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Simple generalization of Voronöı’s theorem Voronöı’s theorem

1 Simple generalization of Voronöı’s theorem

1.1 Voronöı’s theorem

Let Vn = {a ∈ Mn(R) : ta = a}, Pn = {a ∈ Vn : a > 0}
Let m(a) = inf06=x2Zn

txax for a ∈ P n, the closure of Pn.

The Hermite invariant F : Pn −→ R>0 is defined by

F (a) =
m(a)

(det a)1=n
.

.

Main Problem of Lattice Sphere Packings

.

.

.

. ..

.

.

Determine the actual value of the maximum γn = maxa2Pn F (a).

Voronöı’s theorem characterizes local maxima of F .
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Simple generalization of Voronöı’s theorem Voronöı’s theorem

Let S(a) = {x ∈ Zn : a[x] = m(a)}, the set of minimal vectors.

For x ∈ Rn, let φx : a 7→ a[x] = txax be a linear form on Vn.

.

Definition

.

.

.

. ..

.

.

Let
√

a ∈ Pn be the square root of a ∈ Pn.

a is said to be perfect if {φpax}x2S(a) spanns V ˜n .

a is said to be eutactic if 9ρx > 0, x ∈ S(a), such that

Tr =
∑

x2S(a)

ρxφpax .

.

Theorem (Voronöı, 1908)

.

.

.

. ..

.

.

F (a) is a local maximum if and only if a is perfect and eutactic.

(F = m/ det1=n)
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Simple generalization of Voronöı’s theorem Generalization to type one functions

1.2 Generalization to type one functions

.

Definition

.

.

.

. ..

.

.

A function ϕ : P n −→ R–0 is called a type one (class) function if

1. ϕ(λa) = λϕ(a) for a ∈ P n and λ ≥ 0.

2. ϕ(a + b) ≥ ϕ(a) + ϕ(b) for a, b ∈ P n.

3. ϕ(a) > 0 for a ∈ Pn.

4. ϕ is upper semicontinuous on P n.

5. (ϕ(a[g]) = ϕ(a) for a ∈ Pn and g ∈ GLn(Z).)

.

Example

.

.

.

. ..

.

.

Both m and det1=n are type one class functions.

If ϕ is a type one class function, then so is ϕ‹(a) := infb2Pn

Tr(ab)
ffi(b)

.
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Simple generalization of Voronöı’s theorem Generalization to type one functions

If ϕ is a type one function, then

ϕ is continuous on Pn

ϕ is log-concave, i.e.,

log ϕ(λa + (1 − λ)b) ≥ λ log ϕ(a) + (1 − λ) log ϕ(b)

holds for 8a, b ∈ Pn and 0 < 8λ < 1.

We say ϕ is strictly log-concave if this inequality is strict for all a ̸= b.
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Simple generalization of Voronöı’s theorem Generalization to type one functions

We want to generalize Voronöı’s theorem to Fffi := m/ϕ.

Assume ϕ is differentiable on Pn. Then

(∂ log ϕ)a(v) = lim
t!0

log ϕ((I + tv)[
√

a]) − log ϕ(a)

t

exists for a ∈ Pn and v ∈ Vn.

.

Definition

.

.

.

. ..

.

.

a ∈ Pn is said to be ϕ-eutactic if 9ρx > 0, x ∈ S(a), such that

(∂ log ϕ)a =
∑

x2S(a)

ρxφpax .
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Simple generalization of Voronöı’s theorem Generalization to type one functions

.

Theorem (Sawatani–W., 2009)

.

.

.

. ..

.

.

Assume a type one function ϕ is differentiable and strictly log-concave.

Then Fffi = m/ϕ attains a local maximum on a ∈ Pn if and only if a is

perfect and ϕ-eutactic.

.

Question

.

.

.

. ..

.

.

Can we replace m with another type one function?
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Geometry of perfect forms Kernels

2 Geometry of perfect forms

2.1 Kernels

.

Definition

.

.

.

. ..

.

.

A subset K ⊂ P n is called a kernel if

1. K is a closed convex subset.

2. 0 ̸∈ K.

3. K = R–1 · K.

4. Pn ⊂ R–0 · K.

If ϕ is a type one function, then

K1(ϕ) := {a ∈ P n : ϕ(a) ≥ 1}

is a kernel.
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Geometry of perfect forms Kernels

Conversely, if K is a kernel, then

ϕK(a) := max({λ > 0 : a ∈ λK} ∪ {0})

is a type one function.

These correspondences are inverse each other.

§̈ ¥¦Type One Functions
ffi!K1(ffi)←−−−−−→

ffiK K §̈ ¥¦Kernels

Takao Watanabe (Osaka University) On Voronöı’s theorem and related problems 10 / 34



Geometry of perfect forms Ryshkov polyhedron

2.2 Ryshkov polyhedron

Recall m(a) = inf06=x2Zn a[x] is a type one class function.

The kernel K1(m) is called the Ryshkov polyhedron.

We have

K1(m) ⊂ Pn.

K1(m) is the intersection of affine half-spaces:

K1(m) =
∩

x2Znnf0g

{a ∈ Vn : a[x] ≥ 1} .

K1(m) is a locally finite polyhedron, i.e., the intersection of K1(m)
and an arbitrary polytope is a polytope.
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Geometry of perfect forms Ryshkov polyhedron

Let ∂K1(m) be the boundary of K1(m) and

FS(a) := {b ∈ ∂K1(m) : S(a) ⊂ S(b)} for a ∈ Pn.

.

Theorem (Voronöı, Ryshkov, etal.)

.

.

.

. ..

.

.

FS(a) is a face of K1(m). Any face of K1(m) is this form.

FS(a) is a vertex if and only if a is perfect.

The set of all faces of K1(m) has finite GLn(Z)-orbits.

Let ∂0K1(m) be the set of all vertices of K1(m).

R>0 · ∂0K1(m) equals the set of all perfect forms.

K1(m) is the convex hull of ∂0K1(m).

♯(∂0K1(m)/GLn(Z)) is finite.
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Geometry of perfect forms Ryshkov polyhedron
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Geometry of perfect forms Local maximality of S(a)

2.3 Local maximality of S(a)

.

Lemma

.

.

.

. ..

.

.

For a ∈ Pn, 9 nbd Oa ⊂ Pn of a such that S(b) ⊂ S(a) for 8b ∈ Oa.

We say S(a) is locally maximal if

9Oa such that S(b) $ S(a) for 8b ∈ Oa \ R>0a.

We can prove

a is perfect ⇐⇒ S(a) is locally maximal

.

Conclusion

.

.

.

. ..

.

.

a is perfect ⇐⇒ a ∈ R>0 · ∂0K1(m) ⇐⇒ S(a) is locally maximal
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Geometry of perfect forms Existence of Hermite like constants

2.4 Existence of Hermite like constants

Let ϕ be a type one class function.

Since

1. Pn ⊂ R>0 · K1(m) = R>0 · ∂K1(m) and

2. K1(m) is the convex hull of ∂0K1(m),

the Hermite like constant

γffi := sup
a2Pn

m(a)

ϕ(a)
= sup

a2@K1(m)

1

ϕ(a)

= sup
a2@0K1(m)

1

ϕ(a)
= max

a2@0K1(m)=GLn(Z)

1

ϕ(a)

exists.
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Geometry of perfect forms Existence of Hermite like constants

Let ϕ‹(a) = infb2Pn Tr(ab)/ϕ(b), the dual of ϕ.

Put ξffi = γffi · γffi‹ .

.

Example

.

.

.

. ..

.

.

ξdet1=n = γ2
n/n.

ξm = max
(a;b)2PnˆPn

m(a)m(b)

Tr(ab)
.

.

Theorem (Sawatani–W., 2009)

.

.

.

. ..

.

.

ξm ≤ ξffi for any type one class function ϕ.
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Voronöı type theorem of the Rankin invariant k-perfection and k-eutaxy

3 Voronöı type theorem of the Rankin invariant

3.1 Rankin’s constant

Fix 1 ≤ j ≤ n − 1.

Let

M˜n;j(Z) = {(x1, · · · , xj) ∈ Mn;j(Z) : x1 ∧ · · · ∧ xj ̸= 0} .

Define the function mj : P n −→ R–0 by

mj(a) = inf
X2M˜

n;j(Z)
(det a[X])1=j .

mj is a type one class function. The constant

γn;j = (max
a2Pn

Fj(a))n , Fj(a) =
mj(a)

(det a)1=n

was introduced by Rankin(1953).
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Voronöı type theorem of the Rankin invariant k-perfection and k-eutaxy

.

Explicit values (Rankin, 1953, Sawatani–W.–Okuda, 2008)

.

.

.

. ..

.

.

γ4;2 = 3/2.

γ6;2 = 32=3, γ8;2 = 3, γ8;3 = γ8;4 = 4.

Coulangeon characterized local maxima of Fj = mj/ det1=n.

.

Theorem (Coulangeon, 1996)

.

.

.

. ..

.

.

Fj(a) is a local maximum if and only if a is j-perfect and j-eutactic.
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Voronöı type theorem of the Rankin invariant j-perfection and j-eutaxy

3.2 j-perfection and j-eutaxy

Let S˜j (a) = {X ∈ M˜n;j(Z) : (det a[X])1=j = mj(a)}.

Then Sj(a) := S˜j (a)/GLj(Z) is a finite set.

Define the linear form φX : Vn −→ R for X ∈ M˜n;j(Z) by

φX(v) = Tr(pX · v) ,

where pX : Rn −→ span(x1, · · · , xj) is an orthogonal projection.

.

Definition

.

.

.

. ..

.

.

a is j-perfect if {φpaX}[X]2Sj(a) spanns V ˜n .

a is j-eutactic if 9ρX > 0, [X] ∈ Sj(a), such that

Tr =
∑

[X]2Sj(a)

ρXφpaX .

Takao Watanabe (Osaka University) On Voronöı’s theorem and related problems 19 / 34



Voronöı type theorem of the Rankin invariant Some problems of j-perfect forms

3.3 Some problems of j-perfect forms

Let j ≥ 2. The kernel K1(mj) = {a ∈ Pn : mj(a) ≥ 1} is bounded

by hypersurfaces det(a[X]) = 1, X ∈ M˜n;j(Z).

.

Problem 1

.

.

.

. ..

.

.

Determine locations of j-perfect forms in ∂K1(mj).

.

Lemma

.

.

.

. ..

.

.

For a ∈ Pn, 9 nbd Oa ⊂ Pn of a s.t. Sj(b) ⊂ Sj(a) for 8b ∈ Oa.

We can define the local maximality for Sj(a).

.

Problem 2

.

.

.

. ..

.

.

a is j-perfect
?⇐⇒ Sj(a) is locally maximal.
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Voronöı type theorem of the Rankin invariant Some problems of j-perfect forms

Let ϕ be a type one (class) function.

.

Problem 3

.

.

.

. ..

.

.

Characterize local maxima of mj/ϕ as Voronöı’s theorem.

.

Problem 4

.

.

.

. ..

.

.

When is the Rankin like constant sup
a2Pn

mj(a)

ϕ(a)
finite ?
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Generalizations of Voronöı’s theorem Arithmetic or geometric generalizations

4 Generalizations of Voronöı’s theorem

4.1 Arithmetic or geometric generalizations

There are several works:

Extensions of a base field from Q to algebraic number fields were

studied by Coulangeon, Icaza, Leibak and others.

Ash(1977) generalized the domain Pn to an arbitrary self-dual

homogeneous cone Ω. The function F = m/ det1=n is replaced

with a packing function of Ω.

Bavard(1997, 2005) extended a geometric framework underlying

Voronöı’s theorem.
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Generalizations of Voronöı’s theorem Toward Voronöı’s theorem for height functions

4.2 Toward Voronöı’s theorem for height functions

Let k be a global field, G a connected reductive algebraic group /k and

P a maximal k-parabolic subgroup of G.

Let GA be the adele of G, KA a max. compact subgroup of GA.

We define the height HP : GA → R>0 by

HP(ph) = HP(p) = |αP(p)|`1
A

for p ∈ PA and h ∈ KA, where αP is a simple root associated with P.

Define FP : Gk\GA/KA → R>0 by

FP(g) = min
[v]2PknGk

HP(vg) .
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Generalizations of Voronöı’s theorem Toward Voronöı’s theorem for height functions

The maximum

γG;P = max
[g]2GknGA=KA

FP(g)

is called a generalized Hermite constant.

.

Example

.

.

.

. ..

.

.

If k = Q, G = GLn and P = {( a ˜
0 d ) : a ∈ GLj, d ∈ GLn`j} ,

then

HP

((
a ∗
0 d

))
= | det a|(j`n)=gcd(j;n`j)

A | det d|j=gcd(j;n`j)
A

and

γG;P = (γn;j)
n

2gcd(j;n`j) .
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Generalizations of Voronöı’s theorem Toward Voronöı’s theorem for height functions

.

Problem 5

.

.

.

. ..

.

.

Characterize local maxima of FP as Voronöı’s theorem.

If k is a number field, Bavard’s theory applies to several cases, e.g.,

G = GLn, SOn;1, etc., so the problem was solved in some cases.

The set of minimal vectors of g ∈ GA is given by

SP(g) = {[v] ∈ Pk\Gk : HP(vg) = FP(g)} .

This is a finite subset of Pk\Gk. We have

9 nbd Og ⊂ GA of g such that SP(g0) ⊂ SP(g) for 8g0 ∈ Og

Thus we can define the local maximality of SP(g).
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Generalizations of Voronöı’s theorem Example of ‚G,P in the case of G = Sp2n=Q

4.3 Example of γG;P in the case of G = Sp2n/Q

Let

G =

{
g ∈ GL2n : tg

(
0 −I
I 0

)
g =

(
0 −I
I 0

)}
,

P =

{(
a ∗
0 ta`1

)
: a ∈ GLn

}
.

The rational character αP : P −→ GL1 is given by

αP

((
a ∗
0 ta`1

))
= det a .

Takao Watanabe (Osaka University) On Voronöı’s theorem and related problems 26 / 34



Generalizations of Voronöı’s theorem Example of ‚G,P in the case of G = Sp2n=Q

Since G and P satisfy

1. GA = GQ · GR · KA (strong approximation),

2. GQ = PQ · GZ,

one has

γG;P = max
[g]2GQnGA=KA

min
[v]2PQnGQ

HP(vg)

= max
[g]2GZnGR=K1

min
‚2GZ

H1P (γg) ,

where H1P (ph) = |αP(p)|`1 for p ∈ PR, h ∈ K1.
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Generalizations of Voronöı’s theorem Example of ‚G,P in the case of G = Sp2n=Q

Let Hn = {Z ∈ Mn(C) : ReZ ∈ Vn, ImZ ∈ Pn}.

The group GR acts on Hn by

g⟨Z⟩ = (aZ + b)(cZ + d)`1, (g =

(
a b

c d

)
, Z ∈ Hn).

Then we have

H1P (g) = (det Im{g⟨
√

−1I⟩})`1=2 (g ∈ GR)

and

γG;P = max
[g]2GZnGR=K1

min
‚2GZ

(det Im{γg⟨
√

−1I⟩})`1=2 .
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Generalizations of Voronöı’s theorem Example of ‚G,P in the case of G = Sp2n=Q

Since g⟨
√

−1I⟩ runs over a fundamental domain of GZ\Hn , we have

γ`2
G;P = min

[Z]2GZnHn

max
‚2GZ

det Im{γ⟨Z⟩}

= min
Z2Sn

max
“

a b
c d

”

2GZ

det ImZ

| det(cZ + d)|2
,

where Sn is Siegel’s fundamental domain:{
Z = X +

√
−1Y :

• | det(cZ + d)| ≥ 1 for 8 ( ˜ ˜c d ) ∈ GZ

• |xij| ≤ 1/2, Y ∈ (Minkowski’s domain)

}

From

Z ∈ Sn =⇒ max
‚2GZ

det Im{γ⟨Z⟩} = det ImZ,

it follows

γ`2
G;P = min

Z2Sn

det ImZ .
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Generalizations of Voronöı’s theorem Example of ‚G,P in the case of G = Sp2n=Q

When n = 1, minZ2S1 det ImZ =
√

3/2.

When n = 2, Takashi Kawamura determined minZ2S2 det ImZ by

using Gottschling’s description of S2.

.

Theorem (Kawamura, 2009)

.

.

.

. ..

.

.

minZ2S2 det ImZ = 2/3.

This minimum is attained only when Z = Z8 or −Z8, where

Z8 =
1

3

(
1 −1

−1 1

)
+

√
2

3

(
2 1
1 2

)
√

−1 .

The domain S2 is described by 28 polynomials in 6 real variables.

Hayata computed 0-dimensional cells of the boundary ∂S2 of S2.

There are at least 526 0-dimensional cells of ∂S2.

Both Z8 and −Z8 are contained in Hayata’s list.
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Bavard’s theory

Appendix: Bavard’s theory

We consider a quadruplet E = (V, Γ, C, {fs}):

V : Riemannian manifold,

Γ : discrete subgroup of the isometry group of V ,

C : index set endowed with a right action of Γ,

{fs} : family of C1 functions fs : V → R parametrized by s ∈ C.

Assume

1. fs ◦ γ = fs‚ for 8s ∈ C and 8γ ∈ Γ.

2. ♯{s ∈ C : fs(v) ≤ λ} is finite for 8v ∈ V and 8λ ∈ R.

What we do is to characterize local maxima of the function

FE : v 7→ mins2C fs(v).
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Bavard’s theory

For v ∈ V , let

Tv = tangent space of V at v,

Xs(v) = (gradfs)(v),

SE(v) = {s ∈ C : fs(v) = FE(v)},

Conv(v) = convex hull of {Xs(v)}s2SE(v) in Tv,

Aff(v) = affine subspace spanned by {Xs(v)}s2SE(v) in Tv.

.

Definition

.

.

.

. ..

.

.

v is said to be perfect if Tv = Aff(v).

v is said to be eutactic if 0 ∈ Conv(v).
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Bavard’s theory

We say E has the Voronöı property if the equivalence

FE attains a local maximum on v ⇐⇒ v is perfect and eutactic.

holds.

.

Theorem (Bavard)

.

.

.

. ..

.

.

Assume fs is convex on any geodesic line on V for all s, i.e.,

fs(ℓ(λα + (1 − λ)β)) ≤ λfs(ℓ(α)) + (1 − λ)fs(ℓ(β))

holds for any geodesic ℓ : [0, ϵ) → V , α, β ∈ (0, ϵ) and 0 < λ < 1.

Then E has the Voronöı property.
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Bavard’s theory

.

Example

.

.

.

. ..

.

.

Let P 1
n = {a ∈ Pn : det a = 1} ∼= SLn(R)/SOn(R).

E = (P 1
n, SLn(Z), Zn \ {0}, {φx}) has the Voronöı property.

Here φx(a) = a[x].

.

Example

.

.

.

. ..

.

.

Let G be a connected Lie subgroup of SLn(R) and G · I be the G-orbit

of I in P 1
n . If G is invariant by the transpose g 7→ tg, then

E = (G · I, G ∩ SLn(Z), Zn \ {0}, {φx|G´I}) has the Voronöı property.
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