Advanced Studies in Pure Mathematics 49, 2007
Probability and Number Theory - Kanazawa 2005
pp. 455-478

The probability of two \mathbb{F}_{q}-polynomials to be coprime

Hiroshi Sugita ${ }^{\dagger}$ and Satoshi Takanobu ${ }^{\ddagger}$

Abstract.

By means of the adelic compactification \widehat{R} of the polynomial ring $R:=\mathbb{F}_{q}[x], q$ being a prime, we give a probabilistic proof to a density theorem:

$$
\frac{\#\left\{(m, n) \in\{0,1, \ldots, N-1\}^{2} ; \varphi_{m} \text { and } \varphi_{n} \text { are coprime }\right\}}{N^{2}} \rightarrow \frac{q-1}{q}
$$

as $N \rightarrow \infty$, for a suitable enumeration $\left\{\varphi_{n}\right\}_{n=0}^{\infty}$ of R. Then establishing a maximal ergodic inequality for the family of shifts $\left\{\widehat{R} \ni f \mapsto f+\varphi_{n} \in\right.$ $\widehat{R}\}_{n=0}^{\infty}$, we prove a strong law of large numbers as an extension of the density theorem.

§1. Introduction

Dirichlet [2] discovered a density theorem that asserts the probability of two integers to be coprime be $6 / \pi^{2}$, that is,
$\lim _{N \rightarrow \infty} \frac{\#\left\{(m, n) \in \mathbb{N}^{2} ; 1 \leq m, n \leq N, \operatorname{gcd}(m, n)=1\right\}}{N^{2}}=\zeta(2)^{-1}=\frac{6}{\pi^{2}}$.
The notion of density is something like a probability, but it is not exactly a probability. In order to give a rigorous probabilistic interpretation to this theorem, Kubota-Sugita [5] gave an adelic version of (1), that is, the probability of two adelic integers to be coprime is precisely $6 / \pi^{2}$,

[^0]
and they derived (1) from the adelic version. Soon after that, SugitaTakanobu [11] established a strong law of large numbers (S.L.L.N. for short) in Kubota-Sugita [5]'s setting, and furthermore, discovered a new limit theorem which corresponds to the central limit theorem in usual cases.

In this paper, we discuss an analogy of these works for the polynomial ring $\mathbb{F}_{q}[x]=: R, q$ being a prime, using again the adelic compactification \widehat{R} of R. As a result, an S.L.L.N. holds in this case, too.

However, the proofs here are not a complete analogue of the previous ones. Indeed, in many points R and \widehat{R} resemble \mathbb{Z} and its adelic compactification $\widehat{\mathbb{Z}}$ respectively, but in some points they are quite different. For example, \mathbb{Z} has a natural linear order, while R does not, so that we need to define an appropriate enumeration $R=\left\{\varphi_{n}\right\}_{n=0}^{\infty}$. And the family of shifts $\{x \mapsto x+n\}_{n=0}^{\infty}$ in $\widehat{\mathbb{Z}}$ forms a semigroup with respect to the addition of the parameter n, while the family of shifts $\left\{f \mapsto f+\varphi_{n}\right\}_{n=0}^{\infty}$ in \widehat{R} does not, i.e., in general, $\varphi_{m}+\varphi_{n} \neq \varphi_{m+n}$. In particular, the latter is a strong obstacle in proving an S.L.L.N. (Theorem 2 below), which is finally overcome by adopting a modification of Stroock [10, §5.3]'s method due to Miki [8].

§2. Summary of theorems

We here present three theorems as well as definitions and a lemma to state them. The proof of the theorems will be given in the following sections.

Definition 1. Let q be a prime, $\mathbb{F}_{q}:=\mathbb{Z} / q \mathbb{Z} \cong\{0,1, \ldots, q-1\}$ be the finite field consisting of q elements, and R be the ring of all \mathbb{F}_{q}-polynomials, i.e., $R:=\mathbb{F}_{q}[x]$. We enumerate R as follows:

$$
\varphi_{n}(x):=\sum_{i=1}^{\infty} b_{i}^{(q)}(n) x^{i-1}, \quad n=0,1,2, \ldots
$$

where $b_{i}^{(q)}(n) \in\{0,1, \ldots, q-1\}$ denotes the i-th digit of n in its q-adic expansion, namely

$$
n=\sum_{i=1}^{\infty} b_{i}^{(q)}(n) q^{i-1}, \quad n \in \mathbb{N} \cup\{0\}
$$

Both of infinite sums above are actually finite sums for each n.
The following density theorem is an analogue of (1).

Theorem 1. The probability of two elements in R to be coprime is $(q-1) / q$. More precisely ${ }^{1}$,
(2) $\lim _{N \rightarrow \infty} \frac{\#\left\{(m, n) \in\{0,1, \ldots, N-1\}^{2} ; \operatorname{gcd}\left(\varphi_{m}, \varphi_{n}\right)=1\right\}}{N^{2}}=\frac{q-1}{q}$.

More generally, for any $f, g \in R$, we have
(3) $\lim _{N \rightarrow \infty} \frac{\#\left\{(m, n) \in\{0,1, \ldots, N-1\}^{2} ; \operatorname{gcd}\left(f+\varphi_{m}, g+\varphi_{n}\right)=1\right\}}{N^{2}}$
$=\frac{q-1}{q}$.
The limit $(q-1) / q$ appearing in Theorem 1 is equal to $\zeta_{R}(2)^{-1}$, where

$$
\zeta_{R}(s):=\left(1-\frac{1}{q^{s-1}}\right)^{-1}
$$

is the zeta function associated with R. See $\S 4$ below.
Let us introduce the adelic compactification \widehat{R} of R. We say $p \in R$ is irreducible, if it is not a constant (or, an element of \mathbb{F}_{q}) and if p cannot be divided by any $f \in R$ with $0<\operatorname{deg} f<\operatorname{deg} p$. Let \mathcal{P} denote the set of all monic irreducible polynomials.

Definition 2. For each $p \in \mathcal{P}$, we define a metric d_{p} on R by

$$
d_{p}(f, g)=\inf \left\{q^{-n \operatorname{deg} p} ; p^{n} \mid(f-g)\right\}, \quad f, g \in R
$$

Let R_{p} denote the completion of R by the metric d_{p}. It is a compact ring and has a unique Borel probability measure λ_{p} which is invariant under the shifts $\left\{R_{p} \ni f \mapsto f+g\right\}_{g \in R_{p}}$ (Haar probability measure).

Now we define

$$
\widehat{R}:=\prod_{p \in \mathcal{P}} R_{p}, \quad \lambda:=\prod_{p \in \mathcal{P}} \lambda_{p}
$$

The arithmetic operation ' + ' and ' \times ' being defined coordinate-wise, \widehat{R} becomes a compact ring under the product topology. And λ becomes the unique Haar probability measure on \widehat{R}.

[^1]\widehat{R} is metrizable with the following metric ${ }^{2}$:
\[

$$
\begin{aligned}
d\left(\left(f_{1}, f_{2}, \ldots\right),\left(g_{1}, g_{2}, \ldots\right)\right): & =\sum_{i=1}^{\infty} 2^{-i} d_{p_{i}}\left(f_{i}, g_{i}\right), \\
& f=\left(f_{1}, f_{2}, \ldots\right), g=\left(g_{1}, g_{2}, \ldots\right) \in \widehat{R} .
\end{aligned}
$$
\]

Lemma 1. The diagonal set $D:=\{(f, f, \ldots) \in \widehat{R} ; f \in R\}$ is dense in \widehat{R}.

Proof. According to the Chinese remainder theorem, for any $k, m \in$ \mathbb{N} and any $f_{1}, \ldots, f_{k} \in R$, there exists $f \in R$ such that $f=f_{i} \bmod$ $p_{i}^{m}, i=1, \ldots, k$. This implies that D is dense in $R \times R \times \cdots$ with respect to the metric d.

Identifying R with D, we can regard R as a dense subring of \widehat{R} by Lemma 1. Since R is countable, we have $\lambda(R)=0$.

Now we can mention an S.L.L.N.
Theorem 2. For each $F \in L^{1}\left(\widehat{R}^{l}, \lambda^{l}\right)$,

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N^{l}} \sum_{n_{1}, \ldots, n_{l}=0}^{N-1} F\left(f_{1}+\varphi_{n_{1}}, \ldots, f_{l}+\varphi_{n_{l}}\right) \\
& =\int_{\hat{R}^{l}} F\left(\hat{f}_{1}, \ldots, \hat{f}_{l}\right) \lambda^{l}\left(d \hat{f}_{1} \cdots d \hat{f}_{l}\right), \quad \lambda^{l} \text {-a.e. }\left(f_{1}, \ldots, f_{l}\right) .
\end{aligned}
$$

As a special case of Theorem 2, we have an S.L.L.N.-version of Theorem 1.

Definition 3. For $f, g \in \widehat{R}$, we define

$$
\begin{gathered}
\rho_{p}(f):= \begin{cases}1 & (f \in p \widehat{R}), \\
0 & (f \notin p \widehat{R}),\end{cases} \\
X(f, g):=\prod_{p \in \mathcal{P}}\left(1-\rho_{p}(f) \rho_{p}(g)\right) .
\end{gathered}
$$

Note that for $f, g \in R, X(f, g)=1$ if and only if $\operatorname{gcd}(f, g)=1$.
Theorem 3.

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{m, n=0}^{N-1} X\left(f+\varphi_{m}, g+\varphi_{n}\right)=\frac{q-1}{q}, \quad \lambda^{2} \text {-a.e. }(f, g) .
$$

[^2]

§3. $\widehat{\boldsymbol{R}}$ - Preliminaries

3.1. Basic properties

Although all lemmas in this subsection can be proved essentially in the same way as in the case of $\widehat{\mathbb{Z}}$, we give them proofs to make this paper self-contained.

Lemma 2. Let $p, p^{\prime} \in \mathcal{P}, p \neq p^{\prime}$, and $k \in \mathbb{N}$.
(i) $p^{k} R_{p}$ is a closed and open ball.
(ii) $p^{k} R_{p^{\prime}}=R_{p^{\prime}}$.

Proof. (i) That

$$
\begin{aligned}
p^{k} R_{p} & =\left\{f \in R_{p} ; d_{p}(f, 0) \leq q^{-k \operatorname{deg} p}\right\} \\
& =\left\{f \in R_{p} ; d_{p}(f, 0)<q^{-(k-1) \operatorname{deg} p}\right\}
\end{aligned}
$$

shows $p^{k} R_{p}$ is closed and open.
(ii) Since $p^{k} R_{p^{\prime}} \subset R_{p^{\prime}}$ is clear, we show the converse inclusion. To this end, it is sufficient to show the existence of $g \in R_{p^{\prime}}$ for which $p^{k} g=1$. For each $m \in \mathbb{N}$, there exists $g_{m} \in R$ such that $p^{k} g_{m} \equiv 1 \bmod \left(p^{\prime}\right)^{m}$, i.e., $d_{p^{\prime}}\left(p^{k} g_{m}, 1\right) \leq q^{-m \operatorname{deg} p^{\prime}}$. Then for $n>m$, we have $p^{k}\left(g_{n}-g_{m}\right) \equiv$ $0 \bmod \left(p^{\prime}\right)^{m}$, and hence

$$
d_{p^{\prime}}\left(p^{k} g_{n}, p^{k} g_{m}\right)=d_{p^{\prime}}\left(g_{n}, g_{m}\right) \leq q^{-m \operatorname{deg} p^{\prime}}
$$

This implies $\left\{g_{m}\right\}_{m=1}^{\infty}$ is a Cauchy sequence in $R_{p^{\prime}}$. Then its limit $g \in R_{p^{\prime}}$ satisfies

$$
d_{p^{\prime}}\left(p^{k} g, 1\right)=\lim _{m \rightarrow \infty} d_{p^{\prime}}\left(p^{k} g_{m}, 1\right)=0
$$

in other words, $p^{k} g=1$.
Lemma 3. Let $f \in R$ and $\operatorname{deg} f \geq 1$.
(i) For ${ }^{3}-\infty \leq \operatorname{deg} g \leq \operatorname{deg} f-1$, the set $(f \widehat{R}+g)$ is closed and open.
(ii) $\widehat{R}=\cup_{g \in R ;-\infty \leq \operatorname{deg} g \leq \operatorname{deg} f-1}(f \widehat{R}+g)$, which is a disjoint union.

Proof. (i) We may assume f to be monic. Let $f=\prod_{p \in \mathcal{P}} p^{\alpha_{p}(f)}$ be the prime factor decomposition, where $\alpha_{p}(f)=0$ holds except for finite number of $p \in \mathcal{P}$. By Lemma 2,

$$
\begin{equation*}
f \widehat{R}=\prod_{p \in \mathcal{P}} f R_{p}=\prod_{p \in \mathcal{P}} p^{\alpha_{p}(f)} R_{p} \tag{4}
\end{equation*}
$$

[^3]
where each $p^{\alpha_{p}(f)} R_{p}$ is closed and open, and hence $f \widehat{R}$ is closed and open, too. Since the shift $\widehat{R} \ni f \mapsto(f+g) \in \widehat{R}$ is a homeomorphism, ($f \widehat{R}+g$) is closed and open, too.
(ii) Since R is dense in \widehat{R} and $h \mapsto f h+g$ is a continuous and closed mapping, we have $\overline{f R+g}=f \widehat{R}+g$. On the other hand, since $R=$ $\cup_{g \in R ;-\infty \leq \operatorname{deg} g \leq \operatorname{deg} f-1}(f R+g)$, we see
$$
\widehat{R}=\bigcup_{\substack{g \in R ; \\-\infty \leq \operatorname{deg} g \leq \operatorname{deg} f-1}}(f \widehat{R}+g)
$$

Let us next show that the above union is disjoint. Let g, g^{\prime} be distinct polynomials both of which are of lower degree than f. By (i), $A:=$ $(f \widehat{R}+g) \cap\left(f \widehat{R}+g^{\prime}\right)$ is an open set. If $A \neq \emptyset$, then $R \cap A \neq \emptyset$, because R is dense in \widehat{R}. But then, for $l \in R \cap A$, we see that

$$
d_{p}(l-g, 0) \leq p^{-\alpha_{p}(f)}, \quad d_{p}\left(l-g^{\prime}, 0\right) \leq p^{-\alpha_{p}(f)}, \quad p \in \mathcal{P}
$$

which means that for any $p \in \mathcal{P}, p^{\alpha_{p}(f)} \mid\left(g-g^{\prime}\right)$. Thus we see $f \mid\left(g-g^{\prime}\right)$, which is impossible. Consequently, we must have $A=\emptyset$.

Lemma 4. For $f \in R \backslash\{0\}$ and $A \in \mathcal{B}(\widehat{R})$, we have $f A \in \mathcal{B}(\widehat{R})$ and that

$$
\begin{equation*}
\lambda(f A)=q^{-\operatorname{deg} f} \lambda(A) \tag{5}
\end{equation*}
$$

Proof. Since \widehat{R} is a complete separable metric space and the multiplication $\widehat{R} \ni g \mapsto f g \in \widehat{R}$ is injective and Borel measurable, it holds that $f A \in \mathcal{B}(\widehat{R})(c f . \quad[9$, Chapter I Theorem 3.9]). Next, let ν be a Borel probability measure on \widehat{R} defined by

$$
\nu(A)=\frac{\lambda(f A)}{\lambda(f \widehat{R})}, \quad A \in \mathcal{B}(\widehat{R})
$$

Then ν is clearly shift invariant, and hence $\nu=\lambda$ by the uniqueness of the Haar measure. Thus we see $\lambda(f A)=\lambda(f \widehat{R}) \lambda(A)$. Lemma 3 and the shift invariance of λ imply

$$
1=\lambda(\widehat{R})=\sum_{\substack{g \in R ; \\-\infty \leq \operatorname{deg} g \leq \operatorname{deg} f-1}} \lambda(f \widehat{R}+g)=q^{\operatorname{deg} f} \lambda(f \widehat{R}),
$$

from which (5) immediately follows.

3.2. Zeta function associated with R

Let us define the zeta function associated with R :

$$
\begin{equation*}
\zeta_{R}(s):=\sum_{f \in R: \text { monic }} \frac{1}{N(f)^{s}}, \quad \operatorname{Re} s>1 \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
N(f):=\text { the number of residue classes } R / f R=q^{\operatorname{deg} f} \tag{7}
\end{equation*}
$$

Since the polynomial ring R is a unique factorization domain, and

$$
N(f g)=N(f) N(g)
$$

we have an Euler product representation of ζ_{R} :

$$
\begin{equation*}
\zeta_{R}(s)=\prod_{p \in \mathcal{P}}\left(1-\frac{1}{N(p)^{s}}\right)^{-1}=\prod_{p \in \mathcal{P}}\left(1-\frac{1}{q^{s \operatorname{deg} p}}\right)^{-1} \tag{8}
\end{equation*}
$$

Surprisingly, the following extremely simple formula holds:

$$
\begin{equation*}
\zeta_{R}(s)=\left(1-\frac{1}{q^{s-1}}\right)^{-1} \tag{9}
\end{equation*}
$$

Let us show (9). Let $g(m):=\sum_{d \mid m} \mu\left(\frac{m}{d}\right) q^{d}$, where μ is the Möbius function. Then the Möbius inversion formula implies

$$
q^{n}=\sum_{d \mid n} g(d), \quad n \in \mathbb{N}
$$

We must also recall that (See [7, 3.25. Theorem])

$$
\#\{p \in \mathcal{P} ; \operatorname{deg} p=m\}=\frac{1}{m} g(m)
$$

Now noting that $\log (1-t)^{-1}=\sum_{n=1}^{\infty} \frac{t^{n}}{n}(|t|<1)$,

$$
\begin{aligned}
\log \zeta_{R}(s) & =\sum_{p \in \mathcal{P}} \log \left(1-\frac{1}{q^{s \operatorname{deg} p}}\right)^{-1}=\sum_{p \in \mathcal{P}} \sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{q^{n s \operatorname{deg} p}} \\
& =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{q^{s m n}} \#\{p \in \mathcal{P} ; \operatorname{deg} p=m\}=\sum_{m, n=1}^{\infty} \frac{1}{m n} \frac{1}{q^{s m n}} g(m) \\
& =\sum_{l=1}^{\infty} \frac{1}{l} \frac{1}{q^{s l}} \sum_{m \mid l} g(m)=\sum_{l=1}^{\infty} \frac{1}{l}\left(\frac{1}{q^{s-1}}\right)^{l}
\end{aligned}
$$

$$
=\log \left(1-\frac{1}{q^{s-1}}\right)^{-1} .
$$

Thus we have (9).
Theorem 3 follows from the next lemma and Theorem 2.
Lemma 5.

$$
\int_{\widehat{R}^{2}} X(f, g) \lambda^{2}(d f d g)=\frac{q-1}{q} .
$$

Proof.

$$
\begin{aligned}
\int_{\widehat{R}^{2}} X(f, g) \lambda^{2}(d f d g) & =\prod_{p \in \mathcal{P}} \int_{\widehat{R}^{2}}\left(1-\rho_{p}(f) \rho_{p}(g)\right) \lambda^{2}(d f d g) \\
& =\prod_{p \in \mathcal{P}}\left(1-\int_{\widehat{R}} \rho_{p}(f) \lambda(d f) \int_{\widehat{R}} \rho_{p}(g) \lambda(d g)\right) \\
& =\prod_{p \in \mathcal{P}}\left(1-q^{-\operatorname{deg} p} q^{-\operatorname{deg} p}\right) \\
& =\prod_{p \in \mathcal{P}}\left(1-q^{-2 \operatorname{deg} p}\right) .
\end{aligned}
$$

On the other hand, plugging $s=2$ into (8) and (9), we see that

$$
\prod_{p \in \mathcal{P}}\left(1-q^{-2 \operatorname{deg} p}\right)^{-1}=\zeta_{R}(2)=\left(1-\frac{1}{q}\right)^{-1}
$$

and hence

$$
\int_{\widehat{R}^{2}} X(f, g) \lambda^{2}(d f d g)=\frac{1}{\zeta_{R}(2)}=\frac{q-1}{q} .
$$

3.3. Uniform distributivity of $\left\{\varphi_{n}\right\}_{n=0}^{\infty}$ in \widehat{R}

We begin with a characterization of continuous functions on \widehat{R}.
Definition 4. Let $f \in \widehat{R}$ and $h \in R \backslash\{0\}$. When $\operatorname{deg} h \geq 1$, by Lemma 3(ii), there exists a unique $g \in R$ such that $-\infty \leq \operatorname{deg} g \leq$ $\operatorname{deg} h-1$ and $f-g \in h \widehat{R}$. This g is denoted by $f \bmod h$. When $\operatorname{deg} h=0$, i.e., h is non-zero constant, we always set $f \bmod h:=0$.

Definition 5. A function $F: \widehat{R} \rightarrow \mathbb{R}$ is said to be periodic, if there exists $h \in R, \operatorname{deg} h \geq 1$, such that

$$
\begin{equation*}
F(f)=F(f \bmod h)=\sum_{\substack{g \in R ; \\-\infty \leq \operatorname{deg} g \leq \operatorname{deg} h-1}} F(g) \mathbf{1}_{h \widehat{R}+g}(f), \quad f \in \widehat{R} . \tag{10}
\end{equation*}
$$

And $F: \widehat{R} \rightarrow \mathbb{R}$ is said to be almost periodic, if there exists a sequence $\left\{F_{m}\right\}_{m=1}^{\infty}$ of periodic functions that converges to F uniformly .

Lemma 6. A function $F: \widehat{R} \rightarrow \mathbb{R}$ is continuous, if and only if it is almost periodic.

Proof. Lemma 3 implies that periodic functions on \widehat{R} are continuous, and hence their uniformly convergent limits, that is, almost periodic functions are continuous.

Conversely, let F be a continuous function on \widehat{R}. Since \widehat{R} is compact, F is uniformly continuous, in particular, for any $\varepsilon>0$, there is $\delta>0$ such that for any $h \in R, d(0, h)<\delta$, and any $f \in \widehat{R}$, it holds that $|F(f)-F(f+h)|<\varepsilon$. Now fix such an $h \in R$, and define a periodic function F^{\prime} by

$$
F^{\prime}(f):=F(f \bmod h), \quad f \in \widehat{R}
$$

Then we have $\left|F(f)-F^{\prime}(f)\right|<\varepsilon, f \in \widehat{R}$. Thus F is almost periodic.
We next introduce the following lemma, which shows an important property of our enumeration $\left\{\varphi_{n}\right\}_{n=0}^{\infty}$.

Lemma 7. Let $m \in \mathbb{N}$ and let $h \in R$ be a monic polynomial of degree m. Then, for any $j \in \mathbb{N}$, $\left\{\varphi_{n} \bmod h ;(j-1) q^{m} \leq n<j q^{m}\right\}$ forms a complete residue system modulo h. Namely,

$$
\begin{aligned}
\left\{\varphi_{n} \bmod h ;(j-1) q^{m} \leq n<j q^{m}\right\} & =\{g \in R ;-\infty \leq \operatorname{deg} g<m\} \\
& =\left\{\varphi_{n} ; 0 \leq n<q^{m}\right\}
\end{aligned}
$$

Proof. This lemma is due to Hodges [4, p.71]. Since the enumeration $\left\{\varphi_{n}\right\}_{n=0}^{\infty}$ is systematic, we can present a shorter proof here. Let $j \in \mathbb{N}$ and let $(j-1) q^{m} \leq n<j q^{m}$. According to the definition of $\left\{\varphi_{n}\right\}_{n=0}^{\infty}$, since

$$
n=\left(n-(j-1) q^{m}\right)+(j-1) q^{m}, \quad 0 \leq n-(j-1) q^{m}<q^{m}
$$

we have

$$
\varphi_{n}=\varphi_{n-(j-1) q^{m}}+\varphi_{j-1} \varphi_{q^{m}}
$$

where

$$
\operatorname{deg} \varphi_{n-(j-1) q^{m}}<m, \quad \operatorname{deg} \varphi_{j-1} \varphi_{q^{m}} \begin{cases}\geq m & (j>1) \\ =-\infty & (j=1)\end{cases}
$$

Noting that $r:=\varphi_{j-1} \varphi_{q^{m}} \bmod h$ is of degree $<m$, we see that

$$
\left\{\varphi_{n} \bmod h ;(j-1) q^{m} \leq n<j q^{m}\right\}
$$

$$
\begin{aligned}
& =\left\{\left(\varphi_{n-(j-1) q^{m}}+\varphi_{j-1} \varphi_{q^{m}}\right) \bmod h ;(j-1) q^{m} \leq n<j q^{m}\right\} \\
& =\left\{\left(\varphi_{n}+r\right) \bmod h ; 0 \leq n<q^{m}\right\} \\
& =\left\{\varphi_{n} ; 0 \leq n<q^{m}\right\} .
\end{aligned}
$$

Since \widehat{R} is compact and includes R densely, each continuous function $F: \widehat{R} \rightarrow \mathbb{R}$ is determined by its values on R. In particular, the integral of F is determined by the sequence $\left\{F\left(\varphi_{n}\right)\right\}_{n=0}^{\infty}$. The following lemma indicates this fact explicitly.

Lemma 8. The sequence $\left\{\varphi_{n}\right\}_{n=0}^{\infty}$ is uniformly distributed in \widehat{R}, that is, for any continuous function $F: \widehat{R} \rightarrow \mathbb{R}$, it holds that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} F\left(\varphi_{n}\right)=\int_{\widehat{R}} F(\hat{f}) \lambda(d \hat{f}) . \tag{11}
\end{equation*}
$$

Proof.
$\underline{1}$. Let F be a periodic function, that is, let us assume $F(f)=$ $F(f \overline{\bmod } h), f \in \widehat{R}$, for some nonconstant monic $h \in R$. Then putting $m:=\operatorname{deg} h$ and $j_{0}:=\left\lfloor\frac{N}{q^{m}}\right\rfloor$, Lemma 7 implies that

$$
\begin{aligned}
\frac{1}{N} & \sum_{n=0}^{N-1} F\left(\varphi_{n}\right) \\
& =\frac{1}{N} \sum_{n=j_{0} q^{m}}^{N-1} F\left(\varphi_{n} \bmod h\right)+\frac{1}{N} \sum_{j=1}^{j_{0}} \sum_{n=(j-1) q^{m}}^{j q^{m}-1} F\left(\varphi_{n} \bmod h\right) \\
& =\frac{1}{N} \sum_{n=j_{0} q^{m}}^{N-1} F\left(\varphi_{n} \bmod h\right)+\frac{j_{0}}{N} \sum_{-\infty \leq \operatorname{deg} g<m} F(g)
\end{aligned}
$$

Letting $\{t\}$ denote the fractional part of $t>0$,

$$
\begin{aligned}
& \left\lvert\, \frac{1}{N}\right. \left.\sum_{n=0}^{N-1} F\left(\varphi_{n}\right)-\frac{1}{q^{m}} \sum_{-\infty \leq \operatorname{deg} g<m} F(g) \right\rvert\, \\
&= \left\lvert\, \frac{1}{N} \sum_{n=j_{0} q^{m}}^{N-1} F\left(\varphi_{n} \bmod h\right)+\frac{1}{N}\left(\frac{N}{q^{m}}-\left\{\frac{N}{q^{m}}\right\}\right) \sum_{-\infty \leq \operatorname{deg} g<m} F(g)\right. \\
& \left.\quad-\frac{1}{q^{m}} \sum_{-\infty \leq \operatorname{deg} g<m} F(g) \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{N}\left\{q^{m} \max _{-\infty \leq \operatorname{deg} g<m}|F(g)|+\left|\sum_{-\infty \leq \operatorname{deg} g<m} F(g)\right|\right\} \\
& \rightarrow 0 \text { as } N \rightarrow \infty .
\end{aligned}
$$

Thus (11) holds for periodic functions.
$\underline{2^{\circ}}$ Let $F: \widehat{R} \rightarrow \mathbb{R}$ be a continuous function. By Lemma 6 , for any $\varepsilon>0$, there is a periodic function F_{ε} such that $\left\|F-F_{\varepsilon}\right\|_{\infty}<\varepsilon$. By 1°,

$$
\begin{aligned}
& \left|\frac{1}{N} \sum_{n=0}^{N-1} F\left(\varphi_{n}\right)-\int_{\widehat{R}} F(f) \lambda(d f)\right| \\
& =\left\lvert\, \frac{1}{N} \sum_{n=0}^{N-1}\left(F\left(\varphi_{n}\right)-F_{\varepsilon}\left(\varphi_{n}\right)\right)+\frac{1}{N} \sum_{n=0}^{N-1} F_{\varepsilon}\left(\varphi_{n}\right)-\int_{\widehat{R}} F_{\varepsilon}(f) \lambda(d f)\right. \\
& \quad+\int_{\widehat{R}}\left(F_{\varepsilon}(f)-F(f)\right) \lambda(d f) \mid \\
& \leq 2 \varepsilon+\left|\frac{1}{N} \sum_{n=0}^{N-1} F_{\varepsilon}\left(f_{n}\right)-\int_{\widehat{R}} F_{\varepsilon}(f) \lambda(d f)\right| \\
& \quad \rightarrow 0 \quad(\text { first } N \rightarrow \infty, \text { secondly } \varepsilon \rightarrow 0) .
\end{aligned}
$$

Thus (11) holds for continuous functions.
The following corollary follows from Lemma 8 and [9, Chapter III Lemma 1.1].

Corollary 1. For any continuous function $F: \widehat{R}^{2} \rightarrow \mathbb{R}$, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{m, n=0}^{N-1} F\left(\varphi_{m}, \varphi_{n}\right)=\int_{\widehat{R}^{2}} F(f, g) \lambda^{2}(d f d g) .
$$

The assertion of Corollary 1 is referred to as the weak convergence of the sequence of probability measures ${ }^{4}\left\{\frac{1}{N^{2}} \sum_{m, n=0}^{N-1} \delta_{\left(\varphi_{m}, \varphi_{n}\right)}\right\}_{N=1}^{\infty}$ to λ^{2}. It is well-known that the weak convergence is equivalent to the following condition (cf. [10, §3.1]): For any closed set $K \subset \widehat{R}^{2}$, it holds that

$$
\begin{equation*}
\limsup _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{m, n=0}^{N-1} \delta_{\left(\varphi_{m}, \varphi_{n}\right)}(K) \leq \lambda^{2}(K) \tag{12}
\end{equation*}
$$

[^4]
§4. Proof of density theorem

Although Theorem 1 could be proved in an elementary way, we here prove it in the light of probability theory by means of the adelic formulation. This section is an analogue of Kubota-Sugita [5, § 6].

If the function $X(f, g)$ were continuous on \widehat{R}^{2}, Corollary 1 would imply Theorem 1. However it is not continuous. Indeed,

$$
B:=X^{-1}(\{1\})=\bigcap_{p \in \mathcal{P}}\left(\widehat{R}^{2} \backslash(p \widehat{R})^{2}\right) \subset \widehat{R}^{2}
$$

is surely a closed set, but we can show $B=\partial B$, which means that in any neighborhood of any point of B, there exists a point for which $X=0$. Thus X is not continuous. That $B=\partial B$ is shown in the following way: Take any $(f, g) \in B$ and any $\varepsilon>0$. Then choose $l, m \in \mathbb{N}$ so large that $d\left(0, \prod_{i=1}^{l} p_{i}^{m}\right)<\varepsilon$. Now find $h_{1}, h_{2} \in R$ such that

$$
\begin{cases}f \bmod p_{l+1}+h_{1} \prod_{i=1}^{l} p_{i}^{m} \equiv 0 & \left(\bmod p_{l+1}\right), \\ g \bmod p_{l+1}+h_{2} \prod_{i=1}^{l} p_{i}^{m} \equiv 0 & \left(\bmod p_{l+1}\right)\end{cases}
$$

In fact, since $\prod_{i=1}^{l} p_{i}^{m}$ and p_{l+1} are coprime, there exists $k \in R$ such that $k \prod_{i=1}^{l} p_{i}^{m} \equiv 1\left(\bmod p_{l+1}\right)$, so that $h_{1}=k\left(p_{l+1}-f \bmod p_{l+1}\right)$ and $h_{2}=k\left(p_{l+1}-g \bmod p_{l+1}\right)$ are required ones. Then it is easily seen that $d\left(f, f+h_{1} \prod_{i=1}^{l} p_{i}^{m}\right)<\varepsilon, d\left(g, g+h_{2} \prod_{i=1}^{l} p_{i}^{m}\right)<\varepsilon$, and that $\left(f+h_{1} \prod_{i=1}^{l} p_{i}^{m}, g+h_{2} \prod_{i=1}^{l} p_{i}^{m}\right) \notin B$. Thus $B \subset \partial B$.

Let us begin to prove (2) in Theorem 1. For each monic polynomial $h \in R$, we set

$$
h B:=\left\{(h f, h g) \in \widehat{R}^{2} ;(f, g) \in B\right\} .
$$

Since $h B \cap R^{2}=\left\{(f, g) \in R^{2} ; \operatorname{gcd}(f, g)=h\right\}$, it is easy to see that

$$
\sum_{h \in R: \text { monic }} \delta_{\left(\varphi_{m}, \varphi_{n}\right)}(h B)= \begin{cases}1, & (m, n) \in\{0,1,2, \ldots\}^{2} \backslash\{(0,0)\} \tag{13}\\ 0, & (m, n)=(0,0)\end{cases}
$$

According to Lemma $5, \lambda^{2}(B)=\int_{\widehat{R}^{2}} X(f, g) \lambda^{2}(d f d g)=(q-1) / q$. Hence by Lemma 4,

$$
\lambda^{2}(h B)=\frac{1}{q^{2 \operatorname{deg} h}} \cdot \frac{q-1}{q} .
$$

Since $h B$ is a closed set, (12) implies

$$
\begin{equation*}
\frac{1}{q^{2 \operatorname{deg} h}} \cdot \frac{q-1}{q}=\lambda^{2}(h B) \geq \limsup _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{m, n=0}^{N-1} \delta_{\left(\varphi_{m}, \varphi_{n}\right)}(h B) \tag{14}
\end{equation*}
$$

Note that by (6), (7) and (9) with $s=2$, we have

$$
\begin{equation*}
\sum_{h \in R: \text { monic }} \frac{1}{q^{2 \operatorname{deg} h}}=\frac{q}{q-1} . \tag{15}
\end{equation*}
$$

Also, since, for $\nu \geq 0$ and $\varphi \in R$

$$
-\infty \underset{(<)}{\leq} \operatorname{deg} \varphi \leq \nu \Longleftrightarrow \varphi \in\left\{\varphi_{m} ; 0 \underset{(<)}{\leq} m \leq q^{\nu+1}-1\right\},
$$

we see that for $N \in \mathbb{N} \cap[2, \infty)$, taking $\nu \in \mathbb{N} \cup\{0\}$ so that $q^{\nu} \leq N-1<$ $q^{\nu+1}$,

$$
\begin{aligned}
\frac{1}{N^{2}} \sum_{m, n=1}^{N-1} \delta_{\left(\varphi_{m}, \varphi_{n}\right)}(h B) & \leq \frac{1}{N^{2}} \sum_{m, n=1}^{N-1} \delta_{\left(\varphi_{m}, \varphi_{n}\right)}\left(h \widehat{R}^{2}\right) \\
& \leq \frac{1}{\left(q^{\nu}+1\right)^{2}} \sum_{m, n=1}^{q^{\nu+1}-1} \delta_{\left(\varphi_{m}, \varphi_{n}\right)}(h R \times h R) \\
& =\left(\frac{1}{q^{\nu}+1} \sum_{m=1}^{q^{\nu+1}-1} \delta_{\varphi_{m}}(h R)\right)^{2} \\
& =\left(\frac{\#\left\{1 \leq m \leq q^{\nu+1}-1 ; h \mid \varphi_{m}\right\}}{q^{\nu}+1}\right)^{2} \\
& =\left(\frac{\#\{\varphi \in R ;-\infty<\operatorname{deg} \varphi \leq \nu, h \mid \varphi\}}{q^{\nu}+1}\right)^{2} \\
& =\left(\frac{\#\{k \in R \backslash\{0\} ; \operatorname{deg}(h k) \leq \nu\}}{q^{\nu}+1}\right)^{2} \\
& =\left(\frac{\#\{k \in R ;-\infty<\operatorname{deg} k \leq \nu-\operatorname{deg} h\}}{q^{\nu}+1}\right)^{2} \\
& =\left\{\begin{array}{l}
\left(\frac{q^{\nu-\operatorname{deg} h+1}-1}{q^{\nu}+1}\right)^{2}, \quad \nu \geq \operatorname{deg} h, \\
0,
\end{array} \quad \nu<\operatorname{deg} h\right.
\end{aligned}
$$

$$
\leq \frac{q^{2}}{q^{2} \operatorname{deg} h}
$$

Here the last expression is summable in $h \in R$, monic. Then it follows from (15), (14) and the Lebesgue-Fatou theorem that

$$
\begin{align*}
1-\frac{q-1}{q} & =\sum_{h \in R ; \operatorname{deg} h \geq 1, \text { monic }} \frac{q-1}{q} \cdot \frac{1}{q^{2 \operatorname{deg} h}} \tag{16}\\
& \geq \sum_{h \in R ; \operatorname{deg} h \geq 1, \text { monic }} \limsup _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{m, n=0}^{N-1} \delta_{\left(\varphi_{m}, \varphi_{n}\right)}(h B) \\
& \geq \sum_{h \in R ; \operatorname{deg} h \geq 1, \text { monic }} \limsup _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{m, n=1}^{N-1} \delta_{\left(\varphi_{m}, \varphi_{n}\right)}(h B) \\
& \geq \limsup _{N \rightarrow \infty} \sum_{h \in R ; \operatorname{deg} h \geq 1, \operatorname{monic}} \frac{1}{N^{2}} \sum_{m, n=1}^{N-1} \delta_{\left(\varphi_{m}, \varphi_{n}\right)}(h B) \\
& =\limsup _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{m, n=1}^{N-1} \sum_{h \in R ; \operatorname{deg} h \geq 1, \operatorname{monic}} \delta_{\left(\varphi_{m}, \varphi_{n}\right)}(h B) .
\end{align*}
$$

Subtracting each side of (16) from 1 and noting (13), we have

(17)

$$
\begin{aligned}
\frac{q-1}{q} \leq & \liminf _{N \rightarrow \infty}\left(1-\frac{1}{N^{2}} \sum_{m, n=1}^{N-1} \sum_{h \in R ; \operatorname{deg} h \geq 1, \text { monic }} \delta_{\left(\varphi_{m}, \varphi_{n}\right)}(h B)\right) \\
= & \liminf _{N \rightarrow \infty}\left(\frac{1}{N^{2}} \sum_{m, n=1}^{N-1}\left(1-\sum_{h \in R ; \operatorname{deg} h \geq 1, \text { monic }} \delta_{\left(\varphi_{m}, \varphi_{n}\right)}(h B)\right)\right. \\
& \left.+\frac{1}{N^{2}} \sum_{\substack{0 \leq m, n \leq N-1 ;}} 1\right) \\
= & \liminf _{N \rightarrow \infty}\left(\frac{1}{N^{2}} \sum_{m, n=0}^{N-1} \sum_{\left(\varphi_{m}, \varphi_{n}\right)}^{\delta_{n \rightarrow 0}}(B)\right. \\
& \left.+\frac{1}{N^{2}} \sum_{\substack{0 \leq m, n \leq N-1 ;}}^{\sum_{m=0} \sum_{n=0}}\left(1-\delta_{\left(\varphi_{m}, \varphi_{n}\right)}(B)\right)\right) \\
= & \liminf _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{m, n=0}^{N-1} \sum_{\left(\varphi_{m}, \varphi_{n}\right)}(B) .
\end{aligned}
$$

Finally, (14) with $h(x) \equiv 1$ and (17) imply that

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{m, n=0}^{N-1} \delta_{\left(\varphi_{m}, \varphi_{n}\right)}(B)=\frac{q-1}{q}
$$

which is equivalent to (2).
Next, let us prove (3) in Theorem 1. Take arbitrary $f, g \in R$ with $\operatorname{deg} f \vee \operatorname{deg} g \geq 0$, and set $\varphi_{m}^{\prime}:=f+\varphi_{m}$ and $\varphi_{n}^{\prime \prime}:=g+\varphi_{n}$. Then it is easy to see that the sequence of probability measures $\left\{\frac{1}{N^{2}} \sum_{m, n=0}^{N-1} \delta_{\left(\varphi_{m}^{\prime}, \varphi_{n}^{\prime \prime}\right)}\right\}_{N}$ weakly converges to λ^{2}. Furthermore, we have

$$
\sum_{h \in R: \text { monic }} \delta_{\left(\varphi_{m}^{\prime}, \varphi_{n}^{\prime \prime}\right)}(h B)= \begin{cases}1, & \left(\varphi_{m}^{\prime}, \varphi_{n}^{\prime \prime}\right) \neq(0,0) \tag{18}\\ 0, & \left(\varphi_{m}^{\prime}, \varphi_{n}^{\prime \prime}\right)=(0,0)\end{cases}
$$

By these facts, we can deduce that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{m, n=0}^{N-1} \delta_{\left(\varphi_{m}^{\prime}, \varphi_{n}^{\prime \prime}\right)}(B)=\frac{q-1}{q} \tag{19}
\end{equation*}
$$

similarly as the case where $(f, g)=(0,0)$.
Remark 1. If $f, g \in \widehat{R}$ fail to belong to R, (19) may not be true. The following is one of such examples: Let $\tau: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be a bijective mapping. For each $N \in \mathbb{N}$, we consider a system of equations

$$
\begin{aligned}
& \left(f+\varphi_{m}\right) \bmod p_{\tau(m, n)}=0, \\
& \left(g+\varphi_{n}\right) \bmod p_{\tau(m, n)}=0,
\end{aligned} \quad m, n=1,2, \ldots, N
$$

with unknown variable $(f, g) \in \widehat{R}^{2}$. By the Chinese remainder theorem, the solution (f, g), say $\left(f_{N}, g_{N}\right) \in R^{2}$, exists. Since \widehat{R}^{2} is compact, $\left\{\left(f_{N}, g_{N}\right)\right\}_{N=1}^{\infty}$ has a limit point, say $\left(f_{\infty}, g_{\infty}\right) \in \widehat{R}^{2}$. Then since for each $p \in \mathcal{P}, p \widehat{R}$ is a closed ball, it holds that

$$
\begin{aligned}
\left(f_{\infty}+\varphi_{m}\right) \bmod p_{\tau(m, n)} & =0, \\
\left(g_{\infty}+\varphi_{n}\right) \bmod p_{\tau(m, n)} & =0,
\end{aligned} \quad m, n \in \mathbb{N} .
$$

Clearly, we have $X\left(f_{\infty}+\varphi_{m}, g_{\infty}+\varphi_{n}\right)=0, m, n \in \mathbb{N}$, and hence

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{m, n=0}^{N-1} \delta_{\left(f_{\infty}+\varphi_{m}, g_{\infty}+\varphi_{n}\right)}(B)=0
$$

§5. Proof of strong law of large numbers

5.1. Maximal ergodic inequality

Basically, we adopt the method used in Stroock [10, § 5.3]. We begin with the definition of classical maximal function.

Definition 6. For $f \in L^{1}\left(\mathbb{R}^{l} \rightarrow \mathbb{R}\right)$, we define Hardy-Littlewood's maximal function $M f$ by

$$
M f(x):=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}|f(y)| d y, \quad x \in \mathbb{R}^{l}
$$

where the sup is taken for all cubes Q of the form

$$
Q=\prod_{j=1}^{l}\left[a_{j}, a_{j}+r\right), \quad a=\left(a_{1}, \ldots, a_{l}\right) \in \mathbb{R}^{l}, r>0
$$

such that $Q \ni x$, and

$$
|Q|:=\text { the Lebesgue measure of } Q \text {. }
$$

Lemma 9 (The Hardy-Littlewood inequality). ([10, § 5.3]) For any $0<\alpha<\infty$, it holds that

$$
\left|\left\{x \in \mathbb{R}^{l} ; M f(x) \geq \alpha\right\}\right| \leq \frac{12^{l}}{\alpha} \int_{\mathbb{R}^{l}}|f(y)| d y
$$

Definition 7. For each $m, n=0,1,2, \ldots$, there exists a unique $k \in \mathbb{N} \cup\{0\}$ such that $\varphi_{m}(x)+\varphi_{n}(x)=\varphi_{k}(x)$. This k will be denoted by $m \cdot n$, that is,

$$
m \cdot n:=\sum_{i=1}^{\infty}\left(\left(d_{i}^{(q)}(m)+d_{i}^{(q)}(n)\right) \bmod q\right) q^{i-1}
$$

As is easily seen, $m \cdot n \neq m+n$ in general. Therefore the method used in Stroock [10, §5.3] does not work to derive the maximal ergodic inequality. In this paper, we adopt a modification of Stroock's method due to Miki [8].

Lemma 10. ([8]) Let $m, n, l=0,1,2, \ldots$
(i) $m \cdot 0=m, m \cdot n=n \cdot m,(l \cdot m) \cdot n=l \cdot(m \cdot n)$.
(ii) The mapping $\mathbb{N} \cup\{0\} \ni k \mapsto m \cdot k \in \mathbb{N} \cup\{0\}$ is bijective.
(iii) $(m \vee n)-(q-1)(m \wedge n) \leq m \cdot n \leq m+n$.

Proof. (i) and (ii) are obvious. We here check (iii). Since, for $a, b \in$ $\{0,1, \ldots, q-1\}$

$$
(a+b) \bmod q= \begin{cases}a+b, & \text { if } a+b<q \\ a+b-q, & \text { if } a+b \geq q\end{cases}
$$

it follows that

$$
\begin{aligned}
& (a+b) \bmod q \leq a+b, \\
& (a+b) \bmod q+(q-1) a=\left\{\begin{array}{c}
a+b+(q-1) a \\
=b+q a, \text { if } a+b<q, \\
a+b-q+(q-1) a \\
=b+q(a-1), \text { if } a+b \geq q>b
\end{array}\right. \\
& \geq b
\end{aligned}
$$

Hence, for $0 \leq m \leq n$

$$
\begin{aligned}
m \cdot n & =\sum_{i=1}^{\infty}\left(\left(d_{i}^{(q)}(m)+d_{i}^{(q)}(n)\right) \bmod q\right) q^{i-1} \\
& \leq \sum_{i=1}^{\infty}\left(d_{i}^{(q)}(m)+d_{i}^{(q)}(n)\right) q^{i-1}=m+n \\
& \geq \sum_{i=1}^{\infty}\left(d_{i}^{(q)}(n)-(q-1) d_{i}^{(q)}(m)\right) q^{i-1}=n-(q-1) m
\end{aligned} .
$$

Lemma 11. For any square array $\left\{a_{k_{1}, k_{2}}\right\}_{k_{1}, k_{2} \in\{0,1,2, \ldots\}} \subset[0, \infty)$ with $\sum_{k_{1}, k_{2}=0}^{\infty} a_{k_{1}, k_{2}}<\infty$, the following inequality holds: For any $\alpha>0$,

$$
\begin{aligned}
& \#\left\{\left(k_{1}, k_{2}\right) \in\{0,1,2, \ldots\}^{2} ; \sup _{n \geq 1}\left(\frac{1}{q n}\right)^{2} \sum_{j_{1}, j_{2}=0}^{n-1} a_{k_{1} \cdot j_{1}, k_{2} \cdot j_{2}} \geq \alpha\right\} \\
& \quad \leq \frac{12^{2}}{\alpha} \sum_{k_{1}, k_{2}=0}^{\infty} a_{k_{1}, k_{2}}
\end{aligned}
$$

Proof. Put

$$
f(x):=\sum_{k_{1}, k_{2}=0}^{\infty} a_{k_{1}, k_{2}} \mathbf{1}_{C\left(k_{1}, k_{2}\right)}(x), \quad x \in \mathbb{R}^{2}
$$

where

$$
C\left(k_{1}, k_{2}\right):=\left[k_{1}, k_{1}+1\right) \times\left[k_{2}, k_{2}+1\right) .
$$

Then clearly we have

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} f(x) d x=\sum_{k_{1}, k_{2}=0}^{\infty} a_{k_{1}, k_{2}}<\infty \tag{20}
\end{equation*}
$$

and maximal function $M f$ becomes

$$
\begin{align*}
M f(x) & =\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q} f(y) d y \tag{21}\\
& =\sup _{Q \ni x} \frac{1}{|Q|} \sum_{l_{1}, l_{2} \geq 0} a_{l_{1}, l_{2}}\left|C\left(l_{1}, l_{2}\right) \cap Q\right| .
\end{align*}
$$

Now suppose that $x \in C\left(k_{1}, k_{2}\right)\left(k_{1}, k_{2} \in\{0,1,2, \ldots\}\right), n \in \mathbb{N}$, and $0 \leq$ $j_{1}, j_{2} \leq n-1$. If we take $Q=\left[k_{1}-(q-1) n, k_{1}+n\right) \times\left[k_{2}-(q-1) n, k_{2}+n\right)$, then $Q \ni x$ and

$$
\begin{equation*}
Q \supset C\left(k_{1} \cdot j_{1}, k_{2} \cdot j_{2}\right) \tag{22}
\end{equation*}
$$

holds. Because Lemma 10(iii) implies

$$
\begin{aligned}
& k_{1} \cdot j_{1} \geq k_{1}-(q-1) n \\
& k_{2} \cdot j_{2} \geq k_{2}-(q-1) n
\end{aligned}
$$

and

$$
\begin{aligned}
& k_{1} \cdot j_{1} \leq k_{1}+j_{1} \leq k_{1}+n-1 \\
& k_{2} \cdot j_{2} \leq k_{2}+j_{2} \leq k_{2}+n-1
\end{aligned}
$$

we see

$$
\begin{aligned}
& {\left[k_{1} \cdot j_{1}, k_{1} \cdot j_{1}+1\right) \subset\left[k_{1}-(q-1) n, k_{1}+n\right)} \\
& {\left[k_{2} \cdot j_{2}, k_{2} \cdot j_{2}+1\right) \subset\left[k_{2}-(q-1) n, k_{2}+n\right)}
\end{aligned}
$$

and hence (22) holds.
If we take this Q for (21), we have for $x \in C\left(k_{1}, k_{2}\right), n \in \mathbb{N}$ that

$$
\begin{aligned}
M f(x) & \geq \frac{1}{|Q|} \sum_{j_{1}, j_{2}=0}^{n-1} a_{k_{1} \cdot j_{1}, k_{2} \cdot j_{2}}\left|C\left(k_{1} \cdot j_{1}, k_{2} \cdot j_{2}\right) \cap Q\right| \\
& =\left(\frac{1}{q n}\right)^{2} \sum_{j_{1}, j_{2}=0}^{n-1} a_{k_{1} \cdot j_{1}, k_{2} \cdot j_{2}} .
\end{aligned}
$$

Taking sup in n,

$$
M f(x) \geq \sum_{k_{1}, k_{2}=0}^{\infty}\left(\sup _{n \in \mathbb{N}}\left(\frac{1}{q n}\right)^{2} \sum_{j_{1}, j_{2}=0}^{n-1} a_{k_{1} \cdot j_{1}, k_{2} \cdot j_{2}}\right) \mathbf{1}_{C\left(k_{1}, k_{2}\right)}(x)
$$

Then for $0<\alpha<\infty$,

$$
\begin{aligned}
& \left\{x \in[0, \infty)^{2} ; M f(x) \geq \alpha\right\} \\
& \quad \supset\left\{x \in[0, \infty)^{2} ;\right. \\
& \\
& \left.\quad \sum_{k_{1}, k_{2}=0}^{\infty}\left(\sup _{n \in \mathbb{N}}\left(\frac{1}{q n}\right)^{2} \sum_{j_{1}, j_{2}=0}^{n-1} a_{k_{1} \cdot j_{1}, k_{2} \cdot j_{2}}\right) \mathbf{1}_{C\left(k_{1}, k_{2}\right)}(x) \geq \alpha\right\} \\
& \\
& \quad \bigcup_{\sup _{n \in \mathbb{N}}\left(\frac{1}{q n}\right)^{2} \sum_{\sum_{1}, k_{2} \geq 0 ;}^{n-1} j_{j_{1}=0} a_{k_{1} \cdot j_{1}, k_{2} \cdot j_{2} \geq \alpha}} C\left(k_{1}, k_{2}\right) .
\end{aligned}
$$

Therefore Lemma 9 and (20) imply

$$
\begin{aligned}
& \frac{12^{2}}{\alpha} \sum_{k_{1}, k_{2}=0}^{\infty} a_{k_{1}, k_{2}} \\
& \quad=\frac{12^{2}}{\alpha} \int_{\mathbb{R}^{2}} f(x) d x \\
& \geq\left|\left\{x \in \mathbb{R}^{2} ; M f(x) \geq \alpha\right\}\right| \\
& \quad \geq\left|\left\{x \in[0, \infty)^{2} ; M f(x) \geq \alpha\right\}\right| \\
& \quad \geq \sum_{k_{1}, k_{2}=0}^{\infty} \mathbf{1}_{\sup _{n \in \mathbb{N}}\left(\frac{1}{q n}\right)^{2} \sum_{j_{1}, j_{2}=0}^{n-1} a_{k_{1} \cdot j_{1}, k_{2} \cdot j_{2} \geq \alpha}}=\#\left\{\left(k_{1}, k_{2}\right) \in\{0,1,2, \ldots\}^{2} ; \sup _{n \in \mathbb{N}}\left(\frac{1}{q n}\right)^{2} \sum_{j_{1}, j_{2}=0}^{n-1} a_{k_{1} \cdot j_{1}, k_{2} \cdot j_{2}} \geq \alpha\right\} .
\end{aligned}
$$

Lemma 12 (Maximal ergodic inequality). Let $F: \widehat{R}^{2} \rightarrow[0, \infty)$ be a Borel measurable function such that

$$
\mathbb{E}^{\lambda^{2}}[F]:=\int_{\mathbb{R}^{2}} F(f, g) \lambda^{2}(d f d g)<\infty
$$

Then for any $0<\alpha<\infty$, it holds that

$$
\lambda^{2}\left(\sup _{N \geq 1} \frac{1}{N^{2}} \sum_{j_{1}, j_{2}=0}^{N-1} F\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right) \geq q^{2} \alpha\right) \leq \frac{24^{2}}{\alpha} \mathbb{E}^{\lambda^{2}}[F]
$$

Proof. Fix $M \in \mathbb{N}$ and $(f, g) \in \widehat{R}^{2}$. For each $k_{1}, k_{2} \in\{0,1,2, \ldots\}$, we define

$$
a_{k_{1}, k_{2}}(f, g):= \begin{cases}F\left(f+\varphi_{k_{1}}, g+\varphi_{k_{2}}\right), & \text { if } 0 \leq k_{1}, k_{2} \leq 2 M-1 \\ 0, & \text { otherwise }\end{cases}
$$

Then Lemma 11 implies that

$$
\begin{aligned}
& \#\left\{k_{1}, k_{2} \geq 0 ; \sup _{N \geq 1}\left(\frac{1}{q N}\right)^{2} \sum_{j_{1}, j_{2}=0}^{N-1} a_{k_{1} \cdot j_{1}, k_{2} \cdot j_{2}}(f, g) \geq \alpha\right\} \\
& \quad \leq \frac{12^{2}}{\alpha} \sum_{k_{1}, k_{2}=0}^{\infty} a_{k_{1}, k_{2}}(f, g) \\
& \quad=\frac{12^{2}}{\alpha} \sum_{0 \leq k_{1}, k_{2} \leq 2 M-1} F\left(f+\varphi_{k_{1}}, g+\varphi_{k_{2}}\right), \quad 0<\alpha<\infty
\end{aligned}
$$

Noting that

$$
\begin{aligned}
& 0 \leq k_{1}, k_{2} \leq M, \quad 0 \leq j_{1}, j_{2}<N, \quad 1 \leq N \leq M \\
& \Rightarrow 0 \leq k_{1} \cdot j_{1} \leq k_{1}+j_{1} \leq M+N-1 \leq 2 M-1 \\
& \quad 0 \leq k_{2} \cdot j_{2} \leq k_{2}+j_{2} \leq M+N-1 \leq 2 M-1 \\
& \Rightarrow a_{k_{1} \cdot j_{1}, k_{2} \cdot j_{2}}(f, g)=F\left(f+\varphi_{k_{1} \cdot j_{1}}, g+\varphi_{k_{2} \cdot j_{2}}\right) \\
& \quad=F\left(f+\varphi_{k_{1}}+\varphi_{j_{1}}, g+\varphi_{k_{2}}+\varphi_{j_{2}}\right)
\end{aligned}
$$

we have

$$
\begin{aligned}
& \#\left\{\left(k_{1}, k_{2}\right) \in\{0,1,2, \ldots, M\}^{2} ;\right. \\
& \left.\max _{1 \leq N \leq M}\left(\frac{1}{q N}\right)^{2} \sum_{j_{1}, j_{2}=0}^{N-1} F\left(f+\varphi_{k_{1}}+\varphi_{j_{1}}, g+\varphi_{k_{2}}+\varphi_{j_{2}}\right) \geq \alpha\right\} \\
& \leq \frac{12^{2}}{\alpha} \sum_{k_{1}, k_{2}=0}^{2 M-1} F\left(f+\varphi_{k_{1}}, g+\varphi_{k_{2}}\right), \quad 0<\alpha<\infty
\end{aligned}
$$

Therefore taking the expectation $\mathbb{E}^{\lambda^{2}}$ of both sides,

$$
\begin{aligned}
& \sum_{k_{1}, k_{2}=0}^{M} \lambda^{2}\left(\max _{1 \leq N \leq M}\left(\frac{1}{q N}\right)^{2} \sum_{j_{1}, j_{2}=0}^{N-1} F\left(f+\varphi_{k_{1}}+\varphi_{j_{1}}, g+\varphi_{k_{2}}+\varphi_{j_{2}}\right) \geq \alpha\right) \\
& \leq \frac{12^{2}}{\alpha} \sum_{k_{1}, k_{2}=0}^{2 M-1} \mathbb{E}^{\lambda^{2}}\left[F\left(f+\varphi_{k_{1}}, g+\varphi_{k_{2}}\right)\right], \quad 0<\alpha<\infty .
\end{aligned}
$$

Since λ^{2} is shift-invariant, the above inequality reduces to

$$
\begin{aligned}
& \lambda^{2}\left(\max _{1 \leq N \leq M}\left(\frac{1}{q N}\right)^{2} \sum_{j_{1}, j_{2}=0}^{N-1} F\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right) \geq \alpha\right) \\
& \quad \leq \frac{12^{2}}{\alpha}\left(\frac{2 M}{M+1}\right)^{2} \mathbb{E}^{\lambda^{2}}[F], \quad 0<\alpha<\infty .
\end{aligned}
$$

Finally, letting $M \rightarrow \infty$, the assertion of the lemma follows.

5.2. Proof of Theorem 2

For simplicity, we here prove Theorem 2 for $l=2$ only. The same method works for general l, too. Namely, what we prove is as follows:

$$
\text { For any } F \in L^{1}\left(\widehat{R}^{2}, \lambda^{2}\right) \text {, }
$$

$$
\begin{equation*}
\frac{1}{N^{2}} \sum_{m, n=0}^{N-1} F\left(f+\varphi_{m}, g+\varphi_{n}\right) \rightarrow \mathbb{E}^{\lambda^{2}}[F] \quad \lambda^{2} \text {-a.e. }(f, g) . \tag{23}
\end{equation*}
$$

Proof. Take sequence of continuous functions $\left\{F_{k}\right\}_{k=1}^{\infty}$ so that

$$
\begin{equation*}
\left\|F_{k}-F\right\|_{L^{1}} \leq \frac{1}{k^{2}}, \quad k \in \mathbb{N} \tag{24}
\end{equation*}
$$

By Corollary 1 , it holds for each $k \in \mathbb{N}$ that

$$
\begin{equation*}
\frac{1}{N^{2}} \sum_{m, n=0}^{N-1} F_{k}\left(f+\varphi_{m}, g+\varphi_{n}\right) \rightarrow \mathbb{E}^{\lambda^{2}}\left[F_{k}\right] \quad \text { as } N \rightarrow \infty,(f, g) \in \widehat{R}^{2} . \tag{25}
\end{equation*}
$$

By Lemma 12, it holds for $0<\alpha<\infty$ that

$$
\begin{aligned}
& \lambda^{2}\left(\sup _{N \geq 1} \frac{1}{N^{2}} \sum_{j_{1}, j_{2}=0}^{N-1}\left|F_{k}\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right)-F\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right)\right| \geq q^{2} \alpha\right) \\
& \quad \leq \frac{24^{2}}{\alpha} \mathbb{E}^{\lambda^{2}}\left[\left|F_{k}-F\right|\right]
\end{aligned}
$$

$$
\leq \frac{24^{2}}{\alpha} \cdot \frac{1}{k^{2}}
$$

From this, it follows that

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \lambda^{2}\left((f, g) \in \widehat{R}^{2} ;\right. \\
& \left.\quad \sup _{N \geq 1} \frac{1}{N^{2}} \sum_{j_{1}, j_{2}=0}^{N-1}\left|F_{k}\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right)-F\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right)\right| \geq \frac{q^{2}}{\sqrt{k}}\right) \\
& \quad \leq \sum_{k=1}^{\infty} 24^{2} \sqrt{k} \frac{1}{k^{2}}<\infty
\end{aligned}
$$

which means that
$\lim _{k \rightarrow \infty} \sup _{N \geq 1} \frac{1}{N^{2}} \sum_{j_{1}, j_{2}=0}^{N-1}\left|F_{k}\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right)-F\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right)\right|=0$, a.s.
Consequently, by (24) and (25), we see that

$$
\begin{align*}
&\left|\frac{1}{N^{2}} \sum_{j_{1}, j_{2}=0}^{N-1} F\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right)-\mathbb{E}^{\lambda^{2}}[F]\right| \tag{26}\\
&= \left\lvert\, \frac{1}{N^{2}} \sum_{j_{1}, j_{2}=0}^{N-1}\left(F\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right)-F_{k}\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right)\right)\right. \\
&+\frac{1}{N^{2}} \sum_{j_{1}, j_{2}=0}^{N-1} F_{k}\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right)-\mathbb{E}^{\lambda^{2}}\left[F_{k}\right] \\
&+\mathbb{E}^{\lambda^{2}}\left[F_{k}\right]-\mathbb{E}^{\lambda^{2}}[F] \mid \\
& \leq \frac{1}{N^{2}} \sum_{j_{1}, j_{2}=0}^{N-1}\left|F\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right)-F_{k}\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right)\right| \\
&+\left|\frac{1}{N^{2}} \sum_{j_{1}, j_{2}=0}^{N-1} F_{k}\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right)-\mathbb{E}^{\lambda^{2}}\left[F_{k}\right]\right| \\
& \quad+\mathbb{E}^{\lambda^{2}}\left[\left|F_{k}-F\right|\right] \\
& \leq \sup _{M \geq 1} \frac{1}{M^{2}} \sum_{j_{1}, j_{2}=0}^{M-1}\left|F\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right)-F_{k}\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right)\right|
\end{align*}
$$

$$
\begin{aligned}
& +\left|\frac{1}{N^{2}} \sum_{j_{1}, j_{2}=0}^{N-1} F_{k}\left(f+\varphi_{j_{1}}, g+\varphi_{j_{2}}\right)-\mathbb{E}^{\lambda^{2}}\left[F_{k}\right]\right| \\
& +\frac{1}{k^{2}} \\
& \rightarrow 0 \quad \text { a.s. } \quad(\text { first } N \rightarrow \infty, \text { secondly } k \rightarrow \infty) .
\end{aligned}
$$

Remark 2. If $F \in L^{p}\left(\widehat{R}^{2}, \lambda^{2}\right)$ for some $1 \leq p<\infty$, the convergence in (23) is in fact an L^{p}-convergence. Indeed, for any $\varepsilon>0$, there exists a bounded measurable function $F_{\varepsilon}: \widehat{R}^{2} \rightarrow \mathbb{R}$ such that

$$
\left\|F-F_{\varepsilon}\right\|_{L^{p}}<\varepsilon
$$

A similar estimate as (26) can be done in L^{p}-norm in the following way:

$$
\begin{aligned}
& \left\|\frac{1}{N^{2}} \sum_{m, n=0}^{N-1} F\left(f+\varphi_{m}, g+\varphi_{n}\right)-\mathbb{E}^{\lambda^{2}}[F]\right\|_{L^{p}} \\
& \quad \leq \frac{1}{N^{2}} \sum_{m, n=0}^{N-1}\left\|F\left(f+\varphi_{m}, g+\varphi_{n}\right)-F_{\varepsilon}\left(f+\varphi_{m}, g+\varphi_{n}\right)\right\|_{L^{p}} \\
& \quad+\left\|\frac{1}{N^{2}} \sum_{m, n=0}^{N-1} F_{\varepsilon}\left(f+\varphi_{m}, g+\varphi_{n}\right)-\mathbb{E}^{\lambda^{2}}\left[F_{\varepsilon}\right]\right\|_{L^{p}}+\left\|F_{\varepsilon}-F\right\|_{L^{p}} \\
& \quad<\left\|\frac{1}{N^{2}} \sum_{m, n=0}^{N-1} F_{\varepsilon}\left(f+\varphi_{m}, g+\varphi_{n}\right)-\mathbb{E}^{\lambda^{2}}\left[F_{\varepsilon}\right]\right\|_{L^{p}}+2 \varepsilon \\
& \quad \rightarrow 0 \quad(\text { first } N \rightarrow \infty, \text { secondly } \varepsilon \rightarrow 0) .
\end{aligned}
$$

References

[1] P. Billingsley, Convergence of probability measures, John Willey \& Sons, 1968.
[2] G. L. Dirichlet, Über die Bestimmung der mittleren Werthe in der Zahlentheorie, Abhandlungen Königlich Preuss. Akad. Wiss., 1849, pp. 69-83; G. Lejeune Dirichlet's Werke. II, Chelsea, 1969, pp. 49-66.
[3] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5-th ed., Oxford Univ. Press, 1979.
[4] J. H. Hodges, Uniform distribution of sequences in GF[$q, x]$, Acta Arith., 12 (1966), 55-75.
[5] H. Kubota and H. Sugita, Probabilistic proof of limit theorems in number theory by means of adeles, Kyushu J. Math., 56 (2002), 391-404.
[6] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Interscience, 1974.
[7] R. Lidl and H. Niederreiter, Finite fields, with a foreword by P.M. Cohn. Second ed., Encyclopedia of Mathematics and its Applications, 20, Cambridge Univ. Press, Cambridge, 1997.
[8] H. Miki, An extension of ergodic theorem and its applications to number theory. (Japanese), Master thesis, Department of Mathematics, Graduate School of Science, Osaka Univ., 2006.
[9] K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York, London, 1967.
[10] D. W. Stroock, Probability theory, an analytic view, revised ed., Cambridge Univ. Press, Cambridge, 1994.
[11] H. Sugita and S. Takanobu, The probability of two integers to be co-prime, revisited - on the behavior of CLT-scaling limit, Osaka J. Math., 40 (2003), 945-976.

Hiroshi Sugita
Department of Mathematics
Graduate School of Science
Osaka University
Machikaneyama-cho 1-1
Toyonaka, Osaka 560-0043
Japan
E-mail address: sugita@math.sci.osaka-u.ac.jp

Satoshi Takanobu
Division of Mathematical and Physical Sciences
Graduate School of Natural Science and Technology
Kanazawa University
Kakuma-machi
Kanazawa, Ishikawa 920-1192
Japan
E-mail address: takanob@kenroku.kanazawa-u.ac.jp

[^0]: Received February 17, 2006.
 Revised March 20, 2006.
 2000 Mathematics Subject Classification. Primary 60B10; Secondary 60B15, 60F15.
 ${ }^{\dagger}$ Partially supported by Grant-in-Aid for scientific research 16654021, MEXT of Japanese government.
 \ddagger Partially supported by Grant-in-Aid for scientific research 15340053, MEXT of Japanese government.

[^1]: ${ }^{1}$ The function ' $\operatorname{gcd}(f, g)$ ' is assumed to return the greatest common divisor of f and g that is monic. In particular, if there is no common divisor other than constants (or, elements of \mathbb{F}_{q}), we have $\operatorname{gcd}(f, g)=1$ and say ' f and g are coprime'. When $f=g=0$, any monic polynomial is their common divisor, so we do not define $\operatorname{gcd}(0,0)$.

[^2]: ${ }^{2}$ We enumerate $\mathcal{P}=\left\{p_{i}\right\}_{i=1}^{\infty}$ in the order given by Definition 1.

[^3]: ${ }^{3} \operatorname{deg} 0:=-\infty$.

[^4]: ${ }^{4} \delta_{\left(\varphi_{m}, \varphi_{n}\right)}$ denotes the δ-measure at $\left(\varphi_{m}, \varphi_{n}\right) \in \widehat{R}^{2}$.

