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1 Simple generalization of Voronoi’s theorem
1.1 Voronoi’'s theorem

Let V,, = {a € M,(R) : ta=a}, P,={a €V, : a>0}
Let m(a) = infoxzzeczn txax for a € Py, the closure of P,
The Hermite invariant F' : P, — R+ is defined by

m(a)
F = —

(@) (det a)t/™

Main Problem of Lattice Sphere Packings J

Determine the actual value of the maximum v, = maxqcp, F(a).

Voronoi's theorem characterizes local maxima of F'.
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Simple generalization of Voronoi's theorem  BAV/Tel Tl RN ST )]
Let S(a) = {x € Z™ : a[x] = m(a)}, the set of minimal vectors.
For z € R™, let ¢, : a — af[x] = tzax be a linear form on V,,.
Definition
Let v/a € P, be the square root of a € P,.
@ a is said to be perfect if {¢ /G, }zecs(a) SPaNNs V7.
e a is said to be eutactic if 7p, > 0, € S(a), such that

Tr= > payan-
z€S(a)

Theorem (Voronoi, 1908)

F(a) is a local maximum if and only if a is perfect and eutactic.

(F = m/ det'/™)
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1.2 Generalization to type one functions

Definition

A function ¢ : P,, — R> is called a type one (class) function if
. ¢(Aa) = A¢(a) for a € P, and A > 0.

2. ¢(a + b) > ¢(a) + ¢(b) for a,b € Py,.

3. ¢(a) > 0 fora € P,.
4
5

—_

. ¢ is upper semicontinuous on P,,.

 (¢(alg)) = ¢(a) for a € P, and g € GLn(Z).)

Example

e Both m and det'/™ are type one class functions.
Tr(ab)

e If ¢ is a type one class function, then so is ¢°(a) := infpep, O
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If ¢ is a type one function, then
@ ¢ is continuous on P,

@ ¢ is log-concave, i.e.,
log ¢(Aa + (1 — A)b) > Alog ¢(a) + (1 — A) log ¢(b)
holds for Va,b € P,, and 0 < Y\ < 1.

We say ¢ is strictly log-concave if this inequality is strict for all @ # b.

Takao Watanabe (Osaka University) On Voronoi's theorem and related problems 6 /34



ST EREEHEE PR RV ERT T M Generalization to type one functions

We want to generalize Voronoi's theorem to Fy := m/¢.
Assume ¢ is differentiable on P,,. Then

log ¢((I + tv)[v/a]) — log ¢(a)
t

(9log $)a(v) = lim
exists for a € P,, and v € V,,.
Definition
a € P, is said to be ¢-eutactic if p, > 0, £ € S(a), such that

(Olog @)a = Z PzP /ax -
xz€S(a)
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Simple generalization of Voronoi's theorem Generalization to type one functions

Theorem (Sawatani-W., 2009)
Assume a type one function ¢ is differentiable and strictly log-concave.
Then Fy = m/¢ attains a local maximum on a € Py, if and only if a is

perfect and ¢-eutactic.

Question
Can we replace m with another type one function?
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Geometry of perfect forms Kernels

2 Geometry of perfect forms
2.1 Kernels

Definition

A subset K C P,, is called a kernel if
1. K is a closed convex subset.
2.0 K.
3. K=R> - K.
4. P, CR>o- K.

If ¢ is a type one function, then
Ki(¢) :={a € Pn : ¢(a) > 1}

is a kernel.
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Geometry of perfect forms Kernels

Conversely, if K is a kernel, then
¢r(a) :=max({\ >0 : a € AK} U {0})

is a type one function.

These correspondences are inverse each other.

K
[Type One Functions] 22K,

P+ K
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2.2 Ryshkov polyhedron

Recall m(a) = infoxzezn a[x] is a type one class function.
The kernel K1(m) is called the Ryshkov polyhedron.
We have

) Kl(m) C Pn.

e Kj(m) is the intersection of affine half-spaces:

Kim)= ()] {a€Vyp: az]>1}.
zeZ™\{0}

e K(m) is a locally finite polyhedron, i.e., the intersection of Kj(m)
and an arbitrary polytope is a polytope.
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Rysiloy palijheian
Let K7 (m) be the boundary of K7 (m) and

Fs(a) = {b € dK1(m) : S(a) C S(b)} fora € P,

Theorem (Voronoi, Ryshkov, etal.)
® Fs(a) is a face of K1(m). Any face of K1(m) is this form.

® Fs(a) is a vertex if and only if a is perfect.

@ The set of all faces of K1(m) has finite GL,,(Z)-orbits.
Let 89Ky (m) be the set of all vertices of K1(m).

o Ry - YK (m) equals the set of all perfect forms.

o Ky(m) is the convex hull of 3° K;(m).

o §(8°K1(m)/GL,(Z)) is finite.
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2.3 Local maximality of S(a)

Lemma
Fora € P,, 3 nbd O, C P,, of a such that S(b) C S(a) for Vb € Oa.J

We say S(a) is locally maximal if
30, such that S(b) S S(a) for Vb € Oq \ Rxoa.
We can prove

a is perfect <= S(a) is locally maximal

Conclusion
a is perfect <= a € Ry - 8°K;(m) <= S(a) is locally maximal J
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2.4 Existence of Hermite like constants

Let ¢ be a type one class function.

Since
1. P, CRso-Ki(m) =Rsg-0K;1(m) and
2. K1(m) is the convex hull of 8°K;(m),

the Hermite like constant

m(a) 1

Yo = sup = sup
¢ a€P, ¢(a) a€dK1(m) ¢(a)

1 1
= sup — = max —
acdKyi(m) P(a)  a€dOKi(m)/GLn(2) ¢(a)

exists.
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Geometry of perfect forms

Let ¢°(a) = infpep, Tr(ab)/¢(b), the dual of ¢.
Put £ = v¢ * Yoo-
Example

o & im =2 /N
m(a)m(b)

& = BB b Tr(ab)

Theorem (Sawatani-W., 2009)
&m < &y for any type one class function ¢.
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3 Voronoi type theorem of the Rankin invariant

3.1 Rankin’s constant

Fix1<j<mn-—1.
Let

M:,j(Z) ={(z1,-+ ,z;) E Mpji(Z) : 1 AN--- ANxj # 0}.
Define the function m; : P, — R>o by

(a) = inf (deta[X])Y7.
m;(a) xeﬁ?;,j(m( et a[X])

m; is a type one class function. The constant

Tnj = (max Fj(a))™, Fj(a) = @iZ?«SIl)M

was introduced by Rankin(1953).
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Voronoi type theorem of the Rankin invariant

Explicit values (Rankin, 1953, Sawatani-W.-Okuda, 2008)
o ’)’4,2 = 3/2
° Y62 = 3%3 482 =3, v8,3 = 18,4 = 4.

Coulangeon characterized local maxima of Fj = m;/ det!/™,

Theorem (Coulangeon, 1996) J

Fj(a) is a local maximum if and only if a is j-perfect and j-eutactic.
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3.2 j-perfection and j-eutaxy

Let S7(a) = {X € M, ,(Z) : (det a[X])'7 = mj(a)}.
Then Sj(a) := 57 (a)/GL;(Z) is a finite set.
Define the linear form px : Vi, — R for X € M, ,(Z) by

¢x(v) = Tr(px - v),

where px : R®™ — span(xq,- - ,x;) is an orthogonal projection.

Definition
@ a is j-perfect if {‘Pﬁx}[x]esj(a) spanns V*.
e ais j-eutactic if Jpx > 0, [X] € Sj(a), such that

Tr= Y  pxPyax-
[X]€S;(a)
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3.3 Some problems of j-perfect forms

Let 5 > 2. The kernel K1(m;) = {a € P, : mj(a) > 1} is bounded
by hypersurfaces det(a[X]) =1, X € M;“l,j (Z).

Problem 1

Determine locations of j-perfect forms in 9K (m;).

Lemma
Fora € P, 3 nbd O, C P, ofa s.t. Sj(b) C Sj(a) for Vb € O,.

We can define the local maximality for S;(a).
Problem 2 J

”
a is j-perfect <= S;(a) is locally maximal.
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Voronoi type theorem of the Rankin invariant

Let ¢ be a type one (class) function.
Problem 3

Characterize local maxima of m;/¢ as Voronoi's theorem.

Problem 4

. . m(a)
When is the Rankin like constant sup ———

finite 7
acP, ¢(a)
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4 Generalizations of Voronoi's theorem
4.1 Arithmetic or geometric generalizations

There are several works:

@ Extensions of a base field from Q to algebraic number fields were
studied by Coulangeon, Icaza, Leibak and others.

@ Ash(1977) generalized the domain P,, to an arbitrary self-dual
homogeneous cone Q. The function F = m/ det'/™ is replaced
with a packing function of €.

@ Bavard(1997, 2005) extended a geometric framework underlying

Voronoi's theorem.
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Generalizations of Voronoi's theorem Toward Voronoi's theorem for height functions

4.2 Toward Voronoi’s theorem for height functions

Let k be a global field, G a connected reductive algebraic group /k and
P a maximal k-parabolic subgroup of G.

Let G, be the adele of G, K, a max. compact subgroup of G,.

We define the height Hp : Gy — R by

Hp(ph) = Hp(p) = |ap(p)];"

for p € Py and h € K4, where ap is a simple root associated with P.
Define Fp : Gk\GA/KA — R>0 by

Fo(g) = min H .
pl9) =, &in, He(vg)
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Generalizations of Voronoi's theorem Toward Voronoi's theorem for height functions

The maximum

= max F;
TGP [9]€GK\GA/Kn e (9)

is called a generalized Hermite constant.

Example
fk=Q G=GL,and P ={(35) : a € GLj, d € GL,_;},
then

and

——
YG,p = (Yn,j) 2EdCGn=D .
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Generalizations of Voronoi's theorem Toward Voronoi's theorem for height functions

Problem 5
Characterize local maxima of Fp as Voronoi's theorem. J

o If k is a number field, Bavard's theory applies to several cases, e.g.,

G = GL,,, S0y, etc., so the problem was solved in some cases.

@ The set of minimal vectors of g € G, is given by
Sp(g) = {[v] € Px\Gx : Hp(vg) = Fp(9)}.
This is a finite subset of P\ Gk. We have
3 nbd O, C G of g such that Sp(g’) C Sp(g) for 'g’ € O,

Thus we can define the local maximality of Sp(g).
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Example of ¥, p in the case of G = Sp2, /Q
4.3 Example of vy p in the case of G = Sp,,,/Q

0 —I 0 —I
G = € GL : ¢ =
{g 2n g(I 0)9 (I O)},
a *
e={(5.0) eeen)

The rational character ap : P — GL; is given by
a x
ap<<0 — ))zdeta.
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Since G and P satisfy
1. Gy = Gg - Gg - Ky (strong approximation),
2. Gg =Pqg - Gz,

one has
GP = max min Hp(vg
7 [9]€Go\Ga/Ky [v]€EP\Go (v9)
= max min H3°(vg),

[9]1€G2z\GRr/Koo YEGzZ

where HS® (ph) = |ap(p)|~! for p € Pg, h € K.
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Let H, = {Z € M,,(C) : ReZ € V,,, ImZ € P,}.
The group Gr acts on H,, by

g(Z> - (G‘Z+ b)(CZ+ d)_la (g = <Z 3) , Z € Hn)'

Then we have
HE(g) = (detIm{g(v/—1D}) /2 (g € Gr)
and

= det I V=11 1/2
ver = Jnax /Koogelgl( et Im{~g( Ho
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Example of yG,p in the case of G = Sp3,, /Q
Since g(+/—1I) runs over a fundamental domain of Gz\H,, , we have

= min maxdetIm Z
e =, min max det Im{7(Z)}

. det ImZ
= min max

Z€Sn (ab)eq, |det(cZ + d)|*’

where S,, is Siegel's fundamental domain:

Z =X 4 IIY o |det(cZ +d)|>1 for.v z(’;) c GZ_
o |x;;| <1/2, Y & (Minkowski's domain)
From

Z €8S, = maxdetIm{vy(Z)} = detImZ,
v€Gyz

it follows

’yé’zp = Znélsn detImZ.
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When n = 1, mingcs, det ImZ = \/3/2

When n = 2, Takashi Kawamura determined minzcs, det ImZ by
using Gottschling's description of S,.

Theorem (Kawamura, 2009)

mingzeg, detImZ = 2/3.

This minimum is attained only when Z = Zg or —Zg, where

Z8:1<1 —1)+\/§<2 1)\/__1.

3\—-1 1 3 \1 2

The domain Sg is described by 28 polynomials in 6 real variables.
Hayata computed 0-dimensional cells of the boundary 8S2 of S.
There are at least 526 0-dimensional cells of 8Ss.

Both Zg and —Zg are contained in Hayata's list.

Takao Watanabe (Osaka University) On Voronoi's theorem and related problems 30/ 34



N  ©2rd's theory
Appendix: Bavard’s theory

We consider a quadruplet £ = (V,I', C, { fs}):

V' : Riemannian manifold,
I' : discrete subgroup of the isometry group of V,
C : index set endowed with a right action of T,
{fs} : family of C functions fs : V — R parametrized by s € C.

Assume

1 fsovy = fsy for Vs € C and V4 € T,

2. #H{s € C : fs(v) < A} is finite for Vv € V and VX € R.
What we do is to characterize local maxima of the function

Fg : v — mingec fs(v).
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EEE—S—S——————————— Bavard's theory

Forv € V, let

T, = tangent space of V at v,
X,(v) = (gradfs)(v),
Se(v) ={s € C : fs(v) = Fe(v)},
Conv(v) = convex hull of {Xs(v)}sese(v) in T,
Aff(v) = affine subspace spanned by { Xs(v) }ses.(v) in T

Definition
e v is said to be perfect if T, = Aff(v).

@ v is said to be eutactic if 0 € Conv(v).
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EEE—S—S——————————— Bavard's theory

We say € has the Voronoi property if the equivalence

F¢ attains a local maximum on v <= v is perfect and eutactic.
holds.

Theorem (Bavard)

Assume fs is convex on any geodesic line on 'V for all s, i.e.,

Fs(((Aa+ (1 — X)B)) < Afs(€()) + (1 — A) fs(£(8))

holds for any geodesic £ : [0,e) — V, a,3 € (0,€) and0 < X < 1.
Then &€ has the Vooronoi property.
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EEE—S—S——————————— Bavard's theory

Example

Let P! = {a € P, : deta =1} = SL,(R)/SO,(R).

E = (PL,SL,(Z), 2™\ {0}, {p=}) has the Voronoi property.
Here o (a) = alx].

Example

Let G be a connected Lie subgroup of SL, (R) and G - I be the G-orbit
of I'in PTIL. If G is invariant by the transpose g — tg, then
E=(G-1,GNSL,(Z),Z™\ {0}, {®z|c-1}) has the Voronoi property.

Takao Watanabe (Osaka University) On Voronoi's theorem and related problems 34 /34



	Outline
	Simple generalization of Voronoï's theorem
	Voronoï's theorem
	Generalization to type one functions

	Geometry of perfect forms
	Kernels
	Ryshkov polyhedron
	Local maximality of S(a)
	Existence of Hermite like constants

	Voronoï type theorem of the Rankin invariant
	k-perfection and k-eutaxy
	j-perfection and j-eutaxy
	Some problems of j-perfect forms

	Generalizations of Voronoï's theorem
	Arithmetic or geometric generalizations
	Toward Voronoï's theorem for height functions
	Example of G, P in the case of G= Sp2n/Q

	Appendix
	Bavard's theory


