1ϕqm) mod h ; (j − 1)qm ≤ n < jqm}
= {(ϕn + r) mod h ; 0 ≤ n < qm}
= {ϕn ; 0 ≤ n < qm}. �

Since R̂ is compact and includes R densely, each continuous function
F : R̂ → R is determined by its values on R. In particular, the integral
of F is determined by the sequence {F (ϕn)}∞n=0. The following lemma
indicates this fact explicitly.

Lemma 8. The sequence {ϕn}∞n=0 is uniformly distributed in R̂,
that is, for any continuous function F : R̂ → R, it holds that

(11) lim
N→∞

1
N

N−1∑
n=0

F (ϕn) =
∫

R̂

F (f̂)λ(df̂ ).

Proof.
1◦ Let F be a periodic function, that is, let us assume F (f) =

F (f mod h), f ∈ R̂, for some nonconstant monic h ∈ R. Then putting
m := deg h and j0 :=

⌊
N
qm

⌋
, Lemma 7 implies that

1
N

N−1∑
n=0

F (ϕn)

=
1
N

N−1∑
n=j0qm

F (ϕn mod h) +
1
N

j0∑
j=1

jqm−1∑
n=(j−1)qm

F (ϕn mod h)

=
1
N

N−1∑
n=j0qm

F (ϕn mod h) +
j0
N

∑
−∞≤deg g<m

F (g).

Letting {t} denote the fractional part of t > 0,∣∣∣∣∣ 1
N

N−1∑
n=0

F (ϕn) − 1
qm

∑
−∞≤deg g<m

F (g)

∣∣∣∣∣
=

∣∣∣∣∣ 1
N

N−1∑
n=j0qm

F (ϕn mod h) +
1
N

( N

qm
−
{ N

qm

}) ∑
−∞≤deg g<m

F (g)

− 1
qm

∑
−∞≤deg g<m

F (g)

∣∣∣∣∣
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≤ 1
N

{
qm max

−∞≤deg g<m
|F (g)| +

∣∣∣ ∑
−∞≤deg g<m

F (g)
∣∣∣}

→ 0 as N → ∞.

Thus (11) holds for periodic functions.
2◦ Let F : R̂ → R be a continuous function. By Lemma 6, for any

ε > 0, there is a periodic function Fε such that ‖F − Fε‖∞ < ε. By 1◦,∣∣∣∣∣ 1
N

N−1∑
n=0

F (ϕn) −
∫

R̂

F (f)λ(df)

∣∣∣∣∣
=

∣∣∣∣∣ 1
N

N−1∑
n=0

(F (ϕn) − Fε(ϕn)) +
1
N

N−1∑
n=0

Fε(ϕn) −
∫

R̂

Fε(f)λ(df)

+
∫

R̂

(Fε(f) − F (f))λ(df)

∣∣∣∣∣
≤ 2ε +

∣∣∣∣∣ 1
N

N−1∑
n=0

Fε(fn) −
∫

R̂

Fε(f)λ(df)

∣∣∣∣∣
→ 0 (first N → ∞, secondly ε → 0).

Thus (11) holds for continuous functions. �
The following corollary follows from Lemma 8 and [9, Chapter III

Lemma 1.1].

Corollary 1. For any continuous function F : R̂2 → R, we have

lim
N→∞

1
N2

N−1∑
m,n=0

F (ϕm, ϕn) =
∫

R̂2
F (f, g)λ2(dfdg).

The assertion of Corollary 1 is referred to as the weak convergence of
the sequence of probability measures4 { 1

N2

∑N−1
m,n=0 δ(ϕm,ϕn)}∞N=1 to λ2.

It is well-known that the weak convergence is equivalent to the following
condition (cf. [10, § 3.1]): For any closed set K ⊂ R̂2, it holds that

(12) lim sup
N→∞

1
N2

N−1∑
m,n=0

δ(ϕm,ϕn)(K) ≤ λ2(K).

4δ(ϕm,ϕn) denotes the δ-measure at (ϕm, ϕn) ∈ R̂2.
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§4. Proof of density theorem

Although Theorem 1 could be proved in an elementary way, we
here prove it in the light of probability theory by means of the adelic
formulation. This section is an analogue of Kubota-Sugita [5, § 6].

If the function X(f, g) were continuous on R̂2, Corollary 1 would
imply Theorem 1. However it is not continuous. Indeed,

B := X−1({1}) =
⋂
p∈P

(R̂2 \ (pR̂)2) ⊂ R̂2

is surely a closed set, but we can show B = ∂B, which means that in any
neighborhood of any point of B, there exists a point for which X = 0.
Thus X is not continuous. That B = ∂B is shown in the following way:
Take any (f, g) ∈ B and any ε > 0. Then choose l, m ∈ N so large that
d
(
0,
∏l

i=1 pm
i

)
< ε. Now find h1, h2 ∈ R such that

{
f mod pl+1 + h1

∏l
i=1 pm

i ≡ 0 (mod pl+1),

g mod pl+1 + h2

∏l
i=1 pm

i ≡ 0 (mod pl+1).

In fact, since
∏l

i=1 pm
i and pl+1 are coprime, there exists k ∈ R such

that k
∏l

i=1 pm
i ≡ 1 (mod pl+1), so that h1 = k(pl+1 − f mod pl+1)

and h2 = k(pl+1 − g mod pl+1) are required ones. Then it is easily
seen that d(f, f + h1

∏l
i=1 pm

i ) < ε, d(g, g + h2

∏l
i=1 pm

i ) < ε, and that
(f + h1

∏l
i=1 pm

i , g + h2

∏l
i=1 pm

i ) �∈ B. Thus B ⊂ ∂B.

Let us begin to prove (2) in Theorem 1. For each monic polynomial
h ∈ R, we set

hB := {(hf, hg) ∈ R̂2 ; (f, g) ∈ B}.

Since hB ∩ R2 = {(f, g) ∈ R2 ; gcd(f, g) = h}, it is easy to see that
(13) ∑

h∈R : monic

δ(ϕm,ϕn)(hB) =

{
1, (m, n) ∈ {0, 1, 2, . . .}2 \ {(0, 0)},
0, (m, n) = (0, 0).

According to Lemma 5, λ2(B) =
∫

R̂2 X(f, g)λ2(dfdg) = (q−1)/q. Hence
by Lemma 4,

λ2(hB) =
1

q2 deg h
· q − 1

q
.
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Since hB is a closed set, (12) implies

(14)
1

q2 deg h
· q − 1

q
= λ2(hB) ≥ lim sup

N→∞

1
N2

N−1∑
m,n=0

δ(ϕm,ϕn)(hB).

Note that by (6), (7) and (9) with s = 2, we have

(15)
∑

h∈R : monic

1
q2 deg h

=
q

q − 1
.

Also, since, for ν ≥ 0 and ϕ ∈ R

−∞ ≤
(<)

deg ϕ ≤ ν ⇐⇒ ϕ ∈
{
ϕm ; 0 ≤

(<)
m ≤ qν+1 − 1

}
,

we see that for N ∈ N∩ [2,∞), taking ν ∈ N∪{0} so that qν ≤ N − 1 <
qν+1,

1
N2

N−1∑
m,n=1

δ(ϕm,ϕn)(hB) ≤ 1
N2

N−1∑
m,n=1

δ(ϕm,ϕn)(hR̂2)

≤ 1
(qν + 1)2

qν+1−1∑
m,n=1

δ(ϕm,ϕn)(hR × hR)

=

(
1

qν + 1

qν+1−1∑
m=1

δϕm(hR)

)2

=

(
#{1 ≤ m ≤ qν+1 − 1 ; h | ϕm}

qν + 1

)2

=

(
#{ϕ ∈ R ; −∞ < deg ϕ ≤ ν, h | ϕ}

qν + 1

)2

=

(
#{k ∈ R \ {0} ; deg(hk) ≤ ν}

qν + 1

)2

=

(
#{k ∈ R ; −∞ < deg k ≤ ν − deg h}

qν + 1

)2

=

⎧⎪⎨⎪⎩
(qν−deg h+1 − 1

qν + 1

)2

, ν ≥ deg h,

0, ν < deg h
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≤ q2

q2 deg h
.

Here the last expression is summable in h ∈ R, monic. Then it follows
from (15), (14) and the Lebesgue-Fatou theorem that

1 − q − 1
q

=
∑

h∈R ; deg h≥1, monic

q − 1
q

· 1
q2 deg h

(16)

≥
∑

h∈R ; deg h≥1, monic

lim sup
N→∞

1
N2

N−1∑
m,n=0

δ(ϕm,ϕn)(hB)

≥
∑

h∈R ; deg h≥1, monic

lim sup
N→∞

1
N2

N−1∑
m,n=1

δ(ϕm,ϕn)(hB)

≥ lim sup
N→∞

∑
h∈R ; deg h≥1, monic

1
N2

N−1∑
m,n=1

δ(ϕm,ϕn)(hB)

= lim sup
N→∞

1
N2

N−1∑
m,n=1

∑
h∈R ; deg h≥1, monic

δ(ϕm,ϕn)(hB).

Subtracting each side of (16) from 1 and noting (13), we have

q − 1
q

≤ lim inf
N→∞

⎛⎝1 − 1
N2

N−1∑
m,n=1

∑
h∈R ; deg h≥1, monic

δ(ϕm,ϕn)(hB)

⎞⎠(17)

= lim inf
N→∞

(
1

N2

N−1∑
m,n=1

(
1 −

∑
h∈R ; deg h≥1, monic

δ(ϕm,ϕn)(hB)
)

+
1

N2

∑
0≤m,n≤N−1;
m=0 or n=0

1

)

= lim inf
N→∞

(
1

N2

N−1∑
m,n=0

δ(ϕm,ϕn)(B)

+
1

N2

∑
0≤m,n≤N−1;
m=0 or n=0

(
1 − δ(ϕm,ϕn)(B)

))

= lim inf
N→∞

1
N2

N−1∑
m,n=0

δ(ϕm,ϕn)(B).
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Finally, (14) with h(x) ≡ 1 and (17) imply that

lim
N→∞

1
N2

N−1∑
m,n=0

δ(ϕm,ϕn)(B) =
q − 1

q
,

which is equivalent to (2).

Next, let us prove (3) in Theorem 1. Take arbitrary f, g ∈ R with
deg f ∨ deg g ≥ 0, and set ϕ′

m := f+ϕm and ϕ′′
n := g+ϕn. Then it is easy

to see that the sequence of probability measures { 1
N2

∑N−1
m,n=0 δ(ϕ′

m,ϕ′′
n)}N

weakly converges to λ2. Furthermore, we have

(18)
∑

h∈R : monic

δ(ϕ′
m,ϕ′′

n)(hB) =

{
1, (ϕ′

m, ϕ′′
n) �= (0, 0),

0, (ϕ′
m, ϕ′′

n) = (0, 0).

By these facts, we can deduce that

(19) lim
N→∞

1
N2

N−1∑
m,n=0

δ(ϕ′
m,ϕ′′

n)(B) =
q − 1

q
,

similarly as the case where (f, g) = (0, 0).

Remark 1. If f, g ∈ R̂ fail to belong to R, (19) may not be true.
The following is one of such examples: Let τ : N×N → N be a bijective
mapping. For each N ∈ N, we consider a system of equations

(f + ϕm) mod pτ(m,n) = 0,

(g + ϕn) mod pτ(m,n) = 0,
m, n = 1, 2, . . . , N,

with unknown variable (f, g) ∈ R̂2. By the Chinese remainder theorem,
the solution (f, g), say (fN , gN) ∈ R2, exists. Since R̂2 is compact,
{(fN , gN)}∞N=1 has a limit point, say (f∞, g∞) ∈ R̂2. Then since for
each p ∈ P , pR̂ is a closed ball, it holds that

(f∞ + ϕm) mod pτ(m,n) = 0,

(g∞ + ϕn) mod pτ(m,n) = 0,
m, n ∈ N.

Clearly, we have X(f∞ + ϕm, g∞ + ϕn) = 0, m, n ∈ N, and hence

lim
N→∞

1
N2

N−1∑
m,n=0

δ(f∞+ϕm,g∞+ϕn)(B) = 0.
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§5. Proof of strong law of large numbers

5.1. Maximal ergodic inequality

Basically, we adopt the method used in Stroock [10, § 5.3]. We begin
with the definition of classical maximal function.

Definition 6. For f ∈ L1(Rl → R), we define Hardy-Littlewood’s
maximal function Mf by

Mf(x) := sup
Q�x

1
|Q|

∫
Q

|f(y)|dy, x ∈ R
l,

where the sup is taken for all cubes Q of the form

Q =
l∏

j=1

[aj , aj + r), a = (a1, . . . , al) ∈ R
l, r > 0

such that Q � x, and

|Q| := the Lebesgue measure of Q.

Lemma 9 (The Hardy-Littlewood inequality). ([10, § 5.3]) For any
0 < α < ∞, it holds that

∣∣{x ∈ R
l; Mf(x) ≥ α

}∣∣ ≤ 12l

α

∫
Rl

|f(y)|dy.

Definition 7. For each m, n = 0, 1, 2, . . ., there exists a unique
k ∈ N ∪ {0} such that ϕm(x) + ϕn(x) = ϕk(x). This k will be denoted
by m · n, that is,

m · n :=
∞∑

i=1

((
d
(q)
i (m) + d

(q)
i (n)

)
mod q

)
qi−1.

As is easily seen, m · n �= m + n in general. Therefore the method
used in Stroock [10, § 5.3] does not work to derive the maximal ergodic
inequality. In this paper, we adopt a modification of Stroock’s method
due to Miki [8].

Lemma 10. ([8]) Let m, n, l = 0, 1, 2, . . ..
(i) m · 0 = m, m · n = n · m, (l · m) · n = l · (m · n).
(ii) The mapping N ∪ {0} � k �→ m · k ∈ N ∪ {0} is bijective.
(iii) (m ∨ n) − (q − 1)(m ∧ n) ≤ m · n ≤ m + n.
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Proof. (i) and (ii) are obvious. We here check (iii). Since, for a, b ∈
{0, 1, . . . , q − 1}

(a + b) mod q =

{
a + b, if a + b < q,

a + b − q, if a + b ≥ q,

it follows that

(a + b) mod q ≤ a + b,

(a + b) mod q + (q − 1)a =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a + b + (q − 1)a
= b + qa, if a + b < q,

a + b − q + (q − 1)a

= b + q(a − 1), if a + b ≥ q > b

≥ b.

Hence, for 0 ≤ m ≤ n

m · n =
∞∑

i=1

((
d
(q)
i (m) + d

(q)
i (n)

)
mod q

)
qi−1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
≤

∞∑
i=1

(
d
(q)
i (m) + d

(q)
i (n)

)
qi−1 = m + n,

≥
∞∑

i=1

(
d
(q)
i (n) − (q − 1)d(q)

i (m)
)
qi−1 = n − (q − 1)m.

�

Lemma 11. For any square array
{
ak1,k2

}
k1,k2∈{0,1,2,...} ⊂ [0,∞)

with
∑∞

k1,k2=0 ak1,k2 < ∞, the following inequality holds: For any α > 0,

#
{

(k1, k2) ∈ {0, 1, 2, . . .}2 ; sup
n≥1

( 1
qn

)2 n−1∑
j1,j2=0

ak1·j1,k2·j2 ≥ α

}

≤ 122

α

∞∑
k1,k2=0

ak1,k2 .

Proof. Put

f(x) :=
∞∑

k1,k2=0

ak1,k21C(k1,k2)(x), x ∈ R
2,

where
C(k1, k2) := [k1, k1 + 1) × [k2, k2 + 1).
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Then clearly we have

(20)
∫

R2
f(x)dx =

∞∑
k1,k2=0

ak1,k2 < ∞,

and maximal function Mf becomes

Mf(x) = sup
Q�x

1
|Q|

∫
Q

f(y)dy(21)

= sup
Q�x

1
|Q|

∑
l1,l2≥0

al1,l2

∣∣C(l1, l2) ∩ Q
∣∣.

Now suppose that x ∈ C(k1, k2) (k1, k2 ∈ {0, 1, 2, . . .}), n ∈ N, and 0 ≤
j1, j2 ≤ n−1. If we take Q = [k1−(q−1)n, k1+n)×[k2−(q−1)n, k2+n),
then Q � x and

(22) Q ⊃ C(k1 · j1, k2 · j2)

holds. Because Lemma 10(iii) implies

k1 · j1 ≥ k1 − (q − 1)n,

k2 · j2 ≥ k2 − (q − 1)n

and

k1 · j1 ≤ k1 + j1 ≤ k1 + n − 1,

k2 · j2 ≤ k2 + j2 ≤ k2 + n − 1,

we see

[k1 · j1, k1 · j1 + 1) ⊂ [k1 − (q − 1)n, k1 + n),

[k2 · j2, k2 · j2 + 1) ⊂ [k2 − (q − 1)n, k2 + n),

and hence (22) holds.
If we take this Q for (21), we have for x ∈ C(k1, k2), n ∈ N that

Mf(x) ≥ 1
|Q|

n−1∑
j1,j2=0

ak1·j1,k2·j2
∣∣C(k1 · j1, k2 · j2) ∩ Q

∣∣
=
( 1

qn

)2 n−1∑
j1,j2=0

ak1·j1,k2·j2 .



The probability of two Fq-polynomials to be coprime 473

Taking sup in n,

Mf(x) ≥
∞∑

k1,k2=0

(
sup
n∈N

( 1
qn

)2 n−1∑
j1,j2=0

ak1·j1,k2·j2

)
1C(k1,k2)(x).

Then for 0 < α < ∞,{
x ∈ [0,∞)2; Mf(x) ≥ α

}
⊃
{

x ∈ [0,∞)2;

∞∑
k1,k2=0

(
sup
n∈N

( 1
qn

)2 n−1∑
j1,j2=0

ak1·j1,k2·j2

)
1C(k1,k2)(x) ≥ α

}

=
⋃

k1,k2≥0;

supn∈N ( 1
qn )2∑n−1

j1,j2=0 ak1·j1,k2·j2≥α

C(k1, k2).

Therefore Lemma 9 and (20) imply

122

α

∞∑
k1,k2=0

ak1,k2

=
122

α

∫
R2

f(x)dx

≥
∣∣∣{x ∈ R

2; Mf(x) ≥ α
}∣∣∣

≥
∣∣∣{x ∈ [0,∞)2; Mf(x) ≥ α

}∣∣∣
≥

∞∑
k1,k2=0

1
supn∈N

(
1

qn

)2∑n−1
j1,j2=0 ak1·j1,k2·j2≥α

= #

⎧⎨⎩(k1, k2) ∈ {0, 1, 2, . . .}2 ; sup
n∈N

( 1
qn

)2 n−1∑
j1,j2=0

ak1·j1,k2·j2 ≥ α

⎫⎬⎭ . �

Lemma 12 (Maximal ergodic inequality). Let F : R̂2 → [0,∞) be
a Borel measurable function such that

E
λ2

[F ] :=
∫

R2
F (f, g)λ2(dfdg) < ∞.
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Then for any 0 < α < ∞, it holds that

λ2

(
sup
N≥1

1
N2

N−1∑
j1,j2=0

F (f + ϕj1 , g + ϕj2) ≥ q2α

)
≤ 242

α
E

λ2
[F ].

Proof. Fix M ∈ N and (f, g) ∈ R̂2. For each k1, k2 ∈ {0, 1, 2, . . .},
we define

ak1,k2(f, g) :=

{
F (f + ϕk1 , g + ϕk2 ), if 0 ≤ k1, k2 ≤ 2M − 1,

0, otherwise.

Then Lemma 11 implies that

#

{
k1, k2 ≥ 0 ; sup

N≥1

( 1
qN

)2 N−1∑
j1,j2=0

ak1·j1,k2·j2(f, g) ≥ α

}

≤ 122

α

∞∑
k1,k2=0

ak1,k2(f, g)

=
122

α

∑
0≤k1,k2≤2M−1

F (f + ϕk1 , g + ϕk2), 0 < α < ∞.

Noting that

0 ≤ k1, k2 ≤ M, 0 ≤ j1, j2 < N, 1 ≤ N ≤ M

⇒ 0 ≤ k1 · j1 ≤ k1 + j1 ≤ M + N − 1 ≤ 2M − 1,

0 ≤ k2 · j2 ≤ k2 + j2 ≤ M + N − 1 ≤ 2M − 1

⇒ ak1·j1,k2·j2(f, g) = F
(
f + ϕk1·j1 , g + ϕk2·j2

)
= F

(
f + ϕk1 + ϕj1 , g + ϕk2 + ϕj2

)
,

we have

#

{
(k1, k2) ∈ {0, 1, 2, . . . , M}2 ;

max
1≤N≤M

( 1
qN

)2 N−1∑
j1,j2=0

F
(
f + ϕk1 + ϕj1 , g + ϕk2 + ϕj2

)
≥ α

}

≤ 122

α

2M−1∑
k1,k2=0

F (f + ϕk1 , g + ϕk2), 0 < α < ∞.
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Therefore taking the expectation E
λ2

of both sides,

M∑
k1,k2=0

λ2

(
max

1≤N≤M

( 1
qN

)2 N−1∑
j1,j2=0

F
(
f + ϕk1 + ϕj1 , g + ϕk2 + ϕj2

)
≥ α

)

≤ 122

α

2M−1∑
k1,k2=0

E
λ2
[
F (f + ϕk1 , g + ϕk2)

]
, 0 < α < ∞.

Since λ2 is shift-invariant, the above inequality reduces to

λ2

(
max

1≤N≤M

( 1
qN

)2 N−1∑
j1,j2=0

F
(
f + ϕj1 , g + ϕj2

)
≥ α

)

≤ 122

α

( 2M

M + 1

)2

E
λ2

[F ], 0 < α < ∞.

Finally, letting M → ∞, the assertion of the lemma follows. �

5.2. Proof of Theorem 2
For simplicity, we here prove Theorem 2 for l = 2 only. The same

method works for general l, too. Namely, what we prove is as follows:

For any F ∈ L1(R̂2, λ2),

(23)
1

N2

N−1∑
m,n=0

F (f + ϕm, g + ϕn) → E
λ2

[F ] λ2-a.e.(f, g).

Proof. Take sequence of continuous functions {Fk}∞k=1 so that

(24) ‖Fk − F‖L1 ≤ 1
k2

, k ∈ N.

By Corollary 1, it holds for each k ∈ N that
(25)

1
N2

N−1∑
m,n=0

Fk(f + ϕm, g + ϕn) → E
λ2

[Fk] as N → ∞, (f, g) ∈ R̂2.

By Lemma 12, it holds for 0 < α < ∞ that

λ2

(
sup
N≥1

1
N2

N−1∑
j1,j2=0

∣∣Fk(f + ϕj1 , g + ϕj2) − F (f + ϕj1 , g + ϕj2)
∣∣ ≥ q2α

)

≤ 242

α
E

λ2[|Fk − F |
]
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≤ 242

α
· 1
k2

.

From this, it follows that

∞∑
k=1

λ2

(
(f, g) ∈ R̂2 ;

sup
N≥1

1
N2

N−1∑
j1,j2=0

∣∣Fk(f + ϕj1 , g + ϕj2) − F (f + ϕj1 , g + ϕj2 )
∣∣ ≥ q2

√
k

)

≤
∞∑

k=1

242
√

k
1
k2

< ∞,

which means that

lim
k→∞

sup
N≥1

1
N2

N−1∑
j1,j2=0

∣∣Fk(f +ϕj1 , g +ϕj2)−F (f +ϕj1 , g +ϕj2)
∣∣ = 0, a.s.

Consequently, by (24) and (25), we see that∣∣∣∣∣ 1
N2

N−1∑
j1,j2=0

F (f + ϕj1 , g + ϕj2 ) − E
λ2

[F ]

∣∣∣∣∣(26)

=

∣∣∣∣∣ 1
N2

N−1∑
j1,j2=0

(
F (f + ϕj1 , g + ϕj2) − Fk(f + ϕj1 , g + ϕj2)

)

+
1

N2

N−1∑
j1,j2=0

Fk(f + ϕj1 , g + ϕj2) − E
λ2[

Fk

]
+ E

λ2[
Fk

]
− E

λ2[
F
]∣∣∣∣∣

≤ 1
N2

N−1∑
j1,j2=0

∣∣∣F (f + ϕj1 , g + ϕj2 ) − Fk(f + ϕj1 , g + ϕj2 )
∣∣∣

+

∣∣∣∣∣ 1
N2

N−1∑
j1,j2=0

Fk(f + ϕj1 , g + ϕj2 ) − E
λ2[

Fk

]∣∣∣∣∣
+ E

λ2
[∣∣Fk − F

∣∣]
≤ sup

M≥1

1
M2

M−1∑
j1,j2=0

∣∣∣F (f + ϕj1 , g + ϕj2 ) − Fk(f + ϕj1 , g + ϕj2 )
∣∣∣
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+

∣∣∣∣∣ 1
N2

N−1∑
j1,j2=0

Fk(f + ϕj1 , g + ϕj2 ) − E
λ2[

Fk

]∣∣∣∣∣
+

1
k2

→ 0 a.s. (first N → ∞, secondly k → ∞). �

Remark 2. If F ∈ Lp(R̂2, λ2) for some 1 ≤ p < ∞, the convergence
in (23) is in fact an Lp-convergence. Indeed, for any ε > 0, there exists
a bounded measurable function Fε : R̂2 → R such that

‖F − Fε‖Lp < ε.

A similar estimate as (26) can be done in Lp-norm in the following way:∣∣∣∣∣
∣∣∣∣∣ 1
N2

N−1∑
m,n=0

F (f + ϕm, g + ϕn) − E
λ2

[F ]

∣∣∣∣∣
∣∣∣∣∣
Lp

≤ 1
N2

N−1∑
m,n=0

||F (f + ϕm, g + ϕn) − Fε(f + ϕm, g + ϕn)||Lp

+

∣∣∣∣∣
∣∣∣∣∣ 1
N2

N−1∑
m,n=0

Fε(f + ϕm, g + ϕn) − E
λ2

[Fε]

∣∣∣∣∣
∣∣∣∣∣
Lp

+ ||Fε − F ||Lp

<

∣∣∣∣∣
∣∣∣∣∣ 1
N2

N−1∑
m,n=0

Fε(f + ϕm, g + ϕn) − E
λ2

[Fε]

∣∣∣∣∣
∣∣∣∣∣
Lp

+ 2ε

→ 0 (first N → ∞, secondly ε → 0).

References

[ 1 ] P. Billingsley, Convergence of probability measures, John Willey & Sons,
1968.
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