On Voronoï's theorem and related problems

Takao Watanabe

Osaka University

Outline

- 1 Simple generalization of Voronoï's theorem
- 2 Geometry of perfect forms
- Oronoï type theorem of the Rankin invariant
- Generalizations of Voronoï's theorem

1 Simple generalization of Voronoi's theorem **1.1** Voronoi's theorem

Let
$$V_n = \{a \in M_n(\mathbb{R}) : {}^ta = a\}$$
, $P_n = \{a \in V_n : a > 0\}$
Let $m(a) = \inf_{0 \neq x \in \mathbb{Z}^n} {}^txax$ for $a \in \overline{P}_n$, the closure of P_n .
The Hermite invariant $F : P_n \longrightarrow \mathbb{R}_{>0}$ is defined by

$$F(a)=rac{m(a)}{(\det a)^{1/n}}\,.$$

Main Problem of Lattice Sphere Packings

Determine the actual value of the maximum $\gamma_n = \max_{a \in P_n} F(a)$.

Voronoi's theorem characterizes local maxima of F.

Let $S(a) = \{x \in \mathbb{Z}^n : a[x] = m(a)\}$, the set of minimal vectors. For $x \in \mathbb{R}^n$, let $\varphi_x : a \mapsto a[x] = {}^txax$ be a linear form on V_n . Definition

Let $\sqrt{a} \in P_n$ be the square root of $a \in P_n$.

- a is said to be perfect if $\{ \varphi_{\sqrt{a}x} \}_{x \in S(a)}$ spanns V_n^* .
- a is said to be eutactic if $\exists
 ho_x > 0$, $x \in S(a)$, such that

$$\mathrm{Tr} = \sum_{x\in S(a)}
ho_x arphi_{\sqrt{a}x} \, .$$

Theorem (Voronoï, 1908)

F(a) is a local maximum if and only if a is perfect and eutactic.

 $(F = m/\det^{1/n})$

1.2 Generalization to type one functions

Definition

A function ϕ : $\overline{P}_n \longrightarrow \mathbb{R}_{\geq 0}$ is called a type one (class) function if

- 1. $\phi(\lambda a) = \lambda \phi(a)$ for $a \in \overline{P}_n$ and $\lambda \ge 0$.
- 2. $\phi(a+b) \geq \phi(a) + \phi(b)$ for $a,b \in \overline{P}_n$.
- 3. $\phi(a) > 0$ for $a \in P_n$.
- 4. ϕ is upper semicontinuous on \overline{P}_n .
- 5. $(\phi(a[g]) = \phi(a)$ for $a \in P_n$ and $g \in \operatorname{GL}_n(\mathbb{Z})$.)

Example

- Both m and $\det^{1/n}$ are type one class functions.
- If ϕ is a type one class function, then so is $\phi^{\circ}(a) := \inf_{b \in P_n} \frac{\operatorname{Tr}(ab)}{\phi(b)}$

If ϕ is a type one function, then

- ϕ is continuous on P_n
- ϕ is log-concave, i.e.,

 $\log \phi(\lambda a + (1-\lambda)b) \geq \lambda \log \phi(a) + (1-\lambda) \log \phi(b)$ holds for $\forall a, b \in P_n$ and $0 < \forall \lambda < 1$.

We say ϕ is strictly log-concave if this inequality is strict for all $a \neq b$.

We want to generalize Voronoï's theorem to $F_{\phi}:=m/\phi.$ Assume ϕ is differentiable on $P_n.$ Then

$$(\partial \log \phi)_a(v) = \lim_{t \to 0} \frac{\log \phi((\mathbf{I} + tv)[\sqrt{a}]) - \log \phi(a)}{t}$$

exists for $a \in P_n$ and $v \in V_n$.

Definition

 $a\in P_n$ is said to be $\phi ext{-eutactic}$ if $\exists
ho_x>0$, $x\in S(a)$, such that

$$(\partial \log \phi)_a = \sum_{x \in S(a)} \rho_x \varphi_{\sqrt{a}x} \, .$$

Theorem (Sawatani-W., 2009)

Assume a type one function ϕ is differentiable and strictly log-concave. Then $F_{\phi} = m/\phi$ attains a local maximum on $a \in P_n$ if and only if a is perfect and ϕ -eutactic.

Question

Can we replace m with another type one function?

2 Geometry of perfect forms 2.1 Kernels

Definition

A subset $K \subset \overline{P}_n$ is called a kernel if

- 1. K is a closed convex subset.
- $2. \ 0 \not\in K.$
- 3. $K = \mathbb{R}_{\geq 1} \cdot K$.
- 4. $P_n \subset \mathbb{R}_{\geq 0} \cdot K$.

If ϕ is a type one function, then

$$K_1(\phi):=\{a\in \overline{P}_n \ : \ \phi(a)\geq 1\}$$

is a kernel.

Conversely, if K is a kernel, then

$$\phi_K(a):=\max(\{\lambda>0\;:\;a\in\lambda K\}\cup\{0\})$$

is a type one function.

These correspondences are inverse each other.

$$\underbrace{\text{Type One Functions}}_{\phi_{K} \leftarrow K} \underbrace{\overset{\phi \to K_{1}(\phi)}{}}_{Kernels}$$

2.2 Ryshkov polyhedron

Recall $m(a) = \inf_{0
eq x \in \mathbb{Z}^n} a[x]$ is a type one class function. The kernel $K_1(m)$ is called the Ryshkov polyhedron. We have

- $K_1(m) \subset P_n$.
- $K_1(m)$ is the intersection of affine half-spaces:

$$K_1(m)=igcap_{x\in\mathbb{Z}^n\setminus\{0\}}\{a\in V_n\ :\ a[x]\geq 1\}\,.$$

• $K_1(m)$ is a locally finite polyhedron, i.e., the intersection of $K_1(m)$ and an arbitrary polytope is a polytope. Let $\partial K_1(m)$ be the boundary of $K_1(m)$ and

 $\mathcal{F}_{S(a)}:=\{b\in\partial K_1(m)\ :\ S(a)\subset S(b)\}$ for $a\in P_n.$

Theorem (Voronoï, Ryshkov, etal.)

- $\mathcal{F}_{S(a)}$ is a face of $K_1(m)$. Any face of $K_1(m)$ is this form.
- $\mathcal{F}_{S(a)}$ is a vertex if and only if a is perfect.
- The set of all faces of $K_1(m)$ has finite $\operatorname{GL}_n(\mathbb{Z})$ -orbits.

Let $\partial^0 K_1(m)$ be the set of all vertices of $K_1(m)$.

- $\mathbb{R}_{>0} \cdot \partial^0 K_1(m)$ equals the set of all perfect forms.
- $K_1(m)$ is the convex hull of $\partial^0 K_1(m)$.
- $\sharp(\partial^0 K_1(m)/\mathrm{GL}_n(\mathbb{Z}))$ is finite.

2.3 Local maximality of S(a)

Lemma

For $a \in P_n$, \exists nbd $O_a \subset P_n$ of a such that $S(b) \subset S(a)$ for $\forall b \in O_a$.

We say S(a) is locally maximal if

$${}^{\exists}O_a$$
 such that $S(b) \subsetneqq S(a)$ for ${}^{orall}b \in O_a \setminus \mathbb{R}_{>0}a.$

We can prove

 $a ext{ is perfect} \Longleftrightarrow S(a) ext{ is locally maximal}$

Conclusion

 $a ext{ is perfect } \iff a \in \mathbb{R}_{>0} \cdot \partial^0 K_1(m) \iff S(a) ext{ is locally maximal}$

2.4 Existence of Hermite like constants

Let ϕ be a type one class function. Since

1.
$$P_n \subset \mathbb{R}_{>0} \cdot K_1(m) = \mathbb{R}_{>0} \cdot \partial K_1(m)$$
 and

2. $K_1(m)$ is the convex hull of $\partial^0 K_1(m)$,

the Hermite like constant

$$egin{aligned} &\gamma_\phi := \sup_{a\in P_n} rac{m(a)}{\phi(a)} = \sup_{a\in\partial K_1(m)} rac{1}{\phi(a)} \ &= \sup_{a\in\partial^0 K_1(m)} rac{1}{\phi(a)} = \max_{a\in\partial^0 K_1(m)/\operatorname{GL}_n(\mathbb{Z})} rac{1}{\phi(a)} \end{aligned}$$

exists.

Let
$$\phi^{\circ}(a) = \inf_{b \in P_n} \operatorname{Tr}(ab) / \phi(b)$$
, the dual of ϕ .
Put $\xi_{\phi} = \gamma_{\phi} \cdot \gamma_{\phi^{\circ}}$.

Example

•
$$\xi_{\det^{1/n}} = \gamma_n^2/n.$$

• $\xi_m = \max_{(a,b)\in P_n\times P_n} \frac{m(a)m(b)}{\operatorname{Tr}(ab)}$.

Theorem (Sawatani–W., 2009)

 $\xi_m \leq \xi_\phi$ for any type one class function ϕ .

3 Voronoï type theorem of the Rankin invariant **3.1** Rankin's constant

Fix
$$1 \leq j \leq n-1$$
.
Let

$$\mathrm{M}^*_{n,j}(\mathbb{Z}) = \left\{ (x_1,\cdots,x_j) \in \mathrm{M}_{n,j}(\mathbb{Z}) \; : \; x_1 \wedge \cdots \wedge x_j
eq 0
ight\}.$$

Define the function $m_j\,:\,\overline{P}_n\longrightarrow \mathbb{R}_{\geq 0}$ by

$$m_j(a) = \inf_{X \in \operatorname{M}^*_{n,j}(\mathbb{Z})} (\det a[X])^{1/j} \,.$$

 m_j is a type one class function. The constant

$$\gamma_{n,j} = (\max_{a \in P_n} F_j(a))^n \,, \ \ F_j(a) = rac{m_j(a)}{(\det a)^{1/n}}$$

was introduced by Rankin(1953).

Explicit values (Rankin, 1953, Sawatani-W.-Okuda, 2008)

•
$$\gamma_{4,2} = 3/2.$$

• $\gamma_{6,2} = 3^{2/3}$, $\gamma_{8,2} = 3$, $\gamma_{8,3} = \gamma_{8,4} = 4.$

Coulangeon characterized local maxima of $F_j = m_j / \det^{1/n}$.

Theorem (Coulangeon, 1996)

 $F_j(a)$ is a local maximum if and only if a is j-perfect and j-eutactic.

3.2 *j*-perfection and *j*-eutaxy

Let
$$S_j^*(a) = \{X \in \mathrm{M}^*_{n,j}(\mathbb{Z}) : (\det a[X])^{1/j} = m_j(a)\}.$$

Then $S_j(a) := S_j^*(a)/\mathrm{GL}_j(\mathbb{Z})$ is a finite set.
Define the linear form $\varphi_X : V_n \longrightarrow \mathbb{R}$ for $X \in \mathrm{M}^*_{n,j}(\mathbb{Z})$ by

$$\varphi_X(v) = \operatorname{Tr}(p_X \cdot v) \,,$$

where $p_X : \mathbb{R}^n \longrightarrow \operatorname{span}(x_1, \cdots, x_j)$ is an orthogonal projection.

Definition

- a is j-perfect if $\{\varphi_{\sqrt{a}X}\}_{[X]\in S_j(a)}$ spanns V_n^* .
- a is j-eutactic if $\exists
 ho_X > 0$, $[X] \in S_j(a)$, such that

$$\mathrm{Tr} = \sum_{[X] \in S_j(a)}
ho_X arphi_{\sqrt{a}X} \, .$$

3.3 Some problems of *j*-perfect forms

Let $j \geq 2$. The kernel $K_1(m_j) = \{a \in P_n : m_j(a) \geq 1\}$ is bounded by hypersurfaces $\det(a[X]) = 1$, $X \in \mathrm{M}^*_{n,j}(\mathbb{Z})$.

Problem 1

Determine locations of *j*-perfect forms in $\partial K_1(m_j)$.

Lemma

For $a \in P_n$, \exists nbd $O_a \subset P_n$ of a s.t. $S_j(b) \subset S_j(a)$ for $\forall b \in O_a$.

We can define the local maximality for $S_j(a)$.

Problem 2

 $a ext{ is } j ext{-perfect} \stackrel{?}{\Longleftrightarrow} S_j(a) ext{ is locally maximal.}$

Let ϕ be a type one (class) function.

Problem 3

Characterize local maxima of m_j/ϕ as Voronoï's theorem.

Problem 4

When is the Rankin like constant $\sup_{a\in P_n} rac{m_j(a)}{\phi(a)}$ finite ?

4 Generalizations of Voronoï's theorem 4.1 Arithmetic or geometric generalizations

There are several works:

- Extensions of a base field from \mathbb{Q} to algebraic number fields were studied by Coulangeon, Icaza, Leibak and others.
- Ash(1977) generalized the domain P_n to an arbitrary self-dual homogeneous cone Ω . The function $F = m/\det^{1/n}$ is replaced with a packing function of Ω .
- Bavard(1997, 2005) extended a geometric framework underlying Voronoï's theorem.

4.2 Toward Voronoï's theorem for height functions

Let ${\bf k}$ be a global field, ${\bf G}$ a connected reductive algebraic group $/{\bf k}$ and ${\bf P}$ a maximal k-parabolic subgroup of ${\bf G}.$

Let $G_{\mathbb{A}}$ be the adele of G, $K_{\mathbb{A}}$ a max. compact subgroup of $G_{\mathbb{A}}$. We define the height $H_{\mathbf{P}}$: $G_{\mathbb{A}} \to \mathbb{R}_{>0}$ by

$$H_{\mathrm{P}}(ph) = H_{\mathrm{P}}(p) = |lpha_{\mathrm{P}}(p)|_{\mathbb{A}}^{-1}$$

for $p \in P_{\mathbb{A}}$ and $h \in K_{\mathbb{A}}$, where α_{P} is a simple root associated with P. Define $F_{P} : \mathbf{G}_{k} \backslash \mathbf{G}_{\mathbb{A}} / \mathbf{K}_{\mathbb{A}} \to \mathbb{R}_{>0}$ by

$$F_{\mathrm{P}}(g) = \min_{[v] \in \mathrm{P}_{\mathrm{k}} ackslash \mathrm{G}_{\mathrm{k}}} H_{\mathrm{P}}(vg) \, .$$

The maximum

$$\gamma_{\mathrm{G},\mathrm{P}} = \max_{[g]\in\mathrm{G}_{\mathrm{k}}ackslash\mathrm{G}_{\mathbb{A}}/\mathrm{K}_{\mathbb{A}}} F_{\mathrm{P}}(g)$$

is called a generalized Hermite constant.

Example

If $\mathbf{k}=\mathbb{Q},\,\mathbf{G}=\mathrm{GL}_n$ and $\mathbf{P}=\{(\begin{smallmatrix}a&*\\0&d\end{smallmatrix})\;:\;a\in\mathrm{GL}_j,\;d\in\mathrm{GL}_{n-j}\}$, then

$$H_{\mathrm{P}}\left(egin{pmatrix} a & * \ 0 & d \end{pmatrix}
ight) = |\det a|_{\mathbb{A}}^{(j-n)/\mathrm{gcd}(j,n-j)} |\det d|_{\mathbb{A}}^{j/\mathrm{gcd}(j,n-j)}$$

and

$$\gamma_{\mathrm{G,P}} = (\gamma_{n,j})^{rac{n}{2\mathrm{gcd}(j,n-j)}}$$
 .

Problem 5

Characterize local maxima of $F_{\mathbf{P}}$ as Voronoi's theorem.

- If k is a number field, Bavard's theory applies to several cases, e.g., $G = GL_n, SO_{n,1}$, etc., so the problem was solved in some cases.
- ullet The set of minimal vectors of $g\in {
 m G}_{\mathbb A}$ is given by

$$S_{\mathrm{P}}(g) = \left\{ [v] \in \mathrm{P}_{\mathrm{k}} ackslash \mathrm{G}_{\mathrm{k}} \; : \; H_{\mathrm{P}}(vg) = F_{\mathrm{P}}(g)
ight\}.$$

This is a finite subset of $P_k \setminus G_k$. We have

 $^\exists$ nbd $O_g \subset \mathrm{G}_{\mathbb{A}}$ of g such that $S_\mathrm{P}(g') \subset S_\mathrm{P}(g)$ for $^orall g' \in O_g$

Thus we can define the local maximality of $S_{\mathbf{P}}(g)$.

4.3 Example of $\gamma_{\mathrm{G,P}}$ in the case of $\mathrm{G}=\mathrm{Sp}_{2n}/\mathbb{Q}$

Let

$$\begin{split} \mathbf{G} &= \left\{ g \in \mathrm{GL}_{2n} \ : \ {}^tg \left(\begin{array}{cc} 0 & -\mathbf{I} \\ \mathbf{I} & 0 \end{array} \right) g = \left(\begin{array}{cc} 0 & -\mathbf{I} \\ \mathbf{I} & 0 \end{array} \right) \right\}, \\ \mathbf{P} &= \left\{ \left(\begin{array}{cc} a & * \\ 0 & {}^ta^{-1} \end{array} \right) \ : \ a \in \mathrm{GL}_n \right\} \,. \end{split}$$

The rational character α_P : P \longrightarrow GL₁ is given by

$$lpha_{\mathrm{P}}\left(\left(egin{array}{cc} a & * \ 0 & {}^ta^{-1} \end{array}
ight)
ight) = \det a\,.$$

Since ${\bf G}$ and ${\bf P}$ satisfy

1. $\mathbf{G}_{\mathbb{A}} = \mathbf{G}_{\mathbb{Q}} \cdot \mathbf{G}_{\mathbb{R}} \cdot \mathbf{K}_{\mathbb{A}}$ (strong approximation),

2.
$$\mathbf{G}_{\mathbb{Q}} = \mathbf{P}_{\mathbb{Q}} \cdot \mathbf{G}_{\mathbb{Z}}$$
,

one has

$$egin{aligned} &\gamma_{\mathrm{G},\mathrm{P}} = \max_{[g]\in \mathrm{G}_{\mathbb{Q}} ackslash \mathrm{G}_{\mathbb{A}}/\mathrm{K}_{\mathbb{A}}} \min_{[v]\in \mathrm{P}_{\mathbb{Q}} ackslash \mathrm{G}_{\mathbb{Q}}} H_{\mathrm{P}}(vg) \ &= \max_{[g]\in \mathrm{G}_{\mathbb{Z}} ackslash \mathrm{G}_{\mathbb{R}}/\mathrm{K}_{\infty}} \min_{\gamma \in \mathrm{G}_{\mathbb{Z}}} H_{\mathrm{P}}^{\infty}(\gamma g) \,, \end{aligned}$$

where $H^\infty_{\mathrm{P}}(ph) = |lpha_{\mathrm{P}}(p)|^{-1}$ for $p \in \mathrm{P}_{\mathbb{R}}$, $h \in \mathrm{K}_\infty$.

Let $\mathrm{H}_n = \{Z \in \mathrm{M}_n(\mathbb{C}) : \operatorname{Re}Z \in V_n, \ \mathrm{Im}Z \in P_n\}.$ The group $\mathrm{G}_{\mathbb{R}}$ acts on H_n by

$$g\langle Z
angle = (aZ+b)(cZ+d)^{-1}, \qquad (g=egin{pmatrix} a & b\ c & d \end{pmatrix}, \ Z\in \mathrm{H}_n).$$

Then we have

and

$$H^{\infty}_{\mathrm{P}}(g) = (\det \mathrm{Im}\{g\langle \sqrt{-1}\mathrm{I}\rangle\})^{-1/2} \quad (g \in \mathrm{G}_{\mathbb{R}})$$

$$\gamma_{\mathrm{G},\mathrm{P}} = \max_{[g]\in\mathrm{G}_{\mathbb{Z}}\backslash\mathrm{G}_{\mathbb{R}}/\mathrm{K}_{\infty}}\min_{\gamma\in\mathrm{G}_{\mathbb{Z}}}(\det\mathrm{Im}\{\gamma g\langle\sqrt{-1}\mathrm{I}
angle\})^{-1/2}\,.$$

Since $g\langle\sqrt{-1}\mathrm{I}
angle$ runs over a fundamental domain of $\mathrm{G}_{\mathbb{Z}}ackslash\mathrm{H}_n$, we have

$$egin{aligned} &\gamma_{\mathrm{G},\mathrm{P}}^{-2} = \min_{[Z]\in\mathrm{G}_{\mathbb{Z}}\setminus\mathrm{H}_n}\max_{\gamma\in\mathrm{G}_{\mathbb{Z}}}\det\mathrm{Im}\{\gamma\langle Z
angle\} \ &= \min_{Z\in\mathrm{S}_n}\max_{inom{a}\ b\ c\ d} \lim_{Z\in\mathrm{G}_{\mathbb{Z}}}rac{\det\mathrm{Im}Z}{|\det(cZ+d)|^2}\,, \end{aligned}$$

where \mathbf{S}_n is Siegel's fundamental domain:

From

$$Z\in \mathrm{S}_n \implies \max_{\gamma\in\mathrm{G}_{\mathbb{Z}}}\det\mathrm{Im}\{\gamma\langle Z
angle\}=\det\mathrm{Im}Z,$$

it follows

$$\gamma_{\mathrm{G},\mathrm{P}}^{-2} = \min_{Z\in\mathrm{S}_n} \det\mathrm{Im} Z\,.$$

When n = 1, $\min_{Z \in S_1} \det \operatorname{Im} Z = \sqrt{3}/2$.

When n = 2, Takashi Kawamura determined $\min_{Z \in S_2} \det \operatorname{Im} Z$ by using Gottschling's description of S_2 .

Theorem (Kawamura, 2009)

 $\min_{Z \in S_2} \det \operatorname{Im} Z = 2/3.$

This minimum is attained only when $Z=Z_8$ or $-\overline{Z_8}$, where

$$Z_8 = rac{1}{3} egin{pmatrix} 1 & -1 \ -1 & 1 \end{pmatrix} + rac{\sqrt{2}}{3} egin{pmatrix} 2 & 1 \ 1 & 2 \end{pmatrix} \sqrt{-1} \,.$$

The domain S_2 is described by 28 polynomials in 6 real variables. Hayata computed 0-dimensional cells of the boundary ∂S_2 of S_2 . There are at least 526 0-dimensional cells of ∂S_2 . Both Z_8 and $-\overline{Z_8}$ are contained in Hayata's list.

Appendix: Bavard's theory

We consider a quadruplet $\mathcal{E} = (V, \Gamma, C, \{f_s\})$:

- V: Riemannian manifold,
- $\Gamma\,$: discrete subgroup of the isometry group of V ,
- C : index set endowed with a right action of $\Gamma_{\textsc{i}}$
- $\{f_s\}$: family of C^1 functions f_s : $V o \mathbb{R}$ parametrized by $s \in C.$

Assume

1.
$$f_s \circ \gamma = f_{s\gamma}$$
 for $\forall s \in C$ and $\forall \gamma \in \Gamma$.
2. $\sharp \{s \in C : f_s(v) \leq \lambda\}$ is finite for $\forall v \in V$ and $\forall \lambda \in \mathbb{R}$.
What we do is to characterize local maxima of the function

$$F_{\mathcal{E}} : v \mapsto \min_{s \in C} f_s(v).$$

For $v \in V$, let

$$T_v = ext{tangent space of } V ext{ at } v,$$

 $X_s(v) = (ext{grad} f_s)(v),$
 $S_{\mathcal{E}}(v) = \{s \in C : f_s(v) = F_{\mathcal{E}}(v)\},$
 $ext{Conv}(v) = ext{convex hull of } \{X_s(v)\}_{s \in S_{\mathcal{E}}(v)} ext{ in } T_v,$
 $ext{Aff}(v) = ext{affine subspace spanned by } \{X_s(v)\}_{s \in S_{\mathcal{E}}(v)} ext{ in } T_v.$

Definition

- v is said to be perfect if $T_v = Aff(v)$.
- v is said to be eutactic if $0 \in \operatorname{Conv}(v)$.

We say ${m {\cal E}}$ has the Voronoï property if the equivalence

 $F_{\mathcal{E}}$ attains a local maximum on $v \Longleftrightarrow v$ is perfect and eutactic. holds.

Theorem (Bavard) Assume f_s is convex on any geodesic line on V for all s, i.e.,

$$f_s(\ell(\lambda lpha + (1 - \lambda)eta)) \leq \lambda f_s(\ell(lpha)) + (1 - \lambda)f_s(\ell(eta))$$

holds for any geodesic $\ell : [0, \epsilon) \to V$, $\alpha, \beta \in (0, \epsilon)$ and $0 < \lambda < 1$. Then \mathcal{E} has the Voronoï property.

Example

Let
$$P_n^1 = \{a \in P_n : \det a = 1\} \cong SL_n(\mathbb{R})/SO_n(\mathbb{R}).$$

 $\mathcal{E} = (P_n^1, SL_n(\mathbb{Z}), \mathbb{Z}^n \setminus \{0\}, \{\varphi_x\})$ has the Voronoï property.
Here $\varphi_x(a) = a[x].$

Example

Let G be a connected Lie subgroup of $SL_n(\mathbb{R})$ and $G \cdot I$ be the G-orbit of I in P_n^1 . If G is invariant by the transpose $g \mapsto {}^tg$, then $\mathcal{E} = (G \cdot I, G \cap SL_n(\mathbb{Z}), \mathbb{Z}^n \setminus \{0\}, \{\varphi_x|_{G \cdot I}\})$ has the Voronoï property.