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1 Maximal compact subgroups

Let k be a locally compact field of characteristic 0, G a connected linear
algebraic group defined over k andGk the locally compact group of k-rational
points of G.

The following result can be found in [Bruhat] and [Satake].

Theorem 1.1. Gk has a maximal compact subgroup if and only if G is re-
ductive. In this case, any compact subgroup of Gk is contained in a maximal
compact subgroup.

We assume G is reductive, and let

S = maximal k-split torus of G,

Z = centralizer of S in G,

P = minimal parabolic subgroup of G over k of a Levi subgroup Z,

U = unipotent radical of P .

In the case of k = R, the following result is well known.

Theorem 1.2. If k = R, then two maximal compact subgroups of Gk are
conjugate by an inner automorphism. If K is a maximal compact subgroup
of Gk, then one has the following decompositions:

Gk = K · Zk · Uk (Iwasawa decomposition)

= K · Zk ·K (Cartan decomposition)

This theorem does not true if k is a p-adic field.
Let k be a p-adic field. The following problems occurred in the early of
1960’s.

• How many maximal compact subgroups of Gk up to conjugacy are
there?

• DoesGk possess a maximal compact subgroup satisfying both Iwasawa
and Cartan decompositions?
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These problems were studied by many authors:

1960 – 1964 Shimura, Tsukamoto, Bruhat, Hijikata in classical groups

1965 Iwahori and Matsumoto in Chevalley groups

1966 – 1987 Bruhat and Tits in full generality

The main results of Bruhat–Tits theory are stated as follows.

Theorem 1.3. Let B be the Bruhat–Tits building associated with Gk. For
a point x ∈ B, Gx

k denotes the stabilizer of x in Gk.

(1) For a maximal compact subgroup K of Gk, there is a point x ∈ B such
that K = Gx

k .

(2) If x ∈ B is a point contained in a facet of minimal dimension, then
Gx

k is a maximal compact subgroup of Gk.

(3) The number m(Gk) of maximal compact subgroups of Gk up to conju-
gacy is finite.

(4) If G is simply connected, then every maximal compact subgroup of Gk

is the stabilizer of a vertex (= 0-dimensional facet) of B, and m(Gk)
is equal to the number of vertices of a chamber in B. Precisely,

m(Gk) =
ℓ∏

i=1

(rankk(Gi) + 1)

where G1, · · · , Gℓ are k-simple factors of G.

(5) B has special points. The stabilizer of every special point of B is a
maximal compact subgroup, which is called a special maximal com-
pact subgroup. Every special maximal compact subgroup satisfies both
Iwasawa and Cartan decompositions.
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Remark If G is semisimple but not simply connected, then it is possible to
happen a case where x ∈ B is not a vertex but Gx

k is a maximal compact
subgroup of Gk. For example, in the case of PGLn, every chamber has n
vertices. Stabilizers of vertices are maximal compact subgroups and they
are mutually conjugate in PGLn(k). However, m(PGLn(k)) is equal to the
number of divisors of n.

Remark The building B is a union of translations of an apartment A by
the action of Gk , i.e.,

B =
∪
g∈Gk

gA .

Let C be a closed chamber in A. For a given point x ∈ B, there is a

g ∈ Gk such that g−1x ∈ C. Then Gx
k and Gg−1x

k are conjugate. To classify
conjugacy classes of maximal compact subgroups, it is sufficient to consider
only stabilizers of points in C.
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2 Bruhat–Tits theory of Sp4(k)

Let k be a p-adic field, o the maximal compact subring of k and p the
maximal ideal of o.

2.1 Sp4 and its minimal parabolic subgroup

Let G = Sp4 be a symplectic group, i.e.,

Gk =

g ∈ GL4(k) : tg


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 g =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 .

We fix a maximal split torus S and a maximal unipotent subgroup U as
follows:

Sk = Zk =

h(s, t) =


s 0 0 0
0 t 0 0
0 0 s−1 0
0 0 0 t−1

 : s, t ∈ k×


Uk =



1 w 0 0
0 1 0 0
0 0 1 0
0 0 −w 1



1 0 x y
0 1 y z
0 0 1 0
0 0 0 1

 : w, x, y, z ∈ k


Then P = SU is a minimal parabolic subgroup of G over k.

2.2 Rational characters and cocharacters of S

Define k-rational characters e1, e2 : S −→ Gm by

e1(h(s, t)) = s, e2(h(s, t)) = t .

Then {e1, e2} is a basis of X∗(S) = Homk(S,Gm).
Cocharacters e∨1 , e

∨
2 : Gm −→ S are defined by

e∨1 (s) = h(s, 1), e∨2 (s) = h(1, s) ,

which give the dual basis of {e1, e2} in X∗(S) = Homk(Gm, S).
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2.3 Affine root system and root subgroups

Define a, b ∈ X∗(S) by

a = e1 − e2, b = 2e2 .

The relative root system Φ and the affine root system Φaff of (G,S) over k
are given by

Φ = {±a, ±b, ±(a+ b), ±(2a+ b)} , Φaff = Φ× Z .

a

b

a+b

2a+b

We fix a one-parameter subgroup uc : k −→ Gk for each c ∈ Φ such that

h · uc(x) · h−1 = uc(c(h)x) for h ∈ Sk ,

e.g., for positive roots,

ua(x) =


1 x 0 0
0 1 0 0
0 0 1 0
0 0 −x 1

 , ub(x) =


1 0 0 0
0 1 0 x
0 0 1 0
0 0 0 1

 ,

ua+b(x) =


1 0 0 x
0 1 x 0
0 0 1 0
0 0 0 1

 , u2a+b(x) =


1 0 x 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

For each affine root δ = (c, n) ∈ Φaff , the root subgroup Xδ is defined to be

Xδ = uc(p
n) .
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2.4 Apartment and chambers

The apartment A is an affine space under the real vector space X∗(S)⊗ZR.
By R-linear extension of the natural pairing

⟨·, ·⟩ : X∗(S)× X∗(S) −→ Z

each affine root δ = (c, n) ∈ Φaff defines an affine function:

δ : A −→ R : δ(x) = ⟨c,x⟩+ n .

The null set δ−1(0) is an affine hyperplane of A. In our case, dimA = 2 and
δ−1(0) is a line of the form:

δ = (a, n) : δ(x1e
∨
1 + x2e

∨
2 ) = x1 − x2 + n = 0

δ = (b, n) : 2x2 + n = 0

δ = (a+ b, n) : x1 + x2 + n = 0

δ = (2a+ b, n): 2x1 + n = 0
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A connected component C of the set

A−
∪

δ∈Φaff

δ−1(0)

is called a chamber, which is a polytope.

C

Define the subset ∆aff(C) of Φaff by

∆aff(C) = {δ ∈ Φaff : δ/2 ̸∈ Φaff and δ−1(0) ∩ ∂C ̸= ∅} .

For example, if C is chosen as follows

Ha,0L

Hb,0L

H2a+b, 1L

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.5

then
∆aff(C) = {(a, 0), (b, 0), (2a+ b, 1)} .
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∆aff(C) is displayed by the affine Dynkin diagram:

◦
2a+b

==⇒ ◦
a
⇐== ◦

b

There is the homomorphism ν : Sk −→ X∗(S)⊗Z R so that

h−1X(c,n)h = X(c,⟨c,ν(h)⟩+n)

holds for every (c, n) ∈ Φaff and h ∈ Sk. Precisely, ν is given by

ν(h(s, t)) = −ordp(s)e
∨
1 − ordp(t)e

∨
2 .

The kernel of ν is the group So of o rational points of S. The translation of
A induced by ν(h) defines the action of Sk on A.

Let N be the normalizer of S in G. The Weyl group W = N/S = Nk/Sk

of Φ acts on A by reflections as usual. The affine Weyl group Waff =
Nk/So is isomorphic with Sk/So oW . Both Nk and Waff act on A by affine
transformations.

Remark In our case, the closed chamber C = C∪∂C of A is a fundamental
domain of A/Nk = A/Waff . This is not true in general.

C

For δ ∈ ∆aff(C), wδ denotes the orthogonal reflection of A with respect to
the affine hyperplane δ−1(0). The set Waff(C) = {wδ}δ∈∆aff(C) is a subset of
Waff .
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2.5 Tits system

For a subset F ⊂ C and a root c ∈ Φ, we set

nF (c) = inf{n ∈ Z : ⟨c,x⟩+ n ≥ 0 for all x ∈ F} .

Define unipotent subgroups X+
F and X−

F of Gk by

X+
F =

∏
0<c∈Φ

X(c,nF (c)) =
∏

0<c∈Φ

uc(p
nF (c)),

X−
F =

∏
0>c∈Φ

X(c,nF (c)) =
∏

0>c∈Φ

uc(p
nF (c)) .

If F = C, then the product

BC = X−
C · So ·X+

C

is a subgroup of Gk, which is called the Iwahori subgroup of Gk correspond-
ing to C. The following is a fundamental result due to Iwahori–Matsumoto.

Theorem 2.1. The quadruple (Gk, BC , Nk,Waff(C)) is a Tits system, i.e.,
this satisfies

(T1) BC ∪Nk generates Gk and BC ∩Nk = So is a normal subgroup of Nk,

(T2) Waff(C) generates Waff and every element in Waff(C) is of order 2,

(T3) sBCs ̸= BC for each s ∈ Waff(C),

(T4) sBCw ⊂ BCwBC ∪BCswBC for each s ∈ Waff(C) and w ∈ Waff .

As a consequence of the theory of Tits systems, we obtain the following
double coset decomposition of Gk:

Gk =
⊔

w∈Waff

BCwBC (Bruhat decomposition)

For x ∈ C, Wx
aff stands for the stabilizer of x in Waff . Then

Gx
k =

⊔
w∈Wx

aff

BCwBC

is a subgroup of Gk.
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2.6 Building

Since Gk does not act on A, we need to build an enlargement of A on which
Gk acts. Since C is a fundamental domain of A/Waff , the apartment A is
identified with the quotient space

(Waff × C)/ ∼ ,

where (w,x) ∼ (w′,x′) if x = x′ and w−1w′ ∈ Wx
aff . We extend the equiva-

lent relation ∼ to Gk × C by

(g,x) ∼ (g′,x′) if x = x′ and g−1g′ ∈ Gx
k .

Then the quotient space

B = B(Gk) = (Gk × C)/ ∼

gives the building of Gk. Let nw be an arbitrary representative in Nk of w ∈
Waff . Then, by the map (w,x) 7→ (nw,x), the apartment A = (Waff×C)/ ∼
is embedded in B. The group Gk acts on B by g(h,x) = (gh,x).

Theorem 2.2 (Tits, §2.1). The building B is uniquely characterized as a
Gk-set satisfying the following properties:

• B =
∪

g∈Gk
gA,

• Nk stabilizes A and operates on it by the same way defined as in §2.4,

• for any δ ∈ Φaff , the root subgroup Xδ fixes δ−1([0,∞)) pointwise.

Remark For every x ∈ A, there is an n ∈ Nk such that nx ∈ C. Then we
define Gx

k by n−1Gnx
k n. Another definition of B is given by

B = (Gk × A)/ ∼ ,

where

(g,x) ∼ (g′,x′) if ∃n ∈ Nk such that x′ = nx and g−1g′n ∈ Gx
k

This definition does not need to assume that C is a fundamental domain of
A/Waff .

12



2.7 Stabilizers

For a subset F ⊂ B, the pointwise stabilizer of F in Gk is denoted by GF
k ,

i.e.,
GF

k = {g ∈ Gk : gx = x for all x ∈ F} .

The structure of GF
k is determined by

Theorem 2.3 (Bruhat–Tits Proposition 2.4.13, Tits §3.1.1). Let F ⊂ B be
a bounded subset.

(1) If F † denotes the closed convex closure of F in B, then GF
k = GF †

k .

(2) If F ⊂ C and NF
k denotes the pointwise stabilizer of F in Nk, then

GF
k = X−

F ·NF
k ·X+

F .

If F = {x} ⊂ C is a one point, then G
{x}
k is coincides with Gx

k defined in
§2.5, i.e.,

G
{x}
k = Gx

k = BC ·Wx
aff ·BC

We write v0,v1,v2 for vertices of a chamber C as follows.

v0 v1

v2

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

The chamber C has 7 facets:

v0, v1, v2, v0v1, v1v2, v2v0, C .
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The stabilizers of vertices are

Gv0
k = X−

v0
· So ·W ·X+

v0
= Sp4(o)

Gv1
k =


1
p 1
p p 1 p
p o 1

 · So ·


1 o p−1 o

1 o o
1
o 1



Gv2
k =


1
o 1
p p 1 o
p p 1

 · So · {I4,w0} ·


1 o p−1 p−1

1 p−1 p−1

1
o 1

 ,

where w0 = w(a,0). By Theorem 2.3 (1), we have

G
vivj

k = Gvi
k ∩G

vj

k , GC
k = Gv0

k ∩Gv1
k ∩Gv2

k = BC .

For each facet F of C, GF
k has the double coset decomposition:

GF
k =

⊔
w∈WF

aff

BCwBC ,

where W F
aff is the subgroup of Waff generated by {wδ : F ⊂ δ−1(0)}.

By Theorem 1.3 (4), Gv0
k , Gv1

k and Gv2
k are maximal compact subgroups of

Gk and they are not conjugate in Gk each other. Every maximal compact
subgroup of Gk is conjugate to one of Gvi

k s.
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2.8 Special maximal compact subgroups

Let x ∈ C. We define subsets of Φaff = Φ× Z by

Φaff(x) = {δ ∈ Φaff : δ(x) = 0} , Φ(x) = Φ-part of Φaff(x)

and
Ix = {δ ∈ ∆aff(C) : δ(x) ̸= 0} .

Then Φ(x) is a subroot system of Φ. If x is a point in the interior of C,
then Φaff(x) = ∅ and Ix = ∆aff(C).

The point x is called special if every element of Φ is proportional to some
element of Φ(x).

v0 v1

v2

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

For example,

• if x = v0, then Φ(v0) = Φ and Iv0 = {(2a+ b, 1)},

• if x = v1, then Φ(v1) = {b, 2a+ b} and Iv1 = {(a, 0)},

• if x = v2, then Φ(v2) = Φ and Iv2 = {(b, 0)}.

Hence both v0 and v2 are special, but not v1.

The stabilizer of a special point is a special maximal compact subgroup.
Both Gv0

k and Gv2
k are special maximal compact subgroups, but not Gv1

k .
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2.9 o-models of G

Let J : k4×k4 −→ k be the symplectic form defining G, and let e1, e2, e
′
1, e

′
2

be the canonical basis. We define o-lattices L0, L1, L2 as follows:

L0 = oe1 + oe2 + oe′1 + oe′2,

L1 = oe1 + oe2 + pe′1 + oe′2,

L2 = oe1 + oe2 + pe′1 + pe′2 .

The stabilizer of Li in Gk is Gvi
k for i = 0, 1, 2.

Since J(Li, Li) ⊂ o, (Li, J) gives an o-structure of the symplectic space
(k4, J), and hence an o-model Gi of G. We have Gi

o = Gvi
k . One of the main

results of Bruhat–Tits theory is:

Theorem 2.4 (Tits §3.4.1). Let F be a non-empty bounded subset of B.
Then there exists a unique smooth group o-scheme GF satisfying

• GF ×o k = G,

• GF
o′ = GF

k′ for any unramified extension k′/k.

We put Gi
f = (Gi ×o f)f , where f = o/p is the residue field of k. It is easy to

see that G0
f = G2

f = Sp4(f). We determine G1
f . Let π be a prime element of

o. Since J(L1, L1) = o, the bilinear form

J : L1/πL1 × L1/πL1 −→ f .

over f is defined from J . For x ∈ L, [x] denotes x mod πL. Then
[e1], [e2], [πe

′
1], [e

′
2] is a basis of L1/πL1 over f. Since the radical RJ of J

is spanned by [e1], [πe
′
1], the automorphism group of (L1/πL1, J) is isomor-

phic with M2(f)o (GL2(f)× SL2(f)). Hence G1
f
∼= M2(f)o (GL2(f)× SL2(f)).
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3 Maximal compact subgroups of GSp4(k)

Let GSp4 be the symplectic group of similitude. There is the following exact
sequence:

1 −−−→ Sp4 −−−→ GSp4
χ−−−→ Gm −−−→ 1

The similitude character χ has a splitting:

s 7→ d(s) =


s 0 0 0
0 s 0 0
0 0 1 0
0 0 0 1


Therefore, GSp4 is isomorphic with Sp4 o d(Gm).

3.1 Bruhat–Tits theory of GSp4(k)

• In general, the apartment of a connected reductive group H over k
is identified with the apartment of Z(H) × [H,H], where Z(H) de-
notes the maximal central k-split torus of H. Since Z(GSp4) is a

one-dimensional split torus and [GSp4,GSp4] = Sp4, the apartment Ã
of GSp4(k) is identified with R× A.

• T = S · d(Gm) is a maximal k-split torus of GSp4. The root system
of GSp4 with respect to T is the same as Φ. For δ ∈ Φaff , the affine

function δ : A −→ R is trivially extended to Ã by composition with
the projection Ã −→ A. Therefore, C̃ = R× C is a chamber of Ã.

• For a vertex vi of C, we denote by ṽi the one-dimensional facet R×vi

of C̃. Since ṽi is a facet of minimal dimension, its stabilizer Ki =
GSp4(k)

ṽi is a maximal compact subgroup of GSp4(k).

• The homomorphism ν : Sk −→ X∗(S)⊗Z R is extended to Tk by

ν(d(s)) = −ordp(s)

2
(e∨1 + e∨2 ) .

Then Tk acts on Ã by the translation: (r,x) 7→ (r,x + ν(h)) for

(r,x) ∈ Ã and h ∈ Tk. The facet ṽ0 transforms to the facet ṽ2 by the
action of d(π−1). Hence K0 and K2 are conjugate in GSp4(k).

• K0 is not conjugate to K1 because that v0 is a special point but not
v1.
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3.2 Conjugacy of stabilizers of facets

The subset ∆aff(C̃) = ∆aff(C) of Φaff is the local Dynkin diagram of GSp4(k):

◦
2a+b

==⇒ ◦
a
⇐== ◦

b

The local Dynkin diagram does not depend, up to canonical isomorphism,
on the choice of the chamber C̃. The torus Tk acts on the set of chambers
in Ã, and hence on ∆aff(C̃). We denote by Ξ(GSp4), or simply Ξ, the image

of the homomorphism Tk −→ Aut(∆aff(C̃))

Theorem 3.1 (Tits §2.5). Ξ is isomorphic with Tk/ToSkZ(GSp4)k, in par-

ticular Ξ = Aut(∆aff(C̃)).

For every facet F̃ of the chamber C̃, we define the subset IF̃ of ∆aff(C̃) by

IF̃ = {δ ∈ ∆aff(C̃) : δ|F̃ ̸= 0}

Obviously, we have Iṽi
= Ivi

.

Theorem 3.2 (Tits §2.5). Let F̃1 and F̃2 be facets of C̃. Then GSp4(k)
F̃1

and GSp4(k)
F̃2 are conjugate in GSp4(k) if and only if IF̃1

and IF̃2
are in the

same orbit of Ξ.
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4 Conclusions

• Gv0
k , Gv1

k and Gv2
k are are representatives of conjugacy classes of max-

imal compact subgroups of Gk = Sp4(k).

• Both Gv0
k and Gv2

k are special maximal compact subgroups of Gk.
They satisfy both Iwasawa and Cartan decompositions. The reduction
mod p of each of them is isomorphic with Sp4(f).

• Gv1
k is not a special maximal compact subgroup. The reduction mod

p of Gv1
k is isomorphic with M2(f)o (GL2(f)× SL2(f)).

• GSp4(k)
ṽ0 and GSp4(k)

ṽ1 are representatives of conjugacy classes of
maximal compact subgroups of GSp4(k).

• GSp4(k)
ṽ0 is a special maximal compact subgroup.

• GSp4(k)
ṽ1 is not a special maximal compact subgroup.
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