On Voronoï's theorem and related problems

Takao Watanabe

Osaka University

Outline

(1) Simple generalization of Voronoï's theorem
(2) Geometry of perfect forms
(3) Voronoï type theorem of the Rankin invariant
(4) Generalizations of Voronoï's theorem

1 Simple generalization of Voronoï's theorem

1.1 Voronoï's theorem

Let $V_{n}=\left\{a \in \mathrm{M}_{\boldsymbol{n}}(\mathbb{R}):{ }^{\boldsymbol{t}} \boldsymbol{a}=\boldsymbol{a}\right\}, \boldsymbol{P}_{\boldsymbol{n}}=\left\{a \in \boldsymbol{V}_{\boldsymbol{n}}: a>0\right\}$
Let $\boldsymbol{m}(\boldsymbol{a})=\inf _{0 \neq \boldsymbol{x} \in \mathbb{Z}^{\boldsymbol{n}}}{ }^{\boldsymbol{x}} \boldsymbol{x} \boldsymbol{a x}$ for $\boldsymbol{a} \in \overline{\boldsymbol{P}}_{\boldsymbol{n}}$, the closure of $\boldsymbol{P}_{\boldsymbol{n}}$.
The Hermite invariant $\boldsymbol{F}: \boldsymbol{P}_{\boldsymbol{n}} \longrightarrow \mathbb{R}_{>\boldsymbol{0}}$ is defined by

$$
F(a)=\frac{m(a)}{(\operatorname{det} a)^{1 / n}}
$$

Main Problem of Lattice Sphere Packings
Determine the actual value of the maximum $\gamma_{n}=\max _{\boldsymbol{a} \in \boldsymbol{P}_{\boldsymbol{n}}} \boldsymbol{F}(\boldsymbol{a})$.

Voronoï's theorem characterizes local maxima of \boldsymbol{F}.

Let $S(a)=\left\{x \in \mathbb{Z}^{\boldsymbol{n}}: a[x]=m(a)\right\}$, the set of minimal vectors. For $\boldsymbol{x} \in \mathbb{R}^{\boldsymbol{n}}$, let $\boldsymbol{\varphi}_{\boldsymbol{x}}: \boldsymbol{a} \mapsto \boldsymbol{a}[\boldsymbol{x}]={ }^{\boldsymbol{t}} \boldsymbol{x} \boldsymbol{a} \boldsymbol{x}$ be a linear form on $\boldsymbol{V}_{\boldsymbol{n}}$.

Definition

Let $\sqrt{\boldsymbol{a}} \in \boldsymbol{P}_{\boldsymbol{n}}$ be the square root of $\boldsymbol{a} \in \boldsymbol{P}_{\boldsymbol{n}}$.

- a is said to be perfect if $\left\{\varphi_{\sqrt{a} x}\right\}_{x \in S(a)}$ spanns V_{n}^{*}.
- a is said to be eutactic if ${ }^{\exists} \rho_{x}>0, x \in S(a)$, such that

$$
\operatorname{Tr}=\sum_{x \in S(a)} \rho_{x} \varphi_{\sqrt{a} x}
$$

Theorem (Voronoï, 1908)
$\boldsymbol{F}(\boldsymbol{a})$ is a local maximum if and only if \boldsymbol{a} is perfect and eutactic.

$$
\left(F=m / \operatorname{det}^{1 / n}\right)
$$

1.2 Generalization to type one functions

Definition

A function $\phi: \overline{\boldsymbol{P}}_{\boldsymbol{n}} \longrightarrow \mathbb{R}_{\geq \mathbf{0}}$ is called a type one (class) function if

1. $\phi(\boldsymbol{\lambda} a)=\lambda \phi(a)$ for $a \in \overline{\boldsymbol{P}}_{\boldsymbol{n}}$ and $\boldsymbol{\lambda} \geq \mathbf{0}$.
2. $\phi(a+b) \geq \phi(a)+\phi(b)$ for $a, b \in \bar{P}_{\boldsymbol{n}}$.
3. $\boldsymbol{\phi}(\boldsymbol{a})>\mathbf{0}$ for $\boldsymbol{a} \in \boldsymbol{P}_{\boldsymbol{n}}$.
4. ϕ is upper semicontinuous on $\overline{\boldsymbol{P}}_{\boldsymbol{n}}$.
5. $\left(\phi(a[g])=\phi(a)\right.$ for $a \in P_{n}$ and $\left.g \in \mathbf{G L}_{\boldsymbol{n}}(\mathbb{Z}).\right)$

Example

- Both m and $\operatorname{det}^{1 / n}$ are type one class functions.
- If ϕ is a type one class function, then so is $\phi^{\circ}(a):=\inf _{b \in P_{n}} \frac{\operatorname{Tr}(a b)}{\phi(b)}$.

If ϕ is a type one function, then

- $\boldsymbol{\phi}$ is continuous on $\boldsymbol{P}_{\boldsymbol{n}}$
- ϕ is log-concave, i.e.,

$$
\log \phi(\lambda a+(1-\lambda) b) \geq \lambda \log \phi(a)+(1-\lambda) \log \phi(b)
$$

holds for ${ }^{\forall} \boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{P}_{\boldsymbol{n}}$ and $\mathbf{0}<{ }^{\forall} \boldsymbol{\lambda}<\mathbf{1}$.
We say ϕ is strictly log-concave if this inequality is strict for all $\boldsymbol{a} \neq \boldsymbol{b}$.

We want to generalize Voronoï's theorem to $\boldsymbol{F}_{\phi}:=\boldsymbol{m} / \boldsymbol{\phi}$.
Assume $\boldsymbol{\phi}$ is differentiable on $\boldsymbol{P}_{\boldsymbol{n}}$. Then

$$
(\partial \log \phi)_{a}(v)=\lim _{t \rightarrow 0} \frac{\log \phi((\mathrm{I}+t v)[\sqrt{a}])-\log \phi(a)}{t}
$$

exists for $\boldsymbol{a} \in \boldsymbol{P}_{\boldsymbol{n}}$ and $\boldsymbol{v} \in \boldsymbol{V}_{\boldsymbol{n}}$.

Definition

$\boldsymbol{a} \in \boldsymbol{P}_{\boldsymbol{n}}$ is said to be ϕ-eutactic if ${ }^{\exists} \boldsymbol{\rho}_{\boldsymbol{x}}>\mathbf{0}, \boldsymbol{x} \in \boldsymbol{S}(\boldsymbol{a})$, such that

$$
(\partial \log \phi)_{a}=\sum_{x \in S(a)} \rho_{x} \varphi_{\sqrt{a} x}
$$

Theorem (Sawatani-W., 2009)
Assume a type one function ϕ is differentiable and strictly log-concave.
Then $\boldsymbol{F}_{\boldsymbol{\phi}}=\boldsymbol{m} / \boldsymbol{\phi}$ attains a local maximum on $\boldsymbol{a} \in \boldsymbol{P}_{\boldsymbol{n}}$ if and only if \boldsymbol{a} is perfect and ϕ-eutactic.

Question
Can we replace \boldsymbol{m} with another type one function?

2 Geometry of perfect forms

2.1 Kernels

Definition
A subset $\boldsymbol{K} \subset \overline{\boldsymbol{P}}_{\boldsymbol{n}}$ is called a kernel if

1. \boldsymbol{K} is a closed convex subset.
2. $\mathbf{0} \notin \boldsymbol{K}$.
3. $K=\mathbb{R}_{\geq 1} \cdot K$.
4. $\boldsymbol{P}_{\boldsymbol{n}} \subset \mathbb{R}_{\geq 0} \cdot \boldsymbol{K}$.

If ϕ is a type one function, then

$$
K_{1}(\phi):=\left\{a \in \bar{P}_{n}: \phi(a) \geq 1\right\}
$$

is a kernel.

Conversely, if \boldsymbol{K} is a kernel, then

$$
\phi_{K}(a):=\max (\{\lambda>0: a \in \lambda K\} \cup\{0\})
$$

is a type one function.
These correspondences are inverse each other.

$$
\text { Type One Functions } \underset{\phi_{K} \leftarrow K}{\stackrel{\phi \rightarrow K_{1}(\phi)}{\leftrightarrows} \text { Kernels }}
$$

2.2 Ryshkov polyhedron

Recall $m(a)=\inf _{0 \neq x \in \mathbb{Z}^{n}} a[x]$ is a type one class function.
The kernel $\boldsymbol{K}_{\mathbf{1}}(\boldsymbol{m})$ is called the Ryshkov polyhedron.
We have

- $K_{1}(m) \subset P_{n}$.
- $\boldsymbol{K}_{\mathbf{1}}(\boldsymbol{m})$ is the intersection of affine half-spaces:

$$
K_{1}(m)=\bigcap_{x \in \mathbb{Z}^{n} \backslash\{0\}}\left\{a \in V_{n}: a[x] \geq 1\right\}
$$

- $K_{1}(\boldsymbol{m})$ is a locally finite polyhedron, i.e., the intersection of $K_{\mathbf{1}}(\boldsymbol{m})$ and an arbitrary polytope is a polytope.

Let $\boldsymbol{\partial} K_{1}(m)$ be the boundary of $K_{1}(m)$ and

$$
\mathcal{F}_{S(a)}:=\left\{b \in \partial K_{1}(m): S(a) \subset S(b)\right\} \quad \text { for } a \in P_{n}
$$

Theorem (Voronoï, Ryshkov, etal.)

- $\mathcal{F}_{S(a)}$ is a face of $K_{\mathbf{1}}(\boldsymbol{m})$. Any face of $\boldsymbol{K}_{\mathbf{1}}(\boldsymbol{m})$ is this form.
- $\mathcal{F}_{S(a)}$ is a vertex if and only if \boldsymbol{a} is perfect.
- The set of all faces of $\boldsymbol{K}_{\mathbf{1}}(\boldsymbol{m})$ has finite $\mathbf{G L} \mathbf{L}_{\boldsymbol{n}}(\mathbb{Z})$-orbits.

Let $\partial^{0} K_{1}(m)$ be the set of all vertices of $K_{1}(m)$.

- $\mathbb{R}_{>0} \cdot \partial^{0} K_{1}(m)$ equals the set of all perfect forms.
- $K_{1}(m)$ is the convex hull of $\partial^{0} K_{1}(m)$.
- $\sharp\left(\partial^{0} K_{1}(m) / G L_{n}(\mathbb{Z})\right)$ is finite.

2.3 Local maximality of $S(a)$

Lemma
For $\boldsymbol{a} \in \boldsymbol{P}_{\boldsymbol{n}},{ }^{\exists} n b d \boldsymbol{O}_{a} \subset \boldsymbol{P}_{\boldsymbol{n}}$ of \boldsymbol{a} such that $\boldsymbol{S}(\boldsymbol{b}) \subset \boldsymbol{S}(\boldsymbol{a})$ for ${ }^{\forall} \boldsymbol{b} \in O_{a}$.
We say $\boldsymbol{S}(\boldsymbol{a})$ is locally maximal if

$$
{ }^{\exists} O_{a} \text { such that } S(b) \varsubsetneqq S(a) \text { for }{ }^{\forall} b \in O_{a} \backslash \mathbb{R}_{>0} a \text {. }
$$

We can prove
a is perfect $\Longleftrightarrow S(a)$ is locally maximal

Conclusion
a is perfect $\Longleftrightarrow a \in \mathbb{R}_{>0} \cdot \partial^{0} K_{1}(m) \Longleftrightarrow S(a)$ is locally maximal

2.4 Existence of Hermite like constants

Let ϕ be a type one class function.
Since

1. $P_{n} \subset \mathbb{R}_{>_{0}} \cdot K_{1}(m)=\mathbb{R}_{>0} \cdot \partial K_{1}(m)$ and
2. $K_{1}(m)$ is the convex hull of $\partial^{0} K_{1}(m)$,
the Hermite like constant

$$
\begin{aligned}
\gamma_{\phi} & :=\sup _{a \in P_{n}} \frac{m(a)}{\phi(a)}=\sup _{a \in \partial K_{1}(m)} \frac{1}{\phi(a)} \\
& =\sup _{a \in \partial^{0} K_{1}(m)} \frac{1}{\phi(a)}=\max _{a \in \partial^{0} K_{1}(m) / \mathrm{GL}_{n}(\mathbb{Z})} \frac{1}{\phi(a)}
\end{aligned}
$$

exists.

Let $\phi^{\circ}(a)=\inf _{b \in P_{n}} \operatorname{Tr}(a b) / \phi(b)$, the dual of ϕ.
Put $\xi_{\phi}=\gamma_{\phi} \cdot \gamma_{\phi^{0}}$.
Example

- $\xi_{\text {det }^{1 / n}}=\gamma_{n}^{2} / n$.
- $\xi_{m}=\max _{(a, b) \in P_{n} \times P_{n}} \frac{m(a) m(b)}{\operatorname{Tr}(a b)}$.

Theorem (Sawatani-W., 2009)
$\xi_{m} \leq \boldsymbol{\xi}_{\phi}$ for any type one class function ϕ.

3 Voronoï type theorem of the Rankin invariant

3.1 Rankin's constant

Fix $1 \leq j \leq n-1$.
Let

$$
\mathrm{M}_{n, j}^{*}(\mathbb{Z})=\left\{\left(x_{1}, \cdots, x_{j}\right) \in \mathrm{M}_{n, j}(\mathbb{Z}): x_{1} \wedge \cdots \wedge x_{j} \neq 0\right\}
$$

Define the function $\boldsymbol{m}_{\boldsymbol{j}}: \overline{\boldsymbol{P}}_{\boldsymbol{n}} \longrightarrow \mathbb{R}_{\geq 0}$ by

$$
m_{j}(a)=\inf _{X \in \mathbf{M}_{n, j}^{*}(\mathbb{Z})}(\operatorname{det} a[X])^{1 / j}
$$

$\boldsymbol{m}_{\boldsymbol{j}}$ is a type one class function. The constant

$$
\gamma_{n, j}=\left(\max _{a \in P_{n}} F_{j}(a)\right)^{n}, \quad F_{j}(a)=\frac{m_{j}(a)}{(\operatorname{det} a)^{1 / n}}
$$

was introduced by Rankin(1953).

Explicit values (Rankin, 1953, Sawatani-W.-Okuda, 2008)

- $\gamma_{4,2}=3 / 2$.
- $\gamma_{6,2}=3^{2 / 3}, \gamma_{8,2}=3, \gamma_{8,3}=\gamma_{8,4}=4$.

Coulangeon characterized local maxima of $F_{j}=m_{j} / \operatorname{det}^{1 / n}$.
Theorem (Coulangeon, 1996)
$\boldsymbol{F}_{\boldsymbol{j}}(\boldsymbol{a})$ is a local maximum if and only if \boldsymbol{a} is \boldsymbol{j}-perfect and \boldsymbol{j}-eutactic.

$3.2 j$-perfection and j-eutaxy

Let $S_{j}^{*}(a)=\left\{X \in \mathrm{M}_{n, j}^{*}(\mathbb{Z}):(\operatorname{det} a[X])^{1 / j}=m_{j}(a)\right\}$.
Then $\boldsymbol{S}_{j}(a):=\boldsymbol{S}_{j}^{*}(a) / \mathbf{G} \mathbf{L}_{j}(\mathbb{Z})$ is a finite set.
Define the linear form $\varphi_{\boldsymbol{X}}: V_{n} \longrightarrow \mathbb{R}$ for $\boldsymbol{X} \in \mathrm{M}_{n, j}^{*}(\mathbb{Z})$ by

$$
\varphi_{X}(v)=\operatorname{Tr}\left(p_{X} \cdot v\right)
$$

where $\boldsymbol{p}_{\boldsymbol{X}}: \mathbb{R}^{\boldsymbol{n}} \longrightarrow \operatorname{span}\left(\boldsymbol{x}_{\boldsymbol{1}}, \cdots, \boldsymbol{x}_{\boldsymbol{j}}\right)$ is an orthogonal projection.
Definition

- a is j-perfect if $\left\{\varphi_{\sqrt{a} X}\right\}_{[X] \in S_{j}(a)}$ spanns V_{n}^{*}.
- a is j-eutactic if ${ }^{\exists} \rho_{\boldsymbol{X}}>\mathbf{0},[\boldsymbol{X}] \in \boldsymbol{S}_{\boldsymbol{j}}(\boldsymbol{a})$, such that

$$
\operatorname{Tr}=\sum_{[X] \in S_{j}(a)} \rho_{X} \varphi_{\sqrt{a} X}
$$

3.3 Some problems of j-perfect forms

Let $j \geq 2$. The kernel $K_{1}\left(m_{j}\right)=\left\{a \in P_{n}: m_{j}(a) \geq 1\right\}$ is bounded by hypersurfaces $\operatorname{det}(a[X])=1, X \in M_{n, j}^{*}(\mathbb{Z})$.

Problem 1
Determine locations of \boldsymbol{j}-perfect forms in $\boldsymbol{\partial} \boldsymbol{K}_{\mathbf{1}}\left(\boldsymbol{m}_{\boldsymbol{j}}\right)$.

Lemma
For $a \in P_{n},{ }^{\exists} n b d O_{a} \subset P_{n}$ of a s.t. $S_{j}(b) \subset S_{j}(a)$ for ${ }^{\forall} b \in O_{a}$.

We can define the local maximality for $\boldsymbol{S}_{\boldsymbol{j}}(\boldsymbol{a})$.
Problem 2
a is j-perfect $\stackrel{?}{\Longleftrightarrow} S_{j}(a)$ is locally maximal.

Let ϕ be a type one (class) function.
Problem 3
Characterize local maxima of $\boldsymbol{m}_{\boldsymbol{j}} / \boldsymbol{\phi}$ as Voronoi's theorem.

Problem 4
When is the Rankin like constant $\sup _{a \in P_{m}} \frac{m_{j}(a)}{\phi(a)}$ finite ?

4 Generalizations of Voronoï's theorem

4.1 Arithmetic or geometric generalizations

There are several works:

- Extensions of a base field from \mathbb{Q} to algebraic number fields were studied by Coulangeon, Icaza, Leibak and others.
- Ash(1977) generalized the domain $\boldsymbol{P}_{\boldsymbol{n}}$ to an arbitrary self-dual homogeneous cone Ω. The function $F=m / \operatorname{det}^{1 / n}$ is replaced with a packing function of $\boldsymbol{\Omega}$.
- Bavard $(1997,2005)$ extended a geometric framework underlying Voronoi's theorem.

4.2 Toward Voronoï's theorem for height functions

Let \mathbf{k} be a global field, \mathbf{G} a connected reductive algebraic group $/ \mathbf{k}$ and \mathbf{P} a maximal k-parabolic subgroup of \mathbf{G}.
Let $\mathbf{G}_{\mathbb{A}}$ be the adele of $\mathbf{G}, \mathbf{K}_{\mathbb{A}}$ a max. compact subgroup of $\mathbf{G}_{\mathbb{A}}$.
We define the height $\boldsymbol{H}_{\mathbf{P}}: \mathbf{G}_{\mathbb{A}} \rightarrow \mathbb{R}_{>0}$ by

$$
H_{\mathrm{P}}(p h)=H_{\mathrm{P}}(p)=\left|\alpha_{\mathrm{P}}(p)\right|_{\mathbb{A}}^{-1}
$$

for $\boldsymbol{p} \in \mathbf{P}_{\mathbb{A}}$ and $\boldsymbol{h} \in \mathbf{K}_{\mathbb{A}}$, where $\boldsymbol{\alpha}_{\mathbf{P}}$ is a simple root associated with \mathbf{P}. Define $\boldsymbol{F}_{\mathbf{P}}: \mathbf{G}_{\mathbf{k}} \backslash \mathbf{G}_{\mathbb{A}} / \mathbf{K}_{\mathbb{A}} \rightarrow \mathbb{R}_{>0}$ by

$$
F_{\mathrm{P}}(g)=\min _{[v] \in \mathbf{P}_{\mathbf{k}} \backslash \mathrm{G}_{\mathbf{k}}} H_{\mathrm{P}}(v g)
$$

The maximum

$$
\gamma_{\mathbf{G}, \mathbf{P}}=\max _{[g] \in \mathbf{G}_{\mathbf{k}} \backslash \mathbf{G}_{\mathrm{A}} / \mathbf{K}_{\mathbb{A}}} F_{\mathbf{P}}(g)
$$

is called a generalized Hermite constant.
Example
If $\mathbf{k}=\mathbb{Q}, \mathbf{G}=\mathbf{G L}_{n}$ and $\mathbf{P}=\left\{\left(\begin{array}{cc}a & * \\ 0 & d\end{array}\right): a \in \mathbf{G L}_{j}, \boldsymbol{d} \in \mathbf{G L}_{n-j}\right\}$, then

$$
H_{\mathrm{P}}\left(\left(\begin{array}{ll}
a & * \\
0 & d
\end{array}\right)\right)=|\operatorname{det} a|_{\mathbb{A}}^{(j-n) / \operatorname{gcd}(j, n-j)}|\operatorname{det} d|_{\mathbb{A}}^{j / \operatorname{gcd}(j, n-j)}
$$

and

$$
\gamma_{\mathrm{G}, \mathrm{P}}=\left(\gamma_{n, j}\right)^{\frac{n}{2 \operatorname{gcd}(\boldsymbol{j}, n-j)}} .
$$

Problem 5

Characterize local maxima of $\boldsymbol{F}_{\mathbf{P}}$ as Voronoï's theorem.

- If \mathbf{k} is a number field, Bavard's theory applies to several cases, e.g., $\mathbf{G}=\mathbf{G L}_{\boldsymbol{n}}, \mathbf{S O}_{\boldsymbol{n}, \mathbf{1}}$, etc., so the problem was solved in some cases.
- The set of minimal vectors of $\boldsymbol{g} \in \mathbf{G}_{\mathbb{A}}$ is given by

$$
S_{\mathrm{P}}(g)=\left\{[v] \in \mathbf{P}_{\mathrm{k}} \backslash \mathrm{G}_{\mathrm{k}}: \boldsymbol{H}_{\mathrm{P}}(v g)=\boldsymbol{F}_{\mathbf{P}}(g)\right\}
$$

This is a finite subset of $\mathbf{P}_{\mathbf{k}} \backslash \mathbf{G}_{\mathbf{k}}$. We have

$$
{ }^{\exists} \mathrm{nbd} O_{g} \subset \mathrm{G}_{\mathbb{A}} \text { of } g \text { such that } S_{\mathrm{P}}\left(g^{\prime}\right) \subset S_{\mathrm{P}}(g) \text { for }{ }^{\forall} g^{\prime} \in O_{g}
$$

Thus we can define the local maximality of $\boldsymbol{S}_{\mathrm{P}}(\boldsymbol{g})$.

4.3 Example of $\gamma_{G, P}$ in the case of $\mathrm{G}=\mathrm{Sp}_{2 n} / \mathbb{Q}$

Let

$$
\begin{aligned}
& \mathbf{G}=\left\{g \in \mathbf{G L}_{2 n}:{ }^{t} g\left(\begin{array}{cc}
0 & -\mathbf{I} \\
\mathbf{I} & 0
\end{array}\right) g=\left(\begin{array}{cc}
0 & -\mathbf{I} \\
\mathbf{I} & 0
\end{array}\right)\right\}, \\
& \mathbf{P}=\left\{\left(\begin{array}{cc}
a & * \\
0 & { }^{t} a^{-1}
\end{array}\right): a \in \mathbf{G L}_{n}\right\} .
\end{aligned}
$$

The rational character $\alpha_{P}: \mathbf{P} \longrightarrow \mathbf{G L}_{\mathbf{1}}$ is given by

$$
\alpha_{P}\left(\left(\begin{array}{cc}
a & * \\
0 & { }^{t} a^{-1}
\end{array}\right)\right)=\operatorname{det} a
$$

Since \mathbf{G} and \mathbf{P} satisfy

1. $\mathbf{G}_{\mathbb{A}}=\mathbf{G}_{\mathbb{Q}} \cdot \mathbf{G}_{\mathbb{R}} \cdot \mathbf{K}_{\mathbb{A}}$ (strong approximation),
2. $\mathbf{G}_{\mathbb{Q}}=\mathbf{P}_{\mathbb{Q}} \cdot \mathbf{G}_{\mathbb{Z}}$,
one has

$$
\begin{aligned}
\gamma_{\mathbf{G}, \mathbf{P}} & =\max _{[g] \in \mathbf{G}_{\mathbb{Q}} \backslash \mathbf{G}_{\mathbb{A}} / \mathbf{K}_{\mathbb{A}}} \min _{\boldsymbol{v}] \in \mathbf{P}_{\mathbb{Q}} \backslash \mathbf{G}_{\mathbb{Q}}} H_{\mathbf{P}}(v g) \\
& =\max _{[g] \in \mathbf{G}_{\mathbb{Z}} \backslash \mathbf{G}_{\mathbb{R}} / \mathbf{K}_{\infty}} \min _{\gamma \in \mathbf{G}_{\mathbb{Z}}} H_{\mathbf{P}}^{\infty}(\gamma \boldsymbol{r}),
\end{aligned}
$$

where $\boldsymbol{H}_{\mathrm{P}}^{\boldsymbol{\infty}}(\boldsymbol{p h})=\left|\boldsymbol{\alpha}_{\mathbf{P}}(\boldsymbol{p})\right|^{-1}$ for $\boldsymbol{p} \in \mathbf{P}_{\mathbb{R}}, \boldsymbol{h} \in \mathbf{K}_{\infty}$.

Let $\mathbf{H}_{n}=\left\{Z \in \mathbf{M}_{\boldsymbol{n}}(\mathbb{C}): \operatorname{Re} Z \in V_{n}, \operatorname{Im} Z \in P_{n}\right\}$.
The group $\mathbf{G}_{\mathbb{R}}$ acts on $\mathbf{H}_{\boldsymbol{n}}$ by

$$
g\langle Z\rangle=(a Z+b)(c Z+d)^{-1}, \quad\left(g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), Z \in \mathbf{H}_{n}\right)
$$

Then we have

$$
H_{\mathrm{P}}^{\infty}(g)=(\operatorname{det} \operatorname{Im}\{g\langle\sqrt{-1} \mathrm{I}\rangle\})^{-1 / 2} \quad\left(g \in \mathrm{G}_{\mathbb{R}}\right)
$$

and

$$
\gamma_{\mathbf{G}, \mathbf{P}}=\max _{[g] \in \mathbf{G}_{\mathbb{Z}} \backslash \mathbf{G}_{\mathbb{R}} / \mathbf{K}_{\infty}} \min _{\gamma \in \mathbf{G}_{\mathbb{Z}}}(\operatorname{det} \operatorname{Im}\{\gamma g\langle\sqrt{-1} \mathbf{I}\rangle\})^{-1 / 2} .
$$

Since $\boldsymbol{g}\langle\sqrt{-\mathbf{1}} \mathbf{I}\rangle$ runs over a fundamental domain of $\mathbf{G}_{\mathbb{Z}} \backslash \mathbf{H}_{\boldsymbol{n}}$, we have

$$
\begin{aligned}
\gamma_{\mathbf{G}, \mathbf{P}}^{-2} & =\min _{[Z] \in \mathbf{G}_{\mathbb{Z}} \backslash \mathbf{H}_{n}} \max _{\gamma \in \mathbf{G}_{\mathbb{Z}}} \operatorname{det} \operatorname{Im}\{\gamma\langle Z\rangle\} \\
& =\min _{Z \in \mathbf{S}_{n}} \max _{\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in \mathbf{G}_{\mathbb{Z}}} \frac{\operatorname{det} \operatorname{Im} Z}{|\operatorname{det}(c Z+d)|^{2}},
\end{aligned}
$$

where $\mathbf{S}_{\boldsymbol{n}}$ is Siegel's fundamental domain:
$\left\{\begin{array}{ll}\left.Z=X+\sqrt{-1} Y: \begin{array}{l}\bullet|\operatorname{det}(c Z+d)| \geq 1 \\ \\ \bullet\left|x_{i j}\right| \leq 1 / 2, \quad Y \in\left(\begin{array}{l}\forall \\ \forall\end{array}\binom{*}{c d} \in \mathrm{G}_{\mathbb{Z}}\right. \\ \text { Minkowski's domain })\end{array}\right\}\end{array}\right\}$
From

$$
Z \in \mathbf{S}_{n} \Longrightarrow \max _{\gamma \in \mathbf{G}_{\mathbb{Z}}} \operatorname{det} \operatorname{Im}\{\gamma\langle Z\rangle\}=\operatorname{det} \operatorname{Im} Z
$$

it follows

$$
\gamma_{\mathbf{G}, \mathbf{P}}^{-2}=\min _{Z \in \mathrm{~S}_{n}} \operatorname{det} \operatorname{Im} Z
$$

When $n=1, \min _{Z \in S_{1}} \operatorname{det} \operatorname{Im} Z=\sqrt{3} / 2$.
When $\boldsymbol{n}=\mathbf{2}$, Takashi Kawamura determined $\min _{Z \in \mathbf{S}_{\mathbf{2}}} \operatorname{det} \operatorname{Im} Z$ by using Gottschling's description of $\mathbf{S}_{\mathbf{2}}$.

Theorem (Kawamura, 2009)
$\min _{Z \in S_{2}} \operatorname{det} \operatorname{Im} Z=2 / 3$.
This minimum is attained only when $Z=Z_{8}$ or $-\overline{Z_{8}}$, where

$$
Z_{8}=\frac{1}{3}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)+\frac{\sqrt{2}}{3}\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \sqrt{-1} .
$$

The domain $\mathbf{S}_{\mathbf{2}}$ is described by 28 polynomials in 6 real variables. Hayata computed 0-dimensional cells of the boundary $\boldsymbol{\partial} \mathbf{S}_{\mathbf{2}}$ of $\mathbf{S}_{\mathbf{2}}$. There are at least 5260 -dimensional cells of $\boldsymbol{\partial \mathbf { S } _ { \mathbf { 2 } }}$. Both Z_{8} and $-\overline{Z_{8}}$ are contained in Hayata's list.

Appendix: Bavard's theory

We consider a quadruplet $\mathcal{E}=\left(\boldsymbol{V}, \boldsymbol{\Gamma}, \boldsymbol{C},\left\{f_{s}\right\}\right)$:
\boldsymbol{V} : Riemannian manifold,
$\boldsymbol{\Gamma}$: discrete subgroup of the isometry group of \boldsymbol{V},
$C:$ index set endowed with a right action of Γ,
$\left\{f_{s}\right\}$: family of C^{1} functions $f_{s}: V \rightarrow \mathbb{R}$ parametrized by $s \in C$.

Assume

1. $f_{s} \circ \gamma=f_{s \gamma}$ for ${ }^{\forall} s \in C$ and ${ }^{\forall} \gamma \in \Gamma$.
2. $\sharp\left\{s \in C: f_{s}(v) \leq \lambda\right\}$ is finite for ${ }^{\forall} \boldsymbol{v} \in \boldsymbol{V}$ and ${ }^{\forall} \boldsymbol{\lambda} \in \mathbb{R}$.

What we do is to characterize local maxima of the function $F_{\mathcal{E}}: v \mapsto \min _{s \in C} f_{s}(v)$.

For $\boldsymbol{v} \in \boldsymbol{V}$, let
$\boldsymbol{T}_{\boldsymbol{v}}=$ tangent space of \boldsymbol{V} at \boldsymbol{v}, $X_{s}(v)=\left(\operatorname{grad} f_{s}\right)(v)$, $S_{\mathcal{E}}(v)=\left\{s \in C: f_{s}(v)=F_{\mathcal{E}}(v)\right\}$,
$\operatorname{Conv}(v)=$ convex hull of $\left\{\boldsymbol{X}_{\boldsymbol{s}}(v)\right\}_{s \in S_{\mathcal{E}}(v)}$ in $\boldsymbol{T}_{\boldsymbol{v}}$,
$\operatorname{Aff}(v)=$ affine subspace spanned by $\left\{X_{s}(v)\right\}_{s \in S_{\mathcal{E}}(v)}$ in $\boldsymbol{T}_{\boldsymbol{v}}$.

Definition

- \boldsymbol{v} is said to be perfect if $\boldsymbol{T}_{\boldsymbol{v}}=\operatorname{Aff}(\boldsymbol{v})$.
- \boldsymbol{v} is said to be eutactic if $\mathbf{0} \in \operatorname{Conv}(\boldsymbol{v})$.

We say \mathcal{E} has the Voronoï property if the equivalence
$\boldsymbol{F}_{\mathcal{E}}$ attains a local maximum on $\boldsymbol{v} \Longleftrightarrow \boldsymbol{v}$ is perfect and eutactic.
holds.

Theorem (Bavard)
Assume f_{s} is convex on any geodesic line on \boldsymbol{V} for all s, i.e.,

$$
f_{s}(\ell(\lambda \alpha+(1-\lambda) \beta)) \leq \lambda f_{s}(\ell(\alpha))+(1-\lambda) f_{s}(\ell(\beta))
$$

holds for any geodesic $\boldsymbol{\ell}:[\mathbf{0}, \boldsymbol{\epsilon}) \rightarrow \boldsymbol{V}, \boldsymbol{\alpha}, \boldsymbol{\beta} \in(\mathbf{0}, \boldsymbol{\epsilon})$ and $\mathbf{0}<\boldsymbol{\lambda}<\mathbf{1}$.
Then \mathcal{E} has the Voronoï property.

Example

Let $P_{n}^{1}=\left\{a \in P_{n}: \operatorname{det} a=1\right\} \cong S L_{n}(\mathbb{R}) / S O_{n}(\mathbb{R})$.
$\mathcal{E}=\left(P_{n}^{1}, S L_{n}(\mathbb{Z}), \mathbb{Z}^{\boldsymbol{n}} \backslash\{0\},\left\{\varphi_{x}\right\}\right)$ has the Voronoï property. Here $\varphi_{x}(a)=a[x]$.

Example

Let G be a connected Lie subgroup of $S L_{n}(\mathbb{R})$ and $\boldsymbol{G} \cdot \mathrm{I}$ be the \boldsymbol{G}-orbit of \mathbf{I} in $P_{n}^{\mathbf{1}}$. If \boldsymbol{G} is invariant by the transpose $\boldsymbol{g} \mapsto{ }^{\boldsymbol{t}} \boldsymbol{g}$, then $\mathcal{E}=\left(G \cdot \mathrm{I}, G \cap S L_{n}(\mathbb{Z}), \mathbb{Z}^{n} \backslash\{0\},\left\{\left.\varphi_{x}\right|_{G \cdot I}\right\}\right)$ has the Voronoï property.

