Maximal compact subgroups of $\mathsf{Sp}_4(\mathsf{k})$ and $\mathsf{GSp}_4(\mathsf{k})$

Takao Watanabe

Osaka University, Graduate School of Science

Contents

1	Max	kimal compact subgroups	3
2	Bruhat–Tits theory of $Sp_4(k)$		6
	2.1	Sp_4 and its minimal parabolic subgroup	6
	2.2	Rational characters and cocharacters of S	6
	2.3	Affine root system and root subgroups	7
	2.4	Apartment and chambers	8
	2.5	Tits system	11
	2.6	Building	12
	2.7	Stabilizers	13
	2.8	Special maximal compact subgroups	15
	2.9	\mathbf{o} -models of G	16
3	Maximal compact subgroups of $GSp_4(k)$		17
	3.1	Bruhat–Tits theory of $GSp_4(k)$	17
	3.2	Conjugacy of stabilizers of facets	18
4 Conclusions		19	

References

- [1] Bruhat, *p-adic groups*, Proc. Symp. Pure Math. Vol.9 (1966), 63–70.
- [2] Burhat and Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–252.
- [3] Gille, Notes on Bruhat–Tits theory, 2009.
- [4] Hijikata, Maximal compact subgroups of some p-adic classical groups, 1964.
- [5] Iwahori and Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5–48.
- [6] Rousseau, Euclidean buildings, 2004.
- [7] Satake, Theory of spherical functions on reductive algebraic groups over p-adic field, Inst. Hautes Études Sci. Publ. Math. 18 (1963), 5–69.
- [8] Tits, Reductive groups over local fields, Proc. Symp. Pure Math. Vol.33 (1979), 29–69.

1 Maximal compact subgroups

Let k be a locally compact field of characteristic 0, G a connected linear algebraic group defined over k and G_k the locally compact group of k-rational points of G.

The following result can be found in [Bruhat] and [Satake].

Theorem 1.1. G_k has a maximal compact subgroup if and only if G is reductive. In this case, any compact subgroup of G_k is contained in a maximal compact subgroup.

We assume G is reductive, and let

S =maximal k-split torus of G,

Z =centralizer of S in G,

P = minimal parabolic subgroup of G over k of a Levi subgroup Z,

U = unipotent radical of P.

In the case of $k = \mathbf{R}$, the following result is well known.

Theorem 1.2. If $\mathbf{k} = \mathbf{R}$, then two maximal compact subgroups of $G_{\mathbf{k}}$ are conjugate by an inner automorphism. If K is a maximal compact subgroup of $G_{\mathbf{k}}$, then one has the following decompositions:

 $G_{k} = K \cdot Z_{k} \cdot U_{k} \quad (Iwasawa \ decomposition)$ $= K \cdot Z_{k} \cdot K \quad (Cartan \ decomposition)$

This theorem does not true if k is a p-adic field.

Let ${\sf k}$ be a p-adic field. The following problems occurred in the early of 1960's.

- How many maximal compact subgroups of G_k up to conjugacy are there?
- Does G_k possess a maximal compact subgroup satisfying both Iwasawa and Cartan decompositions?

These problems were studied by many authors:

1960 – 1964 Shimura, Tsukamoto, Bruhat, Hijikata in classical groups

1965 Iwahori and Matsumoto in Chevalley groups

1966 – **1987** Bruhat and Tits in full generality

The main results of Bruhat–Tits theory are stated as follows.

Theorem 1.3. Let \mathcal{B} be the Bruhat–Tits building associated with G_k . For a point $\boldsymbol{x} \in \mathcal{B}$, $G_k^{\boldsymbol{x}}$ denotes the stabilizer of \boldsymbol{x} in G_k .

- (1) For a maximal compact subgroup K of G_k , there is a point $\boldsymbol{x} \in \mathcal{B}$ such that $K = G_k^{\boldsymbol{x}}$.
- (2) If $x \in \mathcal{B}$ is a point contained in a facet of minimal dimension, then G_{k}^{x} is a maximal compact subgroup of G_{k} .
- (3) The number m(G_k) of maximal compact subgroups of G_k up to conjugacy is finite.
- (4) If G is simply connected, then every maximal compact subgroup of G_k is the stabilizer of a vertex (= 0-dimensional facet) of \mathcal{B} , and $m(G_k)$ is equal to the number of vertices of a chamber in \mathcal{B} . Precisely,

$$m(G_{\mathsf{k}}) = \prod_{i=1}^{\ell} (\operatorname{rank}_{\mathsf{k}}(G_i) + 1)$$

where G_1, \cdots, G_ℓ are k-simple factors of G.

(5) B has special points. The stabilizer of every special point of B is a maximal compact subgroup, which is called a special maximal compact subgroup. Every special maximal compact subgroup satisfies both Iwasawa and Cartan decompositions. **Remark** If G is semisimple but not simply connected, then it is possible to happen a case where $\boldsymbol{x} \in \boldsymbol{\mathcal{B}}$ is not a vertex but $G_{k}^{\boldsymbol{x}}$ is a maximal compact subgroup of G_{k} . For example, in the case of PGL_{n} , every chamber has n vertices. Stabilizers of vertices are maximal compact subgroups and they are mutually conjugate in $\mathsf{PGL}_{n}(\mathsf{k})$. However, $m(\mathsf{PGL}_{n}(\mathsf{k}))$ is equal to the number of divisors of n.

Remark The building \mathcal{B} is a union of translations of an apartment A by the action of G_k , i.e.,

$$\mathcal{B} = \bigcup_{g \in G_{\mathsf{k}}} gA.$$

Let \overline{C} be a closed chamber in A. For a given point $\boldsymbol{x} \in \boldsymbol{\mathcal{B}}$, there is a $g \in G_k$ such that $g^{-1}\boldsymbol{x} \in \overline{C}$. Then $G_k^{\boldsymbol{x}}$ and $G_k^{g^{-1}\boldsymbol{x}}$ are conjugate. To classify conjugacy classes of maximal compact subgroups, it is sufficient to consider only stabilizers of points in \overline{C} .

2 Bruhat–Tits theory of $Sp_4(k)$

Let k be a p-adic field, o the maximal compact subring of k and p the maximal ideal of o.

2.1 Sp₄ and its minimal parabolic subgroup

Let $G = \mathsf{Sp}_4$ be a symplectic group, i.e.,

$$G_{\mathsf{k}} = \left\{ g \in \mathsf{GL}_4(\mathsf{k}) : {}^{t}g \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} g = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \right\}.$$

We fix a maximal split torus S and a maximal unipotent subgroup U as follows:

$$S_{\mathbf{k}} = Z_{\mathbf{k}} = \left\{ h(s,t) = \begin{pmatrix} s & 0 & 0 & 0 \\ 0 & t & 0 & 0 \\ 0 & 0 & s^{-1} & 0 \\ 0 & 0 & 0 & t^{-1} \end{pmatrix} : s,t \in \mathbf{k}^{\times} \right\}$$
$$U_{\mathbf{k}} = \left\{ \begin{pmatrix} 1 & w & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -w & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & x & y \\ 0 & 1 & y & z \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} : w,x,y,z \in \mathbf{k} \right\}$$

Then P = SU is a minimal parabolic subgroup of G over k.

2.2 Rational characters and cocharacters of S

Define k-rational characters $\mathbf{e}_1, \mathbf{e}_2 : S \longrightarrow \mathsf{G}_{\mathsf{m}}$ by

$$e_1(h(s,t)) = s, \qquad e_2(h(s,t)) = t.$$

Then $\{e_1, e_2\}$ is a basis of $X^*(S) = \operatorname{Hom}_k(S, G_m)$. Cocharacters $e_1^{\vee}, e_2^{\vee} : G_m \longrightarrow S$ are defined by

$$\mathbf{e}_1^{\vee}(s) = h(s, 1), \qquad \mathbf{e}_2^{\vee}(s) = h(1, s),$$

which give the dual basis of $\{e_1, e_2\}$ in $X_*(S) = \operatorname{Hom}_k(G_m, S)$.

2.3 Affine root system and root subgroups

Define $\mathsf{a},\mathsf{b}\in\mathsf{X}^*(S)$ by

$$\mathsf{a} = \mathsf{e}_1 - \mathsf{e}_2, \qquad \mathsf{b} = 2\mathsf{e}_2.$$

The relative root system Φ and the affine root system Φ_{aff} of (G, S) over k are given by

We fix a one-parameter subgroup $u_{\mathsf{c}} : \mathsf{k} \longrightarrow G_{\mathsf{k}}$ for each $\mathsf{c} \in \Phi$ such that

$$h \cdot u_{\mathsf{c}}(x) \cdot h^{-1} = u_{\mathsf{c}}(\mathsf{c}(h)x) \text{ for } h \in S_{\mathsf{k}},$$

e.g., for positive roots,

$$u_{\mathsf{a}}(x) = \begin{pmatrix} 1 & x & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -x & 1 \end{pmatrix}, \qquad u_{\mathsf{b}}(x) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & x \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$
$$u_{\mathsf{a}+\mathsf{b}}(x) = \begin{pmatrix} 1 & 0 & 0 & x \\ 0 & 1 & x & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad u_{2\mathsf{a}+\mathsf{b}}(x) = \begin{pmatrix} 1 & 0 & x & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

For each affine root $\delta = (\mathbf{c}, n) \in \Phi_{\text{aff}}$, the root subgroup X_{δ} is defined to be $X_{\delta} = u_{\mathbf{c}}(\mathbf{p}^n)$.

2.4 Apartment and chambers

The apartment A is an affine space under the real vector space $X_*(S) \otimes_{\mathbf{Z}} \mathbf{R}$. By **R**-linear extension of the natural pairing

$$\langle \cdot, \cdot \rangle : \mathsf{X}^*(S) \times \mathsf{X}_*(S) \longrightarrow \mathbf{Z}$$

each affine root $\delta=(\mathsf{c},n)\in\Phi_{\mathrm{aff}}$ defines an affine function:

$$\delta : A \longrightarrow \mathbf{R} : \delta(\mathbf{x}) = \langle \mathsf{c}, \mathbf{x} \rangle + n.$$

The null set $\delta^{-1}(0)$ is an affine hyperplane of A. In our case, dim A = 2 and $\delta^{-1}(0)$ is a line of the form:

$$\begin{split} \delta &= (\mathbf{a}, n) &: \quad \delta(x_1 \mathbf{e}_1^{\vee} + x_2 \mathbf{e}_2^{\vee}) = x_1 - x_2 + n = 0\\ \delta &= (\mathbf{b}, n) &: \quad 2x_2 + n = 0\\ \delta &= (\mathbf{a} + \mathbf{b}, n) : \quad x_1 + x_2 + n = 0\\ \delta &= (2\mathbf{a} + \mathbf{b}, n) : \quad 2x_1 + n = 0 \end{split}$$

A connected component ${\cal C}$ of the set

$$A - \bigcup_{\delta \in \Phi_{\mathrm{aff}}} \delta^{-1}(0)$$

is called a chamber, which is a polytope.

Define the subset $\Delta_{\text{aff}}(C)$ of Φ_{aff} by

$$\Delta_{\mathrm{aff}}(C) = \{ \delta \in \Phi_{\mathrm{aff}} : \delta/2 \notin \Phi_{\mathrm{aff}} \text{ and } \delta^{-1}(0) \cap \partial C \neq \emptyset \}.$$

For example, if C is chosen as follows

then

$$\Delta_{\text{aff}}(C) = \{(\mathsf{a}, 0), \ (\mathsf{b}, 0), \ (2\mathsf{a} + \mathsf{b}, 1)\}.$$

 $\Delta_{\text{aff}}(C)$ is displayed by the affine Dynkin diagram:

$$\underset{2\mathsf{a}+\mathsf{b}}{\circ} \Longrightarrow \underset{\mathsf{a}}{\circ} \xleftarrow{\circ} \underset{\mathsf{b}}{\circ}$$

There is the homomorphism $\nu : S_k \longrightarrow X_*(S) \otimes_{\mathbf{Z}} \mathbf{R}$ so that

$$h^{-1}X_{(\mathsf{c},n)}h = X_{(\mathsf{c},\langle\mathsf{c},\nu(h)\rangle+n)}$$

holds for every $(\mathbf{c}, n) \in \Phi_{\text{aff}}$ and $h \in S_k$. Precisely, ν is given by

$$\nu(h(s,t)) = -\operatorname{ord}_{\mathbf{p}}(s)\mathbf{e}_{1}^{\vee} - \operatorname{ord}_{\mathbf{p}}(t)\mathbf{e}_{2}^{\vee}$$

The kernel of ν is the group S_{\circ} of \circ rational points of S. The translation of A induced by $\nu(h)$ defines the action of S_{k} on A.

Let N be the normalizer of S in G. The Weyl group $W = N/S = N_k/S_k$ of Φ acts on A by reflections as usual. The affine Weyl group $W_{\text{aff}} = N_k/S_o$ is isomorphic with $S_k/S_o \rtimes W$. Both N_k and W_{aff} act on A by affine transformations.

Remark In our case, the closed chamber $\overline{C} = C \cup \partial C$ of A is a fundamental domain of $A/N_{k} = A/W_{\text{aff}}$. This is not true in general.

For $\delta \in \Delta_{\operatorname{aff}}(C)$, w_{δ} denotes the orthogonal reflection of A with respect to the affine hyperplane $\delta^{-1}(0)$. The set $W_{\operatorname{aff}}(C) = \{\mathsf{w}_{\delta}\}_{\delta \in \Delta_{\operatorname{aff}}(C)}$ is a subset of W_{aff} .

2.5 Tits system

For a subset $F \subset \overline{C}$ and a root $\mathbf{c} \in \Phi$, we set

$$n_F(\mathsf{c}) = \inf\{n \in \mathbf{Z} : \langle \mathsf{c}, \boldsymbol{x} \rangle + n \ge 0 \text{ for all } \boldsymbol{x} \in F\}.$$

Define unipotent subgroups X_F^+ and X_F^- of G_k by

$$\begin{split} X_F^+ &= \prod_{0 < \mathbf{c} \in \Phi} X_{(\mathbf{c}, n_F(\mathbf{c}))} = \prod_{0 < \mathbf{c} \in \Phi} u_{\mathbf{c}}(\mathbf{p}^{n_F(\mathbf{c})}), \\ X_F^- &= \prod_{0 > \mathbf{c} \in \Phi} X_{(\mathbf{c}, n_F(\mathbf{c}))} = \prod_{0 > \mathbf{c} \in \Phi} u_{\mathbf{c}}(\mathbf{p}^{n_F(\mathbf{c})}). \end{split}$$

If F = C, then the product

$$B_C = X_C^- \cdot S_{\mathsf{o}} \cdot X_C^+$$

is a subgroup of G_k , which is called the Iwahori subgroup of G_k corresponding to C. The following is a fundamental result due to Iwahori–Matsumoto.

Theorem 2.1. The quadruple $(G_k, B_C, N_k, W_{aff}(C))$ is a Tits system, i.e., this satisfies

- (T1) $B_C \cup N_k$ generates G_k and $B_C \cap N_k = S_o$ is a normal subgroup of N_k ,
- (T2) $W_{\text{aff}}(C)$ generates W_{aff} and every element in $W_{\text{aff}}(C)$ is of order 2,
- (T3) $\mathbf{s}B_C\mathbf{s} \neq B_C$ for each $\mathbf{s} \in W_{\mathrm{aff}}(C)$,
- (T4) $sB_Cw \subset B_CwB_C \cup B_CswB_C$ for each $s \in W_{aff}(C)$ and $w \in W_{aff}$.

As a consequence of the theory of Tits systems, we obtain the following double coset decomposition of G_k :

$$G_{\mathsf{k}} = \bigsqcup_{\mathsf{w} \in W_{\mathrm{aff}}} B_C \mathsf{w} B_C \qquad (\text{Bruhat decomposition})$$

For $\boldsymbol{x} \in \overline{C}$, $W_{\text{aff}}^{\boldsymbol{x}}$ stands for the stabilizer of \boldsymbol{x} in W_{aff} . Then

$$G_{\mathsf{k}}^{\boldsymbol{x}} = \bigsqcup_{\mathsf{w} \in W_{\mathrm{aff}}^{\boldsymbol{x}}} B_C \mathsf{w} B_C$$

is a subgroup of G_k .

2.6 Building

Since G_k does not act on A, we need to build an enlargement of A on which G_k acts. Since \overline{C} is a fundamental domain of A/W_{aff} , the apartment A is identified with the quotient space

$$(W_{\text{aff}} \times \overline{C}) / \sim$$
,

where $(\mathbf{w}, \mathbf{x}) \sim (\mathbf{w}', \mathbf{x}')$ if $\mathbf{x} = \mathbf{x}'$ and $\mathbf{w}^{-1}\mathbf{w}' \in W_{\text{aff}}^{\mathbf{x}}$. We extend the equivalent relation \sim to $G_{\mathbf{k}} \times \overline{C}$ by

$$(g, \boldsymbol{x}) \sim (g', \boldsymbol{x}')$$
 if $\boldsymbol{x} = \boldsymbol{x}'$ and $g^{-1}g' \in G_k^{\boldsymbol{x}}$.

Then the quotient space

$$\mathcal{B} = \mathcal{B}(G_{\mathsf{k}}) = (G_{\mathsf{k}} \times \overline{C}) / \sim$$

gives the building of G_k . Let n_w be an arbitrary representative in N_k of $\mathbf{w} \in W_{\text{aff}}$. Then, by the map $(\mathbf{w}, \mathbf{x}) \mapsto (n_w, \mathbf{x})$, the apartment $A = (W_{\text{aff}} \times \overline{C}) / \sim$ is embedded in \mathcal{B} . The group G_k acts on \mathcal{B} by $g(h, \mathbf{x}) = (gh, \mathbf{x})$.

Theorem 2.2 (Tits, §2.1). The building \mathcal{B} is uniquely characterized as a G_k -set satisfying the following properties:

- $\mathcal{B} = \bigcup_{g \in G_{\mathsf{L}}} gA$,
- N_k stabilizes A and operates on it by the same way defined as in §2.4,
- for any $\delta \in \Phi_{\text{aff}}$, the root subgroup X_{δ} fixes $\delta^{-1}([0,\infty))$ pointwise.

Remark For every $\boldsymbol{x} \in A$, there is an $n \in N_k$ such that $n\boldsymbol{x} \in \overline{C}$. Then we define $G_k^{\boldsymbol{x}}$ by $n^{-1}G_k^{n\boldsymbol{x}}n$. Another definition of \mathcal{B} is given by

$$\mathcal{B} = (G_{\mathsf{k}} \times A) / \sim,$$

where

$$(g, \boldsymbol{x}) \sim (g', \boldsymbol{x}')$$
 if $\exists n \in N_k$ such that $\boldsymbol{x}' = n\boldsymbol{x}$ and $g^{-1}g'n \in G_k^{\boldsymbol{x}}$

This definition does not need to assume that \overline{C} is a fundamental domain of A/W_{aff} .

2.7 Stabilizers

For a subset $F \subset \mathcal{B}$, the pointwise stabilizer of F in G_k is denoted by G_k^F , i.e.,

$$G_{\mathsf{k}}^{F} = \{g \in G_{\mathsf{k}} : g\boldsymbol{x} = \boldsymbol{x} \text{ for all } \boldsymbol{x} \in F\}.$$

The structure of G_k^F is determined by

Theorem 2.3 (Bruhat–Tits Proposition 2.4.13, Tits §3.1.1). Let $F \subset \mathcal{B}$ be a bounded subset.

- (1) If F^{\dagger} denotes the closed convex closure of F in \mathcal{B} , then $G_{k}^{F} = G_{k}^{F^{\dagger}}$.
- (2) If $F \subset \overline{C}$ and N_k^F denotes the pointwise stabilizer of F in N_k , then

$$G_{\mathsf{k}}^F = X_F^- \cdot N_{\mathsf{k}}^F \cdot X_F^+ \,.$$

If $F = \{x\} \subset \overline{C}$ is a one point, then $G_k^{\{x\}}$ is coincides with G_k^x defined in §2.5, i.e.,

$$G_{\mathsf{k}}^{\{\boldsymbol{x}\}} = G_{\mathsf{k}}^{\boldsymbol{x}} = B_C \cdot W_{\text{aff}}^{\boldsymbol{x}} \cdot B_C$$

We write $\boldsymbol{v}_0, \boldsymbol{v}_1, \boldsymbol{v}_2$ for vertices of a chamber C as follows.

The chamber C has 7 facets:

 $\boldsymbol{v}_0, \quad \boldsymbol{v}_1, \quad \boldsymbol{v}_2, \quad \overline{\boldsymbol{v}_0 \boldsymbol{v}_1}, \quad \overline{\boldsymbol{v}_1 \boldsymbol{v}_2}, \quad \overline{\boldsymbol{v}_2 \boldsymbol{v}_0}, \quad C.$

The stabilizers of vertices are

$$\begin{split} G_{\mathbf{k}}^{v_{0}} &= X_{v_{0}}^{-} \cdot S_{\mathbf{o}} \cdot W \cdot X_{v_{0}}^{+} = \mathsf{Sp}_{4}(\mathbf{o}) \\ G_{\mathbf{k}}^{v_{1}} &= \begin{pmatrix} 1 & & \\ p & 1 & & \\ p & p & 1 & p \\ p & \mathbf{o} & 1 \end{pmatrix} \cdot S_{\mathbf{o}} \cdot \begin{pmatrix} 1 & \mathbf{o} & p^{-1} & \mathbf{o} \\ & 1 & & \\ & \mathbf{o} & 1 \end{pmatrix} \\ G_{\mathbf{k}}^{v_{2}} &= \begin{pmatrix} 1 & & \\ \mathbf{o} & 1 & & \\ p & p & 1 & \mathbf{o} \\ p & p & 1 \end{pmatrix} \cdot S_{\mathbf{o}} \cdot \{I_{4}, \mathsf{w}_{0}\} \cdot \begin{pmatrix} 1 & \mathbf{o} & p^{-1} & p^{-1} \\ & 1 & p^{-1} & p^{-1} \\ & & 1 & \\ & & \mathbf{o} & 1 \end{pmatrix} , \end{split}$$

where $w_0 = w_{(a,0)}$. By Theorem 2.3 (1), we have

$$G_{\mathsf{k}}^{\overline{\boldsymbol{v}_i \boldsymbol{v}_j}} = G_{\mathsf{k}}^{\boldsymbol{v}_i} \cap G_{\mathsf{k}}^{\boldsymbol{v}_j}, \qquad G_{\mathsf{k}}^C = G_{\mathsf{k}}^{\boldsymbol{v}_0} \cap G_{\mathsf{k}}^{\boldsymbol{v}_1} \cap G_{\mathsf{k}}^{\boldsymbol{v}_2} = B_C.$$

For each facet F of $C,\,G^F_{\mathsf{k}}$ has the double coset decomposition:

$$G_{\mathsf{k}}^F = \bigsqcup_{\mathsf{w} \in W_{\mathrm{aff}}^F} B_C \mathsf{w} B_C \,,$$

where W_{aff}^F is the subgroup of W_{aff} generated by $\{\mathsf{w}_{\delta} : F \subset \delta^{-1}(0)\}$.

By Theorem 1.3 (4), $G_{k}^{v_{0}}, G_{k}^{v_{1}}$ and $G_{k}^{v_{2}}$ are maximal compact subgroups of G_{k} and they are not conjugate in G_{k} each other. Every maximal compact subgroup of G_{k} is conjugate to one of $G_{k}^{v_{i}}$ s.

2.8 Special maximal compact subgroups

Let $\boldsymbol{x} \in \overline{C}$. We define subsets of $\Phi_{\text{aff}} = \Phi \times \mathbf{Z}$ by

 $\Phi_{\rm aff}(\boldsymbol{x}) = \left\{ \delta \in \Phi_{\rm aff} \ : \ \delta(\boldsymbol{x}) = 0 \right\}, \qquad \Phi(\boldsymbol{x}) = \Phi \text{-part of } \Phi_{\rm aff}(\boldsymbol{x})$

and

$$I_{\boldsymbol{x}} = \{ \delta \in \Delta_{\operatorname{aff}}(C) : \delta(\boldsymbol{x}) \neq 0 \}$$

Then $\Phi(\boldsymbol{x})$ is a subroot system of Φ . If \boldsymbol{x} is a point in the interior of C, then $\Phi_{\text{aff}}(\boldsymbol{x}) = \emptyset$ and $I_{\boldsymbol{x}} = \Delta_{\text{aff}}(C)$.

The point \boldsymbol{x} is called special if every element of Φ is proportional to some element of $\Phi(\boldsymbol{x})$.

For example,

- if $x = v_0$, then $\Phi(v_0) = \Phi$ and $I_{v_0} = \{(2\mathsf{a} + \mathsf{b}, 1)\},\$
- if $x = v_1$, then $\Phi(v_1) = \{b, 2a + b\}$ and $I_{v_1} = \{(a, 0)\},\$
- if $x = v_2$, then $\Phi(v_2) = \Phi$ and $I_{v_2} = \{(b, 0)\}.$

Hence both \boldsymbol{v}_0 and \boldsymbol{v}_2 are special, but not \boldsymbol{v}_1 .

The stabilizer of a special point is a special maximal compact subgroup. Both $G_{k}^{v_{0}}$ and $G_{k}^{v_{2}}$ are special maximal compact subgroups, but not $G_{k}^{v_{1}}$.

2.9 o-models of G

Let $J : \mathbf{k}^4 \times \mathbf{k}^4 \longrightarrow \mathbf{k}$ be the symplectic form defining G, and let e_1, e_2, e'_1, e'_2 be the canonical basis. We define **o**-lattices L_0, L_1, L_2 as follows:

$$\begin{split} L_0 &= \mathsf{o} e_1 + \mathsf{o} e_2 + \mathsf{o} e_1' + \mathsf{o} e_2', \\ L_1 &= \mathsf{o} e_1 + \mathsf{o} e_2 + \mathsf{p} e_1' + \mathsf{o} e_2', \\ L_2 &= \mathsf{o} e_1 + \mathsf{o} e_2 + \mathsf{p} e_1' + \mathsf{p} e_2'. \end{split}$$

The stabilizer of L_i in G_k is $G_k^{\boldsymbol{v}_i}$ for i = 0, 1, 2.

Since $J(L_i, L_i) \subset \mathbf{o}$, (L_i, J) gives an o-structure of the symplectic space (\mathbf{k}^4, J) , and hence an o-model \mathcal{G}^i of G. We have $\mathcal{G}^i_{\mathbf{o}} = \mathcal{G}^{\boldsymbol{v}_i}_{\mathbf{k}}$. One of the main results of Bruhat–Tits theory is:

Theorem 2.4 (Tits §3.4.1). Let F be a non-empty bounded subset of \mathcal{B} . Then there exists a unique smooth group \mathbf{o} -scheme \mathcal{G}^F satisfying

- $\mathcal{G}^F \times_{o} \mathbf{k} = G$,
- $\mathcal{G}_{\mathsf{o}'}^F = G_{\mathsf{k}'}^F$ for any unramified extension k'/k .

We put $\mathcal{G}_{f}^{i} = (\mathcal{G}^{i} \times_{o} f)_{f}$, where f = o/p is the residue field of k. It is easy to see that $\mathcal{G}_{f}^{0} = \mathcal{G}_{f}^{2} = Sp_{4}(f)$. We determine \mathcal{G}_{f}^{1} . Let π be a prime element of o. Since $J(L_{1}, L_{1}) = o$, the bilinear form

$$\overline{J}: L_1/\pi L_1 \times L_1/\pi L_1 \longrightarrow \mathsf{f}.$$

over f is defined from J. For $x \in L$, [x] denotes $x \mod \pi L$. Then $[e_1], [e_2], [\pi e'_1], [e'_2]$ is a basis of $L_1/\pi L_1$ over f. Since the radical $R_{\overline{J}}$ of \overline{J} is spanned by $[e_1], [\pi e'_1]$, the automorphism group of $(L_1/\pi L_1, \overline{J})$ is isomorphic with $M_2(f) \rtimes (\mathsf{GL}_2(f) \times \mathsf{SL}_2(f))$. Hence $\mathcal{G}_{\mathsf{f}}^1 \cong \mathsf{M}_2(\mathsf{f}) \rtimes (\mathsf{GL}_2(\mathsf{f}) \times \mathsf{SL}_2(\mathsf{f}))$.

3 Maximal compact subgroups of $GSp_4(k)$

Let GSp_4 be the symplectic group of similitude. There is the following exact sequence:

 $1 \longrightarrow \mathsf{Sp}_4 \longrightarrow \mathsf{GSp}_4 \xrightarrow{\chi} \mathsf{G}_m \longrightarrow 1$

The similitude character χ has a splitting:

$$s \mapsto d(s) = \begin{pmatrix} s & 0 & 0 & 0\\ 0 & s & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Therefore, GSp_4 is isomorphic with $\mathsf{Sp}_4 \rtimes d(\mathsf{G}_m)$.

3.1 Bruhat–Tits theory of $GSp_4(k)$

- In general, the apartment of a connected reductive group H over k is identified with the apartment of $Z(H) \times [H, H]$, where Z(H) denotes the maximal central k-split torus of H. Since $Z(\mathsf{GSp}_4)$ is a one-dimensional split torus and $[\mathsf{GSp}_4, \mathsf{GSp}_4] = \mathsf{Sp}_4$, the apartment \widetilde{A} of $\mathsf{GSp}_4(k)$ is identified with $\mathbf{R} \times A$.
- $T = S \cdot d(\mathsf{G}_m)$ is a maximal k-split torus of GSp_4 . The root system of GSp_4 with respect to T is the same as Φ . For $\delta \in \Phi_{\mathrm{aff}}$, the affine function $\delta : A \longrightarrow \mathbf{R}$ is trivially extended to \widetilde{A} by composition with the projection $\widetilde{A} \longrightarrow A$. Therefore, $\widetilde{C} = \mathbf{R} \times C$ is a chamber of \widetilde{A} .
- For a vertex v_i of C, we denote by \tilde{v}_i the one-dimensional facet $\mathbf{R} \times v_i$ of \tilde{C} . Since \tilde{v}_i is a facet of minimal dimension, its stabilizer $K_i = \mathsf{GSp}_4(\mathsf{k})^{\tilde{v}_i}$ is a maximal compact subgroup of $\mathsf{GSp}_4(\mathsf{k})$.
- The homomorphism $\nu : S_k \longrightarrow X_*(S) \otimes_{\mathbf{Z}} \mathbf{R}$ is extended to T_k by

$$\nu(d(s)) = -\frac{\operatorname{ord}_{\mathbf{p}}(s)}{2}(\mathbf{e}_1^{\vee} + \mathbf{e}_2^{\vee}).$$

Then T_{k} acts on \widetilde{A} by the translation: $(r, \boldsymbol{x}) \mapsto (r, \boldsymbol{x} + \nu(h))$ for $(r, \boldsymbol{x}) \in \widetilde{A}$ and $h \in T_{\mathsf{k}}$. The facet $\widetilde{\boldsymbol{v}}_0$ transforms to the facet $\widetilde{\boldsymbol{v}}_2$ by the action of $d(\pi^{-1})$. Hence K_0 and K_2 are conjugate in $\mathsf{GSp}_4(\mathsf{k})$.

• K_0 is not conjugate to K_1 because that \boldsymbol{v}_0 is a special point but not \boldsymbol{v}_1 .

3.2 Conjugacy of stabilizers of facets

The subset $\Delta_{\operatorname{aff}}(\widetilde{C}) = \Delta_{\operatorname{aff}}(C)$ of $\Phi_{\operatorname{aff}}$ is the local Dynkin diagram of $\mathsf{GSp}_4(\mathsf{k})$:

$$\underset{2\mathsf{a}+\mathsf{b}}{\circ} \Longrightarrow \underset{\mathsf{a}}{\circ} \xleftarrow{\circ} \underset{\mathsf{b}}{\circ}$$

The local Dynkin diagram does not depend, up to canonical isomorphism, on the choice of the chamber \widetilde{C} . The torus T_k acts on the set of chambers in \widetilde{A} , and hence on $\Delta_{\text{aff}}(\widetilde{C})$. We denote by $\Xi(\mathsf{GSp}_4)$, or simply Ξ , the image of the homomorphism $T_k \longrightarrow \text{Aut}(\Delta_{\text{aff}}(\widetilde{C}))$

Theorem 3.1 (Tits §2.5). Ξ is isomorphic with $T_k/T_oS_kZ(\mathsf{GSp}_4)_k$, in particular $\Xi = \operatorname{Aut}(\Delta_{\operatorname{aff}}(\widetilde{C}))$.

For every facet \widetilde{F} of the chamber \widetilde{C} , we define the subset $I_{\widetilde{F}}$ of $\Delta_{\operatorname{aff}}(\widetilde{C})$ by

$$I_{\widetilde{F}} = \{ \delta \in \Delta_{\operatorname{aff}}(\widetilde{C}) : \delta|_{\widetilde{F}} \neq 0 \}$$

Obviously, we have $I_{\widetilde{\boldsymbol{v}}_i} = I_{\boldsymbol{v}_i}$.

Theorem 3.2 (Tits §2.5). Let \widetilde{F}_1 and \widetilde{F}_2 be facets of \widetilde{C} . Then $\mathsf{GSp}_4(\mathsf{k})^{\widetilde{F}_1}$ and $\mathsf{GSp}_4(\mathsf{k})^{\widetilde{F}_2}$ are conjugate in $\mathsf{GSp}_4(\mathsf{k})$ if and only if $I_{\widetilde{F}_1}$ and $I_{\widetilde{F}_2}$ are in the same orbit of Ξ .

4 Conclusions

- $G_{k}^{v_{0}}, G_{k}^{v_{1}}$ and $G_{k}^{v_{2}}$ are are representatives of conjugacy classes of maximal compact subgroups of $G_{k} = \mathsf{Sp}_{4}(\mathsf{k})$.
- Both $G_k^{v_0}$ and $G_k^{v_2}$ are special maximal compact subgroups of G_k . They satisfy both Iwasawa and Cartan decompositions. The reduction mod **p** of each of them is isomorphic with $Sp_4(f)$.
- $G_k^{v_1}$ is not a special maximal compact subgroup. The reduction mod p of $G_k^{v_1}$ is isomorphic with $M_2(f) \rtimes (GL_2(f) \times SL_2(f))$.
- $\mathsf{GSp}_4(\mathsf{k})^{\widetilde{v}_0}$ and $\mathsf{GSp}_4(\mathsf{k})^{\widetilde{v}_1}$ are representatives of conjugacy classes of maximal compact subgroups of $\mathsf{GSp}_4(\mathsf{k})$.
- $\mathsf{GSp}_4(\mathsf{k})^{\widetilde{\boldsymbol{v}}_0}$ is a special maximal compact subgroup.
- $\mathsf{GSp}_4(\mathsf{k})^{\widetilde{v}_1}$ is not a special maximal compact subgroup.